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Quadrupole moments and proton-neutron structure in p-shell mirror nuclei
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Electric quadrupole (E2) matrix elements provide a measure of nuclear deformation and related collective
structure. Ground-state quadrupole moments in particular are known to high precision in many p-shell nuclei.
While the experimental electric quadrupole moment only measures the proton distribution, both proton and
neutron quadrupole moments are needed to probe proton-neutron asymmetry in the nuclear deformation. We
seek insight into the relation between these moments through the ab initio no-core configuration interaction
(NCCI), or no-core shell model (NCSM), approach. Converged ab initio calculations for quadrupole moments
are particularly challenging due to sensitivity to long-range behavior of the wave functions. We therefore
study more robustly converged ratios of quadrupole moments: across mirror nuclides, or of proton and neutron
quadrupole moments within the same nuclide. In calculations for mirror pairs in the p shell, we explore how well
the predictions for mirror quadrupole moments agree with experiment and how well isospin (mirror) symmetry
holds for quadrupole moments across a mirror pair. The comparison with experiment confirms the predictive
power of the ab initio description, indicating that the predicted ratios are physically relevant for understanding
proton-neutron structure as well.
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I. INTRODUCTION

Electric quadrupole (E2) matrix elements, including
quadrupole moments, provide a principal measure of nuclear
deformation, rotation, and related collective structure [1–5].
To probe the proton-neutron asymmetric aspects of the
nuclear deformation, both proton and neutron quadrupole
observables are needed. For instance, in an axially symmet-
ric rotational nucleus [4], the ratio of proton and neutron
quadrupole moments indicates the relative contributions of
protons and neutrons to the overall deformation, that is, the
ratio of quadrupole moments in the rotational intrinsic frame.
Alternatively, an anomalously large quadrupole moment for
one of the nucleonic species can be interpreted in a shell-
model description as an indicator of halo structure [6,7].

While the ground-state electric quadrupole moment is
readily accessible via electromagnetic measurements [8], this
observable provides access only to the quadrupole moment
of the proton density distribution within the nucleus. Neutron
quadrupole observables are at best indirectly measurable,
e.g., through nuclear inelastic hadron or α scattering [9]. For
the neutron quadrupole moment, in particular, if we consider
two nuclei forming a mirror pair, the approximate isospin
symmetry of the nuclear system [10] implies that the behavior

of the protons in one member of the pair provides a proxy for
the behavior of the neutrons in the other, and vice versa. Thus,
by mirror symmetry, we can deduce the neutron quadrupole
moment of one nucleus from the measured proton quadrupole
moment of the other. However, this approach is limited to
cases in which the quadrupole moments are experimentally
accessible for both members of the mirror pair. Moreover,
it relies on the assumption, possibly imperfect, of mirror
symmetry.

We therefore seek further insight from ab initio theory
into the proton and neutron quadrupole moments, and their
relation, in light (p-shell) nuclei. Ab initio approaches to the
nuclear many-body problem do not impose any specific a
priori model assumptions, yet they are found to reproduce
signatures of phenomena involving quadrupole deformation,
clustering [11–16], and rotation [17–22].

Before extracting physical information from ab initio
calculations, we must first identify the extent to which con-
vergence is obtained for the relevant observables. In practice,
the many-body Hilbert space used in an ab initio calculation
must be truncated to finite size. Calculations in progressively
larger spaces, involving progressively less severe truncations,
provide results which converge towards those which would
be obtained by solving the full, nontruncated many-body
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problem. Nonetheless, the accuracy of calculated observables
is limited by computational constraints on the spaces which
can be accommodated.

The degree of convergence varies tremendously depending
upon the observable under consideration. It is particularly
challenging to obtain meaningful ab initio calculations for E2
matrix elements, including quadrupole moments, due to their
sensitivity to the large-distance behavior (or tails) of the wave
functions. While the no-core configuration interaction (NCCI)
[23], or no-core shell model (NCSM), approach has consider-
able success in providing calculations for, e.g., energies and
magnetic dipole observables, throughout the p shell [24], even
order-of-magnitude calculations for E2 matrix elements are
elusive.

To circumvent this limitation, we recognize that ratios of
E2 matrix elements can be more robustly calculated than
individual matrix elements. If the matrix elements entering
into the ratio involve structurally similar states, so that con-
vergence properties are similar, errors from truncation of
the many-body space can cancel in the ratio. Such behav-
ior has already been noted for E2 matrix elements among
states within the same rotational band [18,22], or between
rotational bands with related structures [25], and for the E2
strengths of mirror transitions [26]. Prior calculations of the
ratio of proton and neutron quadrupole moments [18] have
suggested that this ratio may be similarly robust, at least
in a limited sampling of rotational states (see Fig. 18 of
Ref. [18]).

In the present work, to investigate proton-neutron asym-
metry in quadrupole structure, we consider NCCI calculations
for two ratios: (1) that of the proton (or electric) quadrupole
moments for the ground states of both members of a mirror
pair, as accessible in experiment, and (2) that of the proton
and neutron quadrupole moments within the ground state of
a single nuclide, which provides the more direct structural
measure. To the extent that convergence is obtained for these
ratios, and to the extent that the results are found to be robust
with respect to the choice of internucleon interaction, we wish
to understand the following:

(i) How well do the predictions agree with experiment,
in mirror pairs for which the quadrupole moments of
both members are experimentally known [8]?

(ii) To what extent does mirror symmetry actually hold
for the proton and neutron quadrupole moments across
a mirror pair, so that the mirror ratio may indeed be
taken as equivalent to the ratio of proton and neutron
quadrupole moments within a single member of the
pair?

We carry out NCCI calculations of ground-state
quadrupole moments for a comprehensive set of pairs of
mirror nuclei in the p shell. Namely, we consider all mirror
pairs in which both members are particle-bound (as well as
one involving an extremely narrow ground-state resonance)
and in which the angular-momentum selection rule permits a
nonzero quadrupole moment. We compare results based on
the Daejeon16 interaction [27], the JISP16 interaction [28],

FIG. 1. Overview of particle-bound nuclides in the p shell, indi-
cating ground-state angular momentum and parity [34–38]. Brackets
indicate a particle-unbound but narrow (�1 keV) ground-state res-
onance. Nuclides with measured ground-state quadrupole moments
[8] are indicated with the letter “Q.” Those cases in which both
members of a mirror pair are particle-bound and have ground-state
angular momenta supporting a quadrupole moment, the criterion for
inclusion in the present calculations, are highlighted (dashed circles).
Shading indicates stable isotopes.

and the LENPIC interaction taken to N2LO in chiral effective
field theory (EFT) [29,30].

In the following, after a brief overview of the mirror pairs
being considered and the available experimental data (Sec. II),
we examine the convergence properties of the ground-state
quadrupole moments, and their ratios, obtained in the NCCI
calculations for these nuclei (Sec. III). We then examine the
accuracy with which mirror symmetry holds for the calcu-
lated ratios, given the isospin symmetry breaking provided
by the interactions considered here (Sec. IV). Approaches to
interpreting the calculated ratio of neutron and quadrupole
moments as an indicator of proton-neutron nuclear structure,
in terms of cluster [31] or SU(3) [32,33] descriptions, are
suggested (Sec. V).

II. MIRROR QUADRUPOLE MOMENTS IN THE P SHELL

We focus on mirror pairs in the p shell for which
both members are particle-bound. The full set of bound
p-shell nuclei [34–38] is summarized in Fig. 1, along
with ground-state angular-momentum and parity assign-
ments. For the present purposes, we also include ex-
ceptionally narrow ground-state resonances, indicated by
brackets in Fig. 1. (In particular, although 9B is unstable
to proton emission, its ground state has a width of only
≈0.5 keV [35].)

Since the quadrupole moment vanishes identically for
any state with angular momentum J < 1, mirror pairs with
ground state J = 0 (and thus all even-even nuclei) or 1/2
are excluded. This leaves us with the following mirror
pairs for consideration (circled in Fig. 1): A = 7 (7Li / 7Be),
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TABLE I. Experimental ground-state quadrupole moments [8] for the p-shell mirror pairs considered here, and prior ab initio GFMC
predictions [39] (discussed in Sec. III). Ratios within a mirror pair are deduced where possible, and the uncertainty on the ratio is obtained
assuming the uncertainties on the individual moments are uncorrelated.

Nuclide Experiment GFMC (AV18 + IL7)

A (Z, N ) JP Q (fm2) Ratio Q (fm2) Ratio

7 7Li (3,4) 3/2− −4.00(3) −4.0(1)
7Be (4,3) 3/2− −6.7(1)a +1.68(5)

8 8Li (3,5) 2+ +3.14(2) +3.3(1)
8B (5,3) 2+ +6.34(14) +2.02(5) +5.9(4) +1.79(13)

9 9Be (4,5) 3/2− +5.29(4) +5.1(1)
9B (5,4) 3/2− +4.0(3)a +0.78(6)

9′ 9Li (3,6) 3/2− −3.04(2) −2.3(1)
9C (6,3) (3/2−) −4.1(4) +1.8(2)

11 11B (5,6) 3/2− +4.059(10)
11C (6,5) 3/2− ±3.33(2) ±0.820(5)

12 12B (5,7) 1+ ±1.32(3)
12N (7,5) 1+ +1.00(9)b ±0.76(7)

13′ 13B (5,8) 3/2− (+)3.65(8)
13O (8,5) 3/2− ±1.11(8) ±0.30(2)

aThe GFMC quadrupole moments for 7Be and 9B provided in Table II of Ref. [39] are derived under proton-neutron interchange from wave
functions for the mirror nuclides 7Li and 9Be (i.e., from Qn, assuming mirror symmetry). Furthermore, from entries marked with an asterisk in
Table II of Ref. [39], indicating quadrupole moments derived under proton-neutron interchange from the wave function for the mirror nuclide,
we may read off the calculated neutron quadrupole moments Qn(8Li) = +6.5(2) fm2, Qn(8B) = +3.0(4) fm2, Qn(9Li) = −3.7(1) fm2, and
Qn(9C) = −2.7(2) fm2.
bThe quadrupole moment for 12N is tabulated in the Stone 2016 evaluation [8] as +10.0(9) fm2, or +0.100(9) b in the units adopted in that
tabulation. The underlying experimental β-NMR results are those of Minamisono et al. [40], which permit the 12N quadrupole moment to be
deduced relative to that of the 14N reference standard. As originally taken in conjunction with the 14N quadrupole moment of Schirmacher
et al. [41], the experimental results yielded a 12N quadrupole moment of +0.98(9) fm2 [40], as also subsequently quoted in the Stone 2005
[42] and Kelley et al. 2012 [38] evaluations. However, the Stone 2016 evaluation [8] adopts an updated 14N reference quadrupole moment
from Pyykkö [43], which provides a 2% adjustment relative to the prior value. This yields a revised 12N quadrupole moment of +1.00(9) fm2,
or +0.0100(9) b, as we take here. However, the value tabulated in Ref. [8] differs by a shifted decimal point.

8 (8Li / 8B), 9 (9Be / 9B), 9′ (9Li / 9C), 11 (11B / 11C), 12
(12B / 12N), and 13′ (13B / 13O). Here, for odd A, we indicate
non-nearest-neighbor mirror pairs, namely with Tz = ±3/2,
by placing a prime on the value of A, while the rest have
Tz = ±1/2. The odd-odd mirror pairs all have the minimal
Tz = ±1.

Ground-state electric quadrupole moments are experimen-
tally known (as indicated by a “Q” in Fig. 1) for most
of these nuclei, measured variously by β nuclear magnetic
resonance, β nuclear quadrupole resonance, and atomic- or
molecular-beam measurements [8]. The exceptions are 7Be,
9B (the narrow resonance noted above), and 9C. Experimental
quadrupole moments for members of the mirror pairs consid-
ered here, as evaluated in Ref. [8], are summarized in Table I.
Uncertainties range from the order of 10% to less than 1%
(although the signs of some of these quadrupole moments are
experimentally undetermined or uncertain). These experimen-
tal values provide the basis for stringent comparisons with
theoretical predictions.

The quadrupole moments of both members of the pair are
thus experimentally known in the case of the A = 8, 11, 12,
and 13′ mirror pairs. For these, the ratio is also given for
reference in Table I. For consistency in defining the ratios,
we always take the ratio of the quadrupole moment for the
proton-rich (Z > N) nuclide to that of the neutron-rich (Z <

N) nuclide.

III. AB INITIO PREDICTIONS FOR QUADRUPOLE
MOMENT MIRROR RATIOS

A. Mirror nuclide quadrupole moments: A = 7

Let us first consider the A = 7 mirror pair in detail. Here
we define the NCCI calculations, illustrate the challenges
associated with predicting quadrupole moments directly from
such calculations, and then explore the rationale for instead
considering their ratios. We will then, in subsequent sections,
survey the results for the remaining mirror pairs, both with
odd mass (Sec. III B) and odd-odd (Sec. III C).

The NCCI approach [23] is based on diagonalizing the
nuclear many-body Hamiltonian in a basis of antisymmetrized
product states (Slater determinants) constructed from some
single-particle basis, most commonly harmonic-oscillator or-
bitals. Actual calculations must be carried out in a finite,
truncated basis. The energies and other observables thereby
obtained are only approximations to those which would be
obtained in the full many-body space. However, by system-
atically expanding the basis, it is in principle possible to
approach the full-space values to any desired degree of ac-
curacy. The actual accuracy which can be reached is subject
to computational limitations on the problem size.

The NCCI basis states may be organized according to the
number Nex of oscillator excitations relative to the lowest
Pauli-allowed filling of oscillator shells. The many-body basis
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FIG. 2. Convergence of ab initio NCCI calculations for the A = 7 mirror nuclides, with the Daejeon16 interaction: (a) the 3/2− ground-state
energy for 7Li, (b) the ground-state magnetic dipole moment μ for 7Li, (c) the ground-state electric quadrupole moment Q for 7Li (filled
symbols) and 7Be (open symbols), and (d) the ratio of the quadrupole moment for 7Be to that of 7Li. Calculated values are shown as functions
of the basis parameter h̄ω, for successive even value of Nmax (increasing symbol size and longer dashing), from Nmax = 4 (short dashed curves)
to 14 (solid curves). Experimental values are also shown for the 7Li magnetic dipole [42] and electric quadrupole [8] moments (squares
at left).

is then, for practical reasons (see, e.g., Ref. [44]), conven-
tionally truncated to a maximum number Nmax of oscillator
excitations above the lowest filling (i.e., to Nex � Nmax). The
space spanned by the many-body basis also depends on the
oscillator length b of the underlying oscillator orbitals, com-
monly expressed in terms of the corresponding oscillator
energy h̄ω [45]. The full-space values for observables should
be recovered as Nmax approaches infinity, in which limit the
calculated values also become independent of h̄ω.

Consider first the calculated energy eigenvalue for the
ground state of 7Li, shown in Fig. 2(a) for the Daejeon16
interaction. (The present calculations are obtained using the
M-scheme NCCI code MFDn [46,47].) Each curve represents
calculations at fixed truncation Nmax (Nmax = 4 to 14, even),
for varying h̄ω. The calculated ground-state energy is varia-
tionally bounded below by the full-space value. An approach
to convergence is evident in the curves becoming successively
closer together (independent of Nmax) and flatter (independent
of h̄ω), as they approach the variational lower bound, such
that the highest Nmax curves lie nearly atop each other at the
scale shown. A qualitatively similar convergence pattern is
obtained for other choices of interaction, although the rate
of convergence and the location (in h̄ω) of the variational
minimum in each curve will in general differ.

The quality of convergence in a NCCI calculation depends
on the observable (and states) under consideration. For in-
stance, magnetic dipole (M1) observables, which are largely

sensitive to the angular-momentum structure of the wave func-
tions, may attain very rapid convergence, as illustrated for the
calculated dipole moment of 7Li in Fig. 2(b). (The calculated
magnetic dipole moment is also reasonably consistent with the
experimental value [42].) In contrast, electric quadrupole (E2)
observables, which are more sensitive to the radial behavior
(the “tails” of the wave functions are amplified by the r2 radial
dependence of the quadrupole operator) are comparatively
difficult to converge.

Indeed, the calculated quadrupole moment for the 7Li
ground state, shown by the filled symbols in Fig. 2(c), depends
strongly on h̄ω at fixed Nmax, especially for low Nmax, and
continues to vary steadily with increasing Nmax. Note that
the overall trend of each curve with respect to h̄ω, from
asymptotically large magnitude as h̄ω → 0 to asymptotically
small magnitude as h̄ω → ∞, is simply a consequence of the
dependence on h̄ω of the length scale of the basis functions.
For a single oscillator basis function, the quadrupole moment
scales as Q ∝ b2, where b ∝ (h̄ω)−1/2, and is thus inversely
proportional to h̄ω.

Encouragingly, there does appear to be some progress to-
wards convergence with increasing Nmax in the calculated 7Li
quadrupole moment. In particular, note the significant flatten-
ing (or “shouldering”) of the curves at high Nmax, as well as
some degree of compression of successive curves against each
other with increasing Nmax. There is also a narrow region,
around h̄ω ≈ 9 MeV, where the curves cross each other, and
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therefore locally approach Nmax independence. Such crossings
have been suggested as a heuristic indicator of convergence
[48–50] (although, in general, such crossings drift with Nmax

[51] and are thus of limited use in estimating the converged
value). It is perhaps reassuring that, in the shoulder region,
the calculated values of the quadrupole moment appear to be
roughly consistent with, and approaching, the experimental
value. Nonetheless, it is less than obvious how to extract a
firm quantitative value for the predicted quadrupole moment
in the full, nontruncated many-body problem (at least without
significant further assumptions about the nature of the conver-
gence, e.g., as in Ref. [52]).

The calculated quadrupole moment for the mirror nuclide
7Be, shown by the open symbols in Fig. 2(c), shares a sim-
ilarly encouraging approach to convergence but is likewise
insufficiently converged to provide a firm quantitative pre-
diction. Indeed, the two quadrupole moments in Fig. 2(c)
have similar convergence trends, differing primarily in overall
normalization.

Herein lies the motivation for considering ratios. The error
introduced by basis truncation may largely cancel in the ratio
of these quadrupole moments, providing a more robustly con-
verged prediction for their ratio. Such cancellation and robust
convergence has already been noted for the ratio between the
mirror E2 transitions (3/2− → 1/2−) in these two nuclei [26]
(see Fig. 6 of Ref. [26]). Indeed the ratio of the calculated
quadrupole moments for 7Be and 7Li, shown in Fig. 2(d), is
seen to be largely independent of Nmax and h̄ω.

It is informative to compare the convergence behavior ob-
tained for different choices of interaction, derived by different
procedures. The Daejeon16 interaction [27] is a comparatively
“soft” interaction. It is based on the two-body part of the
Entem-Machleidt (EM) N3LO chiral EFT interaction [53],
softened via a similarity renormalization-group (SRG) trans-
formation [54] to enhance convergence, and then adjusted via
a phase-shift equivalent transformation to better describe light
nuclei with A � 16 (see Ref. [55] for comparison with experi-
ment). The earlier JISP16 interaction [28] is derived instead
from nucleon-nucleon scattering data by J-matrix inverse
scattering, then similarly adjusted via phase-shift equivalent
transformations to data for nuclei with A � 16 (see Ref. [24]
for comparison with experiment). Alternatively, the LENPIC
interaction [29,30] is a newer chiral EFT interaction, devel-
oped with an ultraviolet regularization scheme designed to
minimize finite-cutoff artifacts. We consider the two-body
part of this interaction at N2LO, which provides a reason-
able description of nuclear observables without adjustment
[56,57]. Here we take it with a semilocal coordinate-space
regulator (R = 1 fm), and in its “bare” form, i.e., without
subsequent SRG transformation.

The calculated A = 7 quadrupole moments, and their ra-
tio, for the JISP16 and LENPIC interactions are shown in
Fig. 3. (For each interaction, we consider calculations in an h̄ω

range centered on the approximate location of the variational
minimum of the ground-state energy, for calculations with
that interaction.) The calculated quadrupole moments them-
selves show less indication of convergence than for Daejeon16
[Fig. 2(c)]. There is a hint of shouldering in the calculated
quadrupole moments for JISP16 [Fig. 3(a)], which cross at

FIG. 3. Quadrupole moments for the A = 7 mirror nuclides, cal-
culated with the JISP16 (left) and LENPIC (right) interactions: (top)
quadrupole moments for 7Li (filled symbols) and 7Be (open sym-
bols), and (bottom) the 7Be to 7Li mirror ratio. Calculated values are
shown as functions of the basis parameter h̄ω, for successive even
values of Nmax (increasing symbol size and longer dashing), from
Nmax = 4 (short dashed curves) to 14 (solid curves).

h̄ω � 10 MeV, but little suggestion of convergence at all for
the unsoftened LENPIC interaction [Fig. 3(b)].

Nonetheless, the mirror ratio of quadrupole moments
[Figs. 3(c) and 3(d)] is again robustly converged, much as
for the Daejeon16 interaction [Fig. 2(d)]. We observe close
quantitative agreement between the predictions for the A =
7 quadrupole moment ratio obtained with the Daejeon16,
JISP16, and LENPIC interactions.

Within the A = 7 mirror pair, the quadrupole moment of
7Be is unmeasured, and thus experiment does not provide a
test of the NCCI predictions. Rather, the robust NCCI predic-
tion of the ratio (approximately +1.7), taken in conjunction
with the measured quadrupole moment of −4.0 fm2 for 7Li
(Table I), provides a concrete prediction of approximately
−6.8 fm2 for the unmeasured 7Be quadrupole moment.

B. Odd-mass mirror pairs

Let us now consider the ab initio predictions for the
quadrupole moments and their ratios for the remaining p-shell
mirror pairs (A > 7). The calculated quadrupole moments for
both members of each mirror pair are overlaid in the upper
member of each pair of panels in Fig. 4, demonstrating the
convergence behavior with respect to Nmax and h̄ω. Then the
calculated ratio is shown in the lower member of each pair of
panels in Fig. 4. We again focus on the calculations with the
Daejeon16 interaction for detailed analysis (comprehensive
tabulations of the calculated quadrupole moments for all three
interactions are provided in the Supplemental Material [58]).
The experimental values are indicated for comparison, where
available, in Fig. 4, with the caveat that signs are not always
experimentally determined (see Table I). While calculations
for all of the mirror pairs are shown in Fig. 4, we discuss first
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FIG. 4. Quadrupole moments for p-shell mirror nuclides (upper member of each pair of panels), for A > 7, and the ratio of quadrupole
moments across each mirror pair (lower member of each pair of panels), calculated with the Daejeon16 interaction. Calculated values (circles)
are shown as functions of the basis parameter h̄ω, for successive even values of Nmax (increasing symbol size and longer dashing), from
Nmax = 4 (short dashed curves) to the maximum value for that mirror pair (solid curves), indicated at bottom. Quadrupole moments for the
neutron-rich (Z < N) nuclides are shown with filled symbols, and those for the proton-rich (Z > N) nuclides with open symbols. Also shown
are the experimental quadrupole moments [8] (squares) from Table I (some signs are experimentally undetermined).

the remaining odd-A nuclides, before turning to the odd-odd
nuclides below in Sec. III C.

To provide a concise, although less nuanced, global com-
parison of results for the quadrupole moment ratios, for all
mirror pairs and for all choices of interaction, it is helpful to
take a slice at fixed h̄ω through the convergence results, con-

sidering only the Nmax dependence. A natural choice for h̄ω

is again the approximate location of the variational minimum
of the ground-state energy [recall the 7Li energy calculations
in Fig. 2(a)]. The exact position of this minimum varies with
nuclide and with Nmax, but for Daejeon16 we standardize on
h̄ω = 15 MeV as a reasonable estimate, and similarly we
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FIG. 5. Quadrupole moment mirror ratios for p-shell mirror pairs, obtained with the Daejeon16 (circles), JISP16 (squares), and LENPIC
(diamonds) interactions, at fixed h̄ω (15, 20, and 25 MeV, respectively, for the three interactions). Calculated values are shown for successive
even values of Nmax (increasing symbol size), from Nmax = 4 to the maximum value for that mirror pair, indicated at top. Also shown (from
Table I) are the GFMC AV18 + IL7 predictions [39] (crosses) and ratios of experimental quadrupole moments [8] (horizontal line and error
band), where some signs are experimentally undetermined.

adopt 20 MeV for JISP16 and 25 MeV for LENPIC. Then we
are able to make side-by-side numerical comparisons of the
Nmax dependence of the calculated quadrupole moment ratios,
as shown in Fig. 5. The calculated ratio for the A = 7 mirror
pair, discussed above in Sec. III A, may be found at far left
[Fig. 5(a)].

Furthermore, for the lighter nuclides (A � 9), ab initio
results [39] for the quadrupole moments have previously been
obtained by Green’s function Monte Carlo (GFMC) meth-
ods [59], in calculations based on the Argonne v18 (AV18)
two-nucleon [60] and Illinois-7 (IL7) three-nucleon [61] po-
tentials. The predicted quadrupole moments are quoted for
reference in Table I. For the A = 7 pair, the resulting ratio,
shown as a cross in Fig. 5(a), is closely aligned with the
present predictions, to within the GFMC statistical uncertain-
ties.

In the A = 9 mirror pair (9Be and 9B), the calculated
quadrupole moments themselves [Fig. 4(b)] show a trend to-
wards convergence with increasing Nmax, much as for the A =
7 pair above [Fig. 2(c)] (when comparing, note the opposite
overall sign of the quadrupole moments, between A = 7 and
A = 9). The “shoulder” in the calculated quadrupole moment
for 9Be (filled symbols) suggests a value roughly consistent
with experiment. For 9B (open symbols), the turnover in the
calculated quadrupole moment for h̄ω � 10 MeV appears to
reflect a more general breakdown in the ability of the calcula-
tion to preserve the excitation spectrum of 3/2− states at low
h̄ω (bases with excessively low h̄ω have an excessively long
oscillator length scale).

While these individual calculated quadrupole moments
still exhibit significant basis dependence, the calculated

ratio [Fig. 4(e)] is largely independent of h̄ω and Nmax, even
at comparatively low Nmax, for h̄ω � 10 MeV. (The failure
below h̄ω ≈ 10 MeV is perhaps not surprising, given the
more general breakdown noted above.) From Fig. 5(c), it is
seen that the Daejeon16, JISP16, and LENPIC interactions
yield consistent predictions for the quadrupole moment ratio,
furthermore consistent with the GFMC AV18 + IL7 results.
The stable and interaction-independent NCCI prediction of
the ratio (in the range of approximately +0.80 to +0.85),
taken in conjunction with the measured quadrupole moment
of +5.3 fm2 for 9Be (Table I), provides a prediction of about
+4.2 fm2 to +4.5 fm2 for the unmeasured 9B quadrupole
moment.

In the A = 9′ mirror pair (9Li and 9C), the convergence
of the quadrupole moment ratio is less robust. The moments
themselves [Fig. 4(c)] again show signs of shouldering, and
for 9Li (filled symbols) there is again general consistency
with the experimental value. While the quadrupole moment
ratio [Fig. 4(f)] would also appear to be approaching conver-
gence, this occurs more slowly than in the previous cases.
Consequently, one would be hard put to make an estimate
except that the value appears likely to be between 1.3 and 1.5
with Daejeon16. The different interactions [Fig. 5(d)] yield
a spread of ≈10% in the predicted ratio, in the calculations
at the highest Nmax. However, this spread also seems to be
decreasing with increasing Nmax, so it might not reflect a true
difference in predictions for the different interactions.

The direction of convergence of the NCCI predicted ratios
for the A = 9′ mirror pair is such as to bring them towards con-
sistency with the GFMC AV18 + IL7 result. Note the larger
statistical uncertainties obtained in the GFMC calculations
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for the A = 9′ mirror nuclides, in this case accompanying the
poorer convergence of the NCCI calculations.

Note that 9C is a comparatively weakly bound nucleus,
with its ground state only ≈1.3 MeV below the 8B +p
breakup threshold [35], relative to its mirror nuclide 9Li,
which is bound by ≈4.1 MeV against the analogous 8Li +n
breakup channel. This difference could ostensibly introduce
greater sensitivities in calculating the long-range behavior of
the wave function, e.g., through an extended proton single-
particle wave function. Yet, binding energy alone clearly does
not suffice to explain the differences, as 9B is ≈0.3 MeV
above the 8Be +p threshold, and comparatively rapid con-
vergence was obtained above. (For that matter, in the A =
7 pair considered above, 7Be is bound by not much more,
≈1.6 MeV [34], although this is against a cluster breakup
mode, 3He + 4He, rather than separation of a single nucleon.)

The A = 11 pair (11C and 11B) presents a comparatively
simple picture of convergence. For both members of the pair,
the quadrupole moments themselves [Fig. 4(g)] both show
some evidence of shouldering, consistent with the experimen-
tal value. In the calculations for Fig. 4(g), full scans over
h̄ω are carried out through Nmax = 10. However, an Nmax =
12 calculation, currently just computationally feasible, is in-
cluded at the variational minimum h̄ω [hence the indication
of Nmax as “10(12)” in Figs. 4(g) and 4(j) and subsequent
figures]. The now-familiar turnover at low h̄ω (�10 MeV)
is observed for the 11C quadrupole moment. These nuclei,
incidentally, are the most bound of the mirror pairs considered
here, by over 11 MeV for 11B and over 7 MeV for 11C [38].

The ratio of quadrupole moments for A = 11 [Fig. 4(j)] is
rapidly converging, approaching a value in the vicinity of 0.8.
It appears that a slightly higher value may be obtained with
the Daejeon16 interaction than with the others [Fig. 5(d)], but
all lie within a range of 0.7 to 0.9, closely consistent with
experiment.

Finally, among the odd-mass nuclei, the A = 13′ pair (13O
and 13B) presents a qualitatively different convergence behav-
ior. Examining the calculated quadrupole moments [Fig. 4(i)],
we see that those for 13B (filled circles) exhibit the famil-
iar shouldering and again tend toward a value consistent
with experiment. However, the corresponding curves for 13O
(open circles) bulge upwards with increasing Nmax. At h̄ω =
15 MeV, the value approximately doubles between Nmax = 4
and Nmax = 8. These calculated values already exceed the
experimental quadrupole moment and continue to move away
with increasing Nmax. The quadrupole moment ratio [Fig. 4(l)]
likewise rapidly grows past the experimental ratio [Fig. 5(g)].
(The ratios obtained with the JISP16 and LENPIC interactions
similarly grow steadily, although not as rapidly, with increas-
ing Nmax [58].)

In a shell-model picture, the A = 13′ nuclei are semimagic.
The protons in 13O form a closed major oscillator shell in a
0h̄ω configuration. Thus, the proton quadrupole moment in
13O must vanish at Nmax = 0. (The neutron quadrupole mo-
ment in 13B must similarly vanish at Nmax = 0.) Any nonzero
value of the ratio of the 13O quadrupole moment to the 13B
quadrupole moment must come from the introduction of 2h̄ω

or higher configurations into the NCCI wave function, as
Nmax increases from 0. Thus, the semimagic nature of 13O at

least explains why the convergence behavior for the proton
quadrupole moment [open symbols in Fig. 4(i)] must qualita-
tively differ from the other cases considered.

However, semimagicity does not immediately explain why
the calculated quadrupole moment continues to grow towards
excessively large values with increasing Nmax. Experimentally,
the ground state of 13O is only ≈1.5 MeV below the breakup
threshold (12N +p) [37], so one might suspect sensitivity
to long-range behavior of the wave function, but the same
convergence pattern is calculated for the neutron quadrupole
moment in 13B, which is more tightly bound, by ≈4.9 MeV
with respect to 12B +n. An alternative explanation in terms of
shape coexistence is noted below (Sec. V).

C. Odd-odd mirror pairs

Returning now to the odd-odd nuclides, let us consider the
A = 8 pair (8Li and 8B). Although both calculated quadrupole
moments [Fig. 4(a)] ultimately display the familiar shoulder-
ing behavior for high Nmax, at values roughly consistent with
experiment, the convergence for 8B (open circles) is notably
slower than for most of the others in Fig. 4 (note the wider
spread in calculated curves). Such slow convergence is per-
haps not surprising given the expected proton halo structure
of 8B [6,7,62], and thus extended tail region to the proton
distribution. Here it is worth noting the 8B ground state is
extremely weakly bound, compared with any of the other
(bound) nuclei considered here, by only ≈0.13 MeV with
respect to 7Be +p breakup [35], while 8Li, the neutron-rich
member of this mirror pair, is bound by ≈2.0 MeV with
respect to 7Li +n breakup.

The ratio of quadrupole moments for A = 8 [Fig. 4(d)] is
therefore also slow to converge. Although the curves at high
Nmax form shoulders, or plateaus, these plateaus continue to
move slowly but steadily upward with increasing Nmax. The
bulk of this Nmax dependence comes from the 8B quadrupole
moment.

The resulting ratios obtained with all three interactions
[Fig. 5(b)] are in the vicinity of the experimental ratio. The
Daejeon16 result for the ratio is just growing past the experi-
mental value, at the highest Nmax calculated, while the JISP16
and LENPIC results are still approaching it. The continued ba-
sis sensitivity precludes more precise comparison. Here again,
as for the A = 9′ pair above (Sec. III B), the slow convergence
of the ratio in the NCCI calculations is accompanied by a large
GFMC statistical uncertainty.

For the A = 12 pair (12B and 12N), the experimental
quadrupole moments are markedly smaller in magnitude (by
a factor of ≈3-6) than those considered above, except for
the semimagic 13O. Consider, then, the calculated quadrupole
moments [Fig. 4(h)]. Those for 12B (filled circles) show shoul-
dering, and would appear to be converging, but tend towards
a value perhaps as much as 50% higher than the experimental
value. Those for 12N (open circles), while also showing some
sort of shouldering, only gradually come closer together with
increasing Nmax, showing no clear sign of convergence, but
have also already grown past the experimental value.

Given the different convergence patterns for the individual
quadrupole moments, the calculated ratio [Fig. 4(k)] for the
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A = 12 pair is consequently also comparatively slow to con-
verge, but the calculated values do appear to form a roughly
geometric progression, approaching a ratio ≈0.8. There is a
spread of ≈10% among the calculated ratios obtained with
the three different interactions [Fig. 5(f)], at the highest Nmax,
but all would seem on course to yield values within the uncer-
tainties of the experimental ratio.

The 12N ground state is bound by only ≈0.60 MeV with
respect to 11C +p breakup [36]. One might be tempted to at-
tribute slow convergence for the A = 12 quadrupole moment
ratio, and likewise for the A = 8 ratio above, to this weak
binding of the proton-rich member of the pair, which may
well contribute. However, odd-odd nuclei have notoriously
complicated spectra [3] even when strongly bound, and a com-
paratively high level density near the ground state is conducive
to mixing. Arguments to this effect for 8Li, in particular, may
be made [63] on the basis of the appearance of approximately
degenerate ground states in an Elliott SU(3) [32,33] symmetry
description.

IV. MIRROR-SYMMETRY BREAKING

Let us now return to the question of the extent to which
proton and neutron quadrupole moments are actually related
by mirror symmetry across a mirror pair. In the present ab
initio calculations, the isospin is found to be a “good” quan-
tum number, with isospin T = |Tz|, to high precision, for all
the calculated ground-state wave functions. Wave function
components with T > |Tz| contribute, e.g., �10−4 to the norm
of the calculated ground-state wave function for 7Li.1

While the observation that each ground state in the mirror
pair has good isospin is sufficient to exclude isospin mixing,
it does not in itself establish isospin (or mirror) symmetry
between the states. Under isospin symmetry, an isobaric mul-
tiplet consists of states which not only share the same T ,
but also, more specifically, have wave functions related by
successive application of the isospin raising and lowering
operators. (For mirror states, the wave functions are, equiv-
alently, related by a rotation by π in isospin space.) Even if
the isospin violating part of the many-body Hamiltonian does
not significantly induce mixing of different isospins in the
wave function, it might still induce mixing within the T = |Tz|
sector of the many-body space in a way which varies with
Tz, and thus differs across the analog states. This would be
apparent in a violation of the isospin (or mirror) symmetry
predictions for observables. For mirror quadrupole moments
in particular, there may be deviations from equality between

1The isospin contamination is most simply ascertained by evaluat-
ing the expectation value of T2 within the many-body wave function.
For a state which is an admixture of T = |Tz| and T = |Tz| + 1
components, |�〉 = α|�T =|Tz |〉 + β|�T =|Tz |+1〉, with probabilities α2

and β2, respectively, it is readily verified that the T = |Tz| + 1
component contributes with probability β2 = [2(|Tz| + 1)]−1[〈T2〉 −
|Tz|(|Tz| + 1)]. More generally, if components with multiple T � |Tz|
contribute, this two-component estimate places an upper bound on
the total T > |Tz| contribution.

the neutron quadrupole moment Qn of one mirror state and the
proton quadrupole moment Qp of the other.

We have thus far considered the ratio of the proton (elec-
tric) quadrupole moments across the mirror pair (Sec. III),
partly as an experimental observable in its own right to pro-
vide a test for ab initio theory, but partly also on the premise
it may be taken as a proxy for the ratio Qn/Qp within a single
nuclide, to directly reflect proton-neutron structure in that nu-
clide. If we denote the quadrupole moment in the “mirror”
nuclide by Q̃p, our specific interest is thus in how well the
mirror ratio Q̃p/Qp approximates Qn/Qp. These ratios are
related by

Q̃p

Qp
=

(
Q̃p

Qn

)(
Qn

Qp

)
, (1)

where the deviation of the first factor, Q̃p/Qn, from unity thus
measures how much error is introduced by taking the mirror
ratio as a proxy for the neutron-proton ratio. Based on the
present wave functions from NCCI calculations, we therefore
explicitly calculate Q̃p/Qn and look for deviations from unity.

Let us start with the A = 7 mirror pair, and explore
the dependence of the calculated Q̃p/Qn—in this case,
Qp(7Be)/Qn(7Li)—on the basis parameters of the truncated
calculation. Taking first the results for the Daejeon16 interac-
tion [Fig. 6(a)], the deviations from unity found in the present
calculations, at �5%, might seem modest from a practical per-
spective, in terms of the precision we may desire in extracting
the quadrupole moment ratio. However, the calculated ratio
shows little indication of convergence with respect to Nmax.
While the h̄ω dependence of the curves is modest, with a
gentle peak near h̄ω = 10 MeV, curves for successive Nmax

are nearly equidistant, giving larger values of the ratio for
increasing Nmax. Assuming this trend continues, the present
NCCI calculations provide only a lower bound on the de-
viation from mirror symmetry which would be obtained (in
the full, nontruncated many-body problem) for the quadrupole
moments, assuming the Daejeon16 interaction.

The interactions used in ab initio calculations have an
isospin violating portion which is either simplified outright (to
the Coulomb interaction) or subject to notable uncertainties in
the nuclear part [64]. Both the Daejeon16 and JISP16 inter-
actions are purely isoscalar, before inclusion of the Coulomb
interaction, which is thus the only source of isospin symmetry
violation. (The proton-neutron mass difference is commonly
neglected in NCCI calculations [44,65,66].) In contrast, the
LENPIC interaction explicitly includes isospin violation from
the strong interaction (e.g., Ref. [64]). It is not a priori obvious
how this might influence the deviations from mirror symmetry
in the quadrupole moment.

The violation of mirror symmetry in the A = 7 pair is
compared across interactions in Fig. 6 (top). The scale of
the calculated deviations, for any given Nmax and h̄ω, is
found to be comparable across the Daejeon16 [Fig. 6(a)]
and JISP16 [Fig. 6(b)] interactions, not surprisingly given
their shared reliance on the Coulomb interaction as their
isospin-symmetry-breaking part, and marginally smaller for
the LENPIC interaction [Fig. 6(c)]. However, there is no ob-
vious gross qualitative difference across interactions, and any
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FIG. 6. Relation between Qn (in the proton-rich nuclide) to its mirror proxy Qp (in the neutron-rich nuclide), represented as the ratio
Q̃p/Qn (see text): (top) for the A = 7 mirror pair with Daejeon16, JISP16, and LENPIC interactions and (bottom) for the A > 7 mirror pairs
with the Daejeon16 interaction. Calculated values (circles) are shown as functions of the basis parameter h̄ω, for successive even values of Nmax

(increasing symbol size and longer dashing), from Nmax = 4 (short dashed curves) to the maximum value for that mirror pair (solid curves),
indicated at bottom.

detailed quantitative comparison of these nonconverged cal-
culations is meaningless in light of the different convergence
rates for calculations with different interactions.

Proceeding to the remaining mirror pairs (A > 7), we fo-
cus for purposes of illustration on the results obtained with
the Daejeon16 interaction. (Comprehensive tabulations for
all three interactions are again provided in the Supplemental
Material [58].) The convergence properties of the calculated
Q̃p/Qn are shown in Fig. 6 (bottom). As in the A = 7 example
above, we again take the “nuclide of interest” for calculating
Qn/Qp, in (1) to be the neutron-rich (Z < N) member of the

mirror pair, and the “mirror nuclide” providing the “proxy”
value Q̃p to be the proton-rich (Z > N) member. To provide
a global comparison across interactions, we also present the
results for all three interactions as functions of Nmax for fixed
h̄ω in Fig. 7 (that is, in the same spirit as Fig. 5 above).

For all mirror pairs, the calculated deviations of Q̃p/Qn

from unity, as seen in Fig. 6 or 7, may again seem modest, at
<10%. But again nonconvergence with respect to Nmax is the
norm. Following the same order of discussion as in Sec. III,
let us proceed first through the odd-mass nuclides, then return
to the odd-odd nuclides.
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FIG. 7. Ratio of Qp in one member of mirror pair to Qn in the other, calculated with the Daejeon16 (circles), JISP16 (squares), and LENPIC
(diamonds) interactions at fixed h̄ω (15, 20, and 25 MeV, respectively, for the three interactions). Calculated values are shown for successive
even values of Nmax (increasing symbol size), from Nmax = 4 to the maximum value for that mirror pair, indicated at top.

For A = 9 [Figs. 6(e) and 7(c)], the ratio is initially greater
than unity but decreases below unity for large Nmax, and
the changes in fact are becoming larger for successive Nmax.
While there is a sharp downturn in the curves for h̄ω � 10,
recall from Sec. III that the calculations for h̄ω � 10 MeV for
the Daejeon16 interactions may be of limited relevance to the
physical ground state.

For A = 9′ [Figs. 6(f) and 7(d)], the spacing between suc-
cessive Nmax curves systematically decreases with increasing
Nmax, hinting at eventual convergence, perhaps with a �10%
violation of mirror symmetry. This case is of special interest
in the context of isospin symmetry, since these 9Li and 9C
ground states bookend a T = 3/2 quartet of isobaric-analog
states noted for apparent violation of the isobaric multiplet
mass equation [67,68]. (The excited analog states in 9Be and
9B are above the single-nucleon separation threshold, and thus
are subject to the Thomas-Ehrman effect [69,70].)

For A = 11 [Figs. 6(g) and 7(e)], while the calculated
Qp(11C)/Qn(11B) changes comparatively little with Nmax, and
the curves in Fig. 6(g) might superficially be taken to suggest
an ≈3% deviation from mirror symmetry, closer inspection
shows that the calculated ratio still increases steadily with
Nmax. There is thus no clear sign of convergence.

For the A = 13 pair [Figs. 6(i) and 7(g)], recall from
Sec. III that the convergence behavior of Qp(13O), and thus of
the ratio, is anomalous [Fig. 4(i)], at least partly attributable
to the semimagic nature of these nuclei. It is therefore not
obvious how to interpret the convergence behavior of the
deviation from mirror symmetry.

Then, returning to the odd-odd nuclides, for A = 8
[Figs. 6(d) and 7(b)], the ratio continues to march upwards,
with approximately constant spacing between calculations for
successive Nmax. For A = 12 [Figs. 6(h) and 7(f)], the spacing

is gradually decreasing, but the ultimate value to which this
ratio will converge can only be estimated as likely giving a
<10% deviation from mirror symmetry.

It is interesting to compare these (nonconverged) estimates
of the deviation from mirror symmetry in the quadrupole
moment with those found in the GFMC calculations [39].
In Ref. [39], both Qp and Qn were calculated independently
for each member of the A = 8 and 9′ mirror pairs (see
note to Table I above), yielding Qp(8B)/Qn(8Li) = 0.91(7)
and Qp(9C)/Qn(9Li) = 1.11(11). While both results are con-
sistent with unity (or nearly so) within GFMC statistical
uncertainties, intriguingly, the sense of the deviation differs
from the present results for A = 8 [compare Fig. 7(b)] but
agrees for A = 9′ [compare Fig. 7(d)]. The isospin violation
in the wave functions provided by the GFMC calculations
is severely restricted, as the GFMC propagator only takes
the Coulomb interaction into account approximately (as an
effective isoscalar Coulomb operator with a Tz-dependent
normalization) and replaces the isospin-breaking AV18 inter-
action with the simpler isoscalar AV8′ interaction [71].

In summary, although the isospin quantum number in
the ab initio NCCI calculations is quite “good,” we should
not be lulled by this observation into assuming the validity
of mirror symmetry for observables in general, and for the
quadrupole moments in particular. The traditional use of the
mirror quadrupole moment as a proxy for Qn must be treated
with caution. The present calculations do not provide a firm
estimate for the error thereby incurred: both since conver-
gence is slow in the many-body calculation for the relevant
observables (Fig. 6), but also potentially due to limitations in
the isospin breaking contributions in the underlying interac-
tions. Nonetheless, the calculations do suggest deviations of
at least 5%-10%, and potentially much larger.

034319-11



CAPRIO, FASANO, MARIS, AND MCCOY PHYSICAL REVIEW C 104, 034319 (2021)

FIG. 8. Ratios Qn/Qp, for the neutron-rich members of the p-shell mirror pairs, calculated with the Daejeon16 (circles), JISP16 (squares),
and LENPIC (diamonds) interactions at fixed h̄ω (15, 20, and 25 MeV, respectively, for the three interactions). Calculated values are shown
for successive even values of Nmax (increasing symbol size), from Nmax = 4 to the maximum value for that mirror pair, indicated at top. Also
shown (see Table I) are the GFMC AV18 + IL7 predictions [39] (crosses), along with a schematic cluster model estimate (see text) for 7Li
(dumbbell) and Elliott-Wilsdon SU(3) rotational model estimates for 7Li and 9Be (open hexagons).

V. INTERPRETATION OF THEORETICAL RESULTS

To extract information on the proton-neutron structure
from calculations, of course, it is not necessary to use the
mirror ratio (Sec. III) as a proxy for the ratio of neutron
and proton quadrupole moments. This was simply imposed
by experimental necessity. Rather, we may directly calculate
Qn/Qp from the wave function for a given nuclide. Such
results are shown for reference for the neutron rich member
of each mirror pair in Fig. 8, from the present NCCI wave
functions, alongside analogous results (for A � 9) from the
GFMC calculations of Ref. [39]. Qualitatively there is little
difference from the mirror ratio results shown in Fig. 5, to
which these results are related by the mirror asymmetry ratios
of Fig. 7 (which are admittedly nonconverged but remain
numerically close to unity for the present calculations).

If qualitative understanding of the nuclear structure is
sought, some further conceptual framework (or model) is
needed to interpret these raw computed values. Here, after a
few general initial comments, we simply note some possible
fruitful avenues, involving clustering and dynamical symme-
try.

A naive baseline estimate for Qn/Qp may be made in the
spirit of the collective liquid drop interpretations of heavier
nuclei, by taking the nucleus as a homogeneously charged
matter distribution. In this case, the quadrupole operators
for the protons and neutrons are identical except for overall
normalization, proportional to Z/A for the protons [1] and
N/A for the neutrons. We thus have Qn/Qp = N/Z , giving
Qn/Qp = 4/3 ≈ 1.33 for 7Li, Qn/Qp = 5/3 ≈ 1.67 for 8Li,
and so on, through Qn/Qp = 8/5 ≈ 1.6 for 13B. While these

estimates are not egregiously far off from the calculations in
Fig. 8 (or the experimental mirror ratios in Fig. 5), except
in the ill-behaved case of A = 13′, neither do their variations
from nuclide to nuclide particularly match or illuminate the
trends in the ratios as one moves across Fig. 8.

The viewpoint that collectivity arises primarily in the va-
lence shell might suggest rather that the numbers of valence
nucleons of each species, i.e., Np for the protons and Nn for
the neutrons [3], are more relevant than the total numbers, Z
and N . However, this raises the thorny issue of the appropriate
effective charges ep and en to apply in an estimate Qn/Qp =
(enNn)/(epNp).

Indeed, the contrasting traditional model framework would
be the shell model, and certainly valence shell calculations
in the p shell can bear striking similarity to ab initio results
[72] (see Fig. 13 of Ref. [19]). Detailed shell-model studies
[73] of the ground-state quadrupole moments for several of
the present nuclei, based on empirical isospin-nonconserving
shell-model interactions [74], highlight the dependence of the
calculated quadrupole moments in detail not only upon the
effective charges but also upon the choice of shell-model
radial wave function (harmonic oscillator vs Woods-Saxon).

Given the prominent role of clusterization in the struc-
ture of p-shell nuclides (e.g., Ref. [31]), we may naturally
seek to use ab initio calculated quadrupole moment ratios
to test or provide constraints on interpretations based on
clustering and the associated cluster molecular orbitals. In
a clustering description, the naive assumption of a homoge-
neous charge distribution is manifestly broken, except in a few
special cases (e.g., pure α-cluster nuclei). For instance, in a

034319-12



QUADRUPOLE MOMENTS AND PROTON-NEUTRON … PHYSICAL REVIEW C 104, 034319 (2021)

cluster molecular-orbital picture, the neutron-rich Be isotopes
consist of a 2α dimer plus additional “valence” neutrons in
molecular orbitals [31,75–83]. A microscopic justification for
this description is obtained from antisymmetrized molecu-
lar dynamics (AMD) [84–87], fermionic molecular dynamics
(FMD) [88], or ab initio resonating group method (RGM)
[89] calculations of the Be isotopes. The neutron quadrupole
moment is sensitive to whether the neutrons occupy π (“equa-
torial”) or σ (“polar”) molecular orbitals, while the proton
quadrupole moment is largely sensitive only to the inter-α
separation.

Here it is interesting to note what we would expect from
a schematic “ball and stick” molecular model for 7Li. That
is, suppose we take the ground state of 7Li to have an α + t
cluster structure, and then we reduce this description to the
simple, naive limit of two point-like clusters, separated by
a fixed, finite distance. The resulting structure would be an
axially symmetric rigid rotor. By the usual proportionality
between laboratory-frame and intrinsic quadrupole moments
for an axially symmetric rotor [4], the ratio of the neutron and
proton quadrupole moments in the laboratory frame would
be identical to their ratio in the rotational intrinsic (principal
axes) frame; that is, computed with respect to the molecular
symmetry axis. This yields2 an estimate of Qn/Qp just shy
of 1.5, as indicated in Fig. 8(a) (dumbbell shape). Clearly,
this picture ignores essential features of any more realistic
cluster picture, such as the finite size of the clusters, which
is comparable in scale to their separation, the consequent
modification of the clusters by Fermi exclusion effects, as well
as other polarization effects on the internal structure of the
clusters, and zero-point oscillations in their separation. Yet
the ab initio predictions, which are robustly consistent with
each other in the range Qp/Qn ≈ 1.6–1.7, provide a ratio only
10%–15% larger than this schematic estimate.

At the other end of the mass range, recall the ill-
behaved convergence of the proton quadrupole moment in
13O [Fig. 4(i)]. This behavior, which now appears in the
neutron quadrupole moment of 13B, entering into the Qn/Qp

ratio of Fig. 8(g), takes on new significance in a cluster
molecular-orbital interpretation, where 13B is described as
2α + 4n + p. Here, it has been proposed [90] that the large
ground-state (proton) quadrupole moment reflects the result
of mixing between two low-lying 3/2− cluster configurations
obtained by coupling a proton in a π orbital (with K = 3/2)
to the two low-lying 0+ states of 12Be. These 12Be states, in
turn, differ not only in inter-α separation, which affects the
proton quadrupole moment, but also in whether the molecular
orbitals occupied by the neutrons are π4 (a low-deformation
configuration) or π2σ 2 (a high-deformation configuration)

2The proton and neutron quadrupole moments must be calculated
relative to the common center of mass, which lies 3/7 of the way
from the alpha to the triton, putting the clusters at coordinates
zα = −3/7 and zt = +4/7, respectively, along the symmetry axis
(in units of an arbitrary separation �, which is irrelevant to the final
ratio). Then, Qp = 2z2

α + z2
t , and Qn = 2z2

α + 2z2
t , giving Qn/Qp =

50/34 ≈ 1.47.

[81] (see also Fig. 5 of Ref. [87]), which may be expected
to dramatically affect the neutron quadrupole moment.

Thus, in a clustering picture, the ground state Qp and Qn in
13B reflect the shape coexistence in the low-lying spectrum of
12Be (e.g., Ref. [91]). Both moments, and Qn in particular,
should be sensitive to the resultant mixing of configura-
tions with significantly different deformations. Meanwhile,
in NCCI calculations, the relative energy for the 12Be 0+
states evolves rapidly with Nmax (e.g., Fig. 19 of Ref. [18]),
ostensibly making any such mixing highly Nmax dependent.
Consistent with the proposed clustering picture of 13B, the
NCCI calculations also yield a predominantly 2h̄ω excited
3/2− state, which converges rapidly downward in energy to-
wards the predominantly 0h̄ω 3/2− ground state, becoming
the first excited state at high Nmax.

We may also seek to at least qualitatively understand the
deviations from mirror symmetry (Sec. IV) in terms of cluster
structure. In nuclei where prolate quadrupole deformation
arises predominantly from the cluster dimer structure, the
additional Coulomb repulsion obtained in going from the
neutron-rich member of the mirror pair to the proton-rich
member may be expected to increase the intercluster separa-
tion, and thus the quadrupole deformation. Thus, e.g., in going
from the neutrons in 7Li to the protons in 7Be [Fig. 7(a)],
the increase in quadrupole moment Qp for 7Be relative to Qn

for 7Li would be interpreted as arising from the increased
repulsion and thus intercluster separation between the alpha
and helion clusters in 7Be (=α + h) as compared with the
alpha and triton clusters in 7Li (=α + t). (If variation in the
internal structure of the clusters is also considered, then the
extra Coulomb repulsion would also be expected to enhance
the proton quadrupole moment by increasing the polarization
of the clusters, such that the protons are further displaced
towards the termini of the molecule.)

In contrast, if 9Be and 9B [Fig. 7(c)] are taken as 2α + n
and 2α + p, respectively, the valence nucleon is expected to
be in an equatorial π orbital [31,75,78,83] (see also Fig. 5 of
Ref. [13] for ab initio predictions). This nucleon thus gives an
oblate contribution to the deformation, serving to reduce the
overall positive intrinsic quadrupole moment calculated with
respect to the symmetry axis of the 2α dimer. An increase in
the size of this orbital, induced by Coulomb repulsion, would
therefore tend to reduce Qp in 9B relative to Qn in 9Be, an
effect which would be in competition with any concomitant
increase in the inter-α spacing in 9B relative to 9Be.

Symmetry-based descriptions provide an alternative route
by which we may seek to understand the proton-neutron
quadrupole structure revealed in ab initio calculations. The
ground-state wave functions of a variety of p-shell nuclides, in
ab initio NCCI calculations, have been found to be remarkably
well described by a dominant contribution exhibiting Elliott
SU(3) symmetry [92–98]. Elliott’s SU(3) group [32,33] has
as its generators the components of a quadrupole tensor Q2

(this is Elliott’s restricted quadrupole operator, which con-
serves oscillator quanta) and the orbital angular-momentum
vector L1 (see, e.g., Appendix A.4 of Ref. [44]). Elliott’s
SU(3) thus provides a symmetry-based description for the
correlations which give rise to quadrupole deformation and
rotation.
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For the p-shell nuclides, Elliott’s SU(3) model provides
definite predictions for the quadrupole moment ratio Qn/Qp.
In Elliott’s SU(3) model, the ground state is expected to
come from the “leading” SU(3) irreducible representation
(irrep) in the 0h̄ω space. The states constituting this irrep
are the most deformed in the 0h̄ω space, and thus most
bound by Elliott’s −Q · Q schematic Hamiltonian [33]. If we
work in a proton-neutron SU(3) scheme, described by the
group chain SUp(3) × SUn(3) ⊃ SU(3), then the proton and
neutron quadrupole operators are also generators. This per-
mits simple analytic calculations for the proton and neutron
quadrupole moments, to within an arbitrary overall scale (de-
pending on the oscillator length of Sec. III A), which cancels
in their ratio.

The ground-state SU(3) structure for 7Li (or, equivalently,
its mirror nuclide 7Be) has been explored in ab initio calcu-
lations [22,95,97], showing that the 3/2− ground state indeed
comes predominantly from the leading irrep in the 7Li 0h̄ω

space, which has SU(3) quantum numbers (λ,μ) = (3, 0) and
total spin S = 1/2. The ground state in this description is
uniquely defined, as a pure LS-coupling scheme state in which
orbital angular momentum L = 1 combines with the spin to
give J = 3/2 (see Fig. 1 of Ref. [97]). The resulting SU(3)
estimate Qn/Qp = 2, shown in Fig. 7(a) (open hexagon), errs
in the opposite direction from the naive cluster estimate above.

The expected ground-state SU(3) structure for 9Be has
also been discussed extensively [22,99,100]. In the leading
SU(3) irrep, which is (3,1), with S = 1/2, a J = 3/2 state
can be constructed two ways, by combining either L = 1 or
L = 2 with the spin to give J = 3/2. The physical ground
state may be expected to be some mixture of these. Although
the L = 1 state has lower rotational energy, in the Elliott-
Wilsdon rotational model [32,33] the spin-orbit interaction
mixes these states to give a K = 3/2 rotational band-
head state |K = 3/2; J = 3/2〉 = √

21/26|L = 1; J = 3/2〉 −√
5/26|L = 2; J = 3/2〉 [100]. The resulting SU(3) estimate

Qn/Qp ≈ 0.68 [Fig. 7(c)] lies only marginally below the ab
initio predictions.

VI. CONCLUSION

In summary, meaningful predictions of electric quadrupole
moment ratios can be made, in ab initio NCCI calculations,
even though the moments themselves are not individually con-
verged. This observation applies more generally to ratios of
electromagnetic matrix elements involving states with similar
convergence properties, arising from structural similarities.
Examples include (ratios of) transition strengths within a rota-
tional band [18,22], or between rotational bands with related
structures [25], or across mirror transitions [26].

In particular, ratios of electric quadrupole moments in
mirror nuclei provide an observable which can be, on one
hand, precisely measured experimentally and, on the other
hand, well-converged in NCCI calculations, thereby providing
stringent tests of the theoretical framework. Where the exper-
imental ratio is known, and where a robust prediction can be
meaningfully extracted from the NCCI calculations, we find
generally good agreement (Fig. 5). Alternatively, where the
moment of only one member of the mirror pair is known,
NCCI calculations can be taken to provide predictive power
for the other unknown moment.

However, it must be emphasized that precision
ab initio predictions of electric quadrupole moment ratios are
not always possible. A robust prediction for the ratio may be
understood as arising when the incomplete convergence of
the quadrupole moments themselves is simply a systematic
effect of the basis truncation, to be canceled out between the
moments, but not if the moments are exquisitely sensitive
to fine details of the many-body calculation, e.g., delicate
mixing of competing low-lying configurations.

By isospin mirror symmetry, the ratio of electric-
quadrupole moments across mirror nuclei is closely related,
although not strictly equivalent (Fig. 7), to the neutron/proton
quadrupole moment ratio within a single nuclide. Although
the neutron quadrupole moment itself is not directly accessi-
ble experimentally, ab initio calculations can provide robust
predictions for the neutron/proton quadrupole moment ratio
(Fig. 8), thereby giving insight into the isovector aspects of the
quadrupole deformation. In the limit of axially symmetric adi-
abatic rotation, this ratio measures the relative contributions of
the neutrons and protons to the deformation. More generally,
it is subject to interpretation through effective descriptions of
the proton-neutron structure of the nucleus, e.g., involving
simpler degrees of freedom, as in clustering, or correlations
imposed by symmetry, as in the Elliott SU(3) picture.
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