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Providing physics guidance in Bayesian neural networks from the input layer:
The case of giant dipole resonance predictions
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Background: A Bayesian neural network (BNN) approach has been applied to evaluate and predict the nuclear
data. The BNN is a numerical algorithm. When one incorporates this algorithm in nuclear physics analyses, how
to maintain the scientific rigor is a key problem and presents new challenges.
Purpose: In this paper, a case study on giant dipole resonance (GDR) energy is presented to illustrate the
effectiveness and maneuverability of the method to provide physics guidance in the BNN from the input layer.
Methods: Pearson’s correlation coefficients are applied to assess the statistical dependence between nuclear
properties in the ground state and the GDR energies. Then the optimal ground-state properties are employed as
variables of the input layer in the BNN to evaluate and predict the GDR energies.
Results: Those selected ground-state properties actively contribute to reduce the predicted errors and avoid the
overfitting.
Conclusions: This paper gives a demonstration to find effects of the GDR energy by using the BNN without the
physics motivated model, which may be helpful to discover physics effects from the complex nuclear data.
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I. INTRODUCTION

Bayesian machine learning is a powerful tool to make
predictions with confidence intervals after training by data. In
this respect, the Bayesian neural network (BNN) has rapidly
drawn much attention in nuclear physics in the past few
years. However, the BNN is merely a versatile and numerical
algorithm. When one incorporates this algorithm in nuclear
physics analyses, how to maintain the scientific rigor is a key
problem and presents new challenges. The seminal ideas to
use neural networks in nuclear physics date back to early
works [1–4]. A clear illustration of the underlying philosophy
behind the implementation of the BNN approach originally
appears in works by Utama et al., where theoretical predic-
tions of nuclear masses [5] and nuclear charge radii [6] were
presented. In those works, they claimed that one can include
as much physics as possible in the initial prediction by using
physics motivated models and use the BNN to fine tune these
models by modeling the residuals. To facilitate the narrative,
this approach is hereinafter called the residual approach.

The residual approach has been proved to be a very pow-
erful tool to improve the physical model based predictions
of nuclear observables, such as nuclear binding energies [7],
fission yields [8], and isotopic cross sections in spallation [9].
As stated in Ref. [5], the basic requirement of the residual
approach is the existence of a robust physics motivated model
to provide physics information. The physics motivated model
ensures efficient extrapolation in the region lacking experi-
mental information. In contrast, the residual provided by the
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BNN is tiny and hence will not cause a large deviation to
prior physics knowledge, even though the BNN is merely a
numerical algorithm and does not contain any physics infor-
mation. However, a challenge arises if the physics motivated
model is not available. In Ref. [9], it has been shown that the
BNN method without initial prediction by physics motivated
models provides good predictions for the cross sections of
fragments in spallation. But when the predictions are extended
to the region far from the measured data, one observes a
numerical fluctuation that is contrary to prior physics knowl-
edge, i.e., cross sections of neutron-rich fragments decrease
exponentially with increasing neutron excess. Responding to
this challenge, the physics motivated model should be devel-
oped to provide reliable initial predictions, otherwise physics
guidance should be provided to avoid the overfitting of the
BNN. In fact, beyond the residual approach, successful at-
tempts to further consider physical information in the BNN
approach can also be found in the literature. For example,
it was found that better predictive performance for nuclear
masses can be achieved by adding two quantities related to
the well-known nuclear pairing and shell effects into the input
layer of the BNN [10]. Inspired by this paper, we try to add
ground-state properties into the input layer in the BNN so
that it can predict the giant dipole resonance (GDR) energy
without the initial prediction by the physics motivated model.

The GDR is the most well-known and oldest collective
excited mode of nuclei in the excitation energy from sin-
gle nucleon separation energy to dozens of MeV [11–13].
Over the last decades, hundreds of GDR data have been
experimentally measured using photonuclear reactions or
γ decay [14–16]. The γ spectrum displays a wide peak,
which can be characterized by a Lorentzian function with
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FIG. 1. Pearson’s correlation coefficient ρ between ground-state properties and GDR energies. The pairs of variables will be strongly
positive correlated for high ρ value (or identical for a correlation ρ = 1), and strongly negative correlated for a low ρ value (or fully opposed
for a correlation ρ = −1). A coefficient ρ near zero indicates that there is no correlation between pairs of variables. The ground-state properties
are taken from Refs. [31–34]. The data of the GDR energy are taken from Ref. [18].

GDR parameters including the peak energy (i.e., GDR en-
ergy), the width, and the strength [17,18]. Various models
have been developed to investigate the GDR, including
Hartree-Fock-based random phase approximation (HF-based
RPA) [19,20], time-dependent Hartree-Fock theory (TDHF)
[21,22], the Boltzmann-Uehling-Uhlenbeck model [23,24],
extended quantum molecular dynamics [25], and macroscopic
Langevin equation coupling with the Skyrme Hartree-Fock-
Bogoliubov model [26,27]. Several effects of the GDR, such
as the mass dependence, the isospin dependence, and the
shape effect, have been studied [23,26,28–30]. Those effects
were also found in the nuclear properties in the ground
state, the data of which are more abundant than those of
GDR [31–33]. In fact, proposed by microscopic theory such
as HF-based RPA and TDHF, the GDR energies depend
strongly on the HF ground-state wave function [20,22]. In
the macroscopic point of view, the GDR energy has been
determined when the proton and neutron density distributions
in the ground state are known [26]. Thus, there may exist
dependence between the ground-state properties and the GDR
energies.

II. METHOD

To assess the statistical dependence between two variables
of the ground-state properties and GDR energies, Pearson’s
correlation coefficients ρ(x, y) are calculated:

ρ(x, y) =
∑

i(xi − x̄)(yi − ȳ)√∑
i(xi − x̄)2

∑
i(yi − ȳ)2

, (1)

where xi is the ith data of the variable x, x̄ is the aver-
age of the variable x over the data, and

∑
i expresses the

summation over the data. A similar situation exists for the
variable y. Figure 1 lists the correlation coefficients between

two variables of the ground-state properties as well as the
GDR energies. The ground-state properties include the de-
rived quantities of atomic masses taken from the Ame2012
evaluation [31–33], and the extracted quantities from the
Weizsäcker-Skyrme mass formula [34]. The GDR energy in-
cludes the low and high peak energies (Er1 and Er2), which
are taken from Ref. [18]. Generally speaking, there are two
components of the GDR energy for quadrupole deformation
nuclei, but there is only one for spherical nuclei. In Ref. [18],
the high resonance energies are missing for spherical nuclei.
We use Er2 = Er1 when the high resonance energy is missing
in Ref. [18]. It means that two peaks of the GDR spectrum
overlap for spherical nuclei.

Intuitively, the pairs of variables will be strongly positive
correlated for high ρ value (or identical for a correlation
ρ = 1), and strongly negative correlated for a low ρ value (or
fully opposed for a correlation ρ = −1). The above two cases
both mean that those two variables contain similar physical
information, and hence one variable can be used to predict
another. A coefficient ρ close to zero indicates that there
is no correlation between the pair of variables. We refer to
Ref. [35] for the quantitative interpretation of the correlation
coefficients, where the degrees of correlation are divided into
five levels. The correlation is negligible for |ρ| ∈ [0.0, 0.1),
weak for |ρ| ∈ [0.1, 0.4), moderate for |ρ| ∈ [0.4, 0.7), strong
for |ρ| ∈ [0.7, 0.9), and very strong for |ρ| ∈ [0.9, 1.0).

ρ(A, Er ) = ρ(Z, Er ) = −0.92 from Fig. 1 reveals that A
(or Z) is the ground-state property the correlation of which to
the average resonance energies is the strongest. On the other
hand, the strong correlation between the isospin and the GDR
energies is also found, i.e., ρ(δ, Er ) = −0.89. The mass num-
ber A and isospin asymmetry δ are independent variables in
physics, but for the data set involved in Fig. 1 their correlation
is very strong [ρ(A, δ) = 0.96]. To understand this statement,
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one should remember that only the GDR data for the stable
nuclei are available, and the isospin asymmetry δ increases
with increasing mass for the stable nuclei. It is indicated that
for the data set only involving stable nuclei the strong isospin
dependence of the GDR energy does not give us any more
information after strong mass dependence has been found. For
the difference of resonance energies �Er , the correlation co-
efficient with quadrupole deformation is ρ(�Er, β2) = 0.72,
which indicates a strong correlation. Other correlations to �Er

are moderate or even weaker. So, concerning the available
data, the splitting of the GDR energies is a quadrupole de-
formation effect.

As mentioned above, the mass and quadrupole deforma-
tion effects of the GDR energies can be extracted from the
two-dimensional correlation of the data. High-dimensional
correlation should be used to find more effects of the GDR en-
ergies. In this respect, the BNN is a powerful tool. On the other
hand, we do not need all the ground-state properties. In Fig. 1,
one can find not only very strong cases, such as ρ(Qpα, Qdα) =
0.94, but also negligible cases, such as ρ(Qεp, Q2β ) = 0.073
for the correlations between the ground-state properties. We
can say that the data of Qpα and Qdα provide similar physical
information but those of Qεp and Q2β provide independent
physical information. Therefore, when the data sets of the
ground-state properties are used to predict the GDR energies,
useful information should be selected by the BNN approach.

Early works of the BNN approach include Refs. [36–38],
which laid the foundation in this area. In the following we
introduce the approach briefly. The mapping from ground-
state properties X (input layer) to the GDR energies Er (output
layer) is established by the neural network with one hidden
layer:

Er (X, θ ) = a +
H∑

j=1

b j logsig

(
c j +

l∑
i=1

d jiXi

)
, (2)

where θ = {a, bj, c j, d ji} are the parameters in the neural
network, {a, c j} are biases, and {b j, d ji} are weights. The
sigmoid function logsig is used as the activation function. In
the following the reasons to choose one hidden layer and the
sigmoid function will be discussed. H is the number of hidden
neurons, and l is the number of input neurons. The outputs are
denoted by two-dimensional variable Er = {Er1, Er2}. The in-
puts X = {X1, X2, . . . , Xl} include one or several ground-state
properties shown in Fig. 1.

Under the Bayesian theorem, the posterior distribution of
parameters θ given data set D is expressed as

P(θ |D) = P(D|θ )P(θ )∫
P(D|θ )P(θ )dθ

, (3)

where P(θ ) is the prior distribution of θ , and P(D|θ ) is the
likelihood of D given θ . D = {X (n), E (n)

r }Nd
n=1 include both the

ground-state properties X (n) and the GDR energy E (n)
r , where

Nd is the sample size of the available data.
For a nucleus with known ground-state properties X ∗, the

expected value of GDR energy Ê∗
r is expressed as the integra-

tion

Ê∗
r =

∫
Er (X ∗, θ )P(θ |D)dθ. (4)

Monte Carlo techniques are applied to calculate the above
integration:

Ê∗
r ≈ 1

Ns

Ns∑
k

Er (X ∗, θ (k) ), (5)

where θ (k) (k = 1, 2, . . . , Ns) is the kth sample drawn from the
posterior distributions P(θ |D), and Ns is the number of sam-
ples. A 95% confidence level is used to assess the uncertainty
of the prediction. The confidence interval of the GDR energy
E∗

r is

E∗
r = Ê∗

r ± 1.96
σ√
Ns

, (6)

where σ is the standard deviation of the samples Er (X ∗, θ (k) ).
As the computation of the posterior distribution P(θ |D)

is intractable due to the high dimension of parameters, the
variation inference [39–41] is applied to find an approxima-
tion of P(θ |D). The variation inference tries to find κ so that
q(θ |κ ) is of minimum distance from P(θ |D) measured by
Kullback-Leibler (KL) divergence:

θ = arg min KL [q(θ |κ )||P(θ |D)]

= arg min Eq(θ |κ )

[
ln

q(θ |κ )

P(θ |D)

]

= arg min Eq(θ |κ )

[
ln

q(θ |κ )P(D)

P(D|θ )P(θ )

]

= arg min
∑

k

[ln q(θ (k)|κ ) − ln P(θ (k) ) − ln P(D|θ (k) )].

(7)

There are 445 sets of data available. Tenfold cross valida-
tion is applied to determine the form of activation function,
the number of hidden neurons, and the number of layers. We
repeat the tenfold cross validation ten times, and for each time
the validation data are used to calculate the root-mean-square
error (RMSE) of predictions. The average and standard devi-
ation of the RMSE of tenfold cross validation are calculated.
We compare four activation functions: sigmoid, tanh, softplus,
and ReLU (rectified linear unit). The curves of these four
functions are shown in the upper panels in Fig. 2. Also, we
take 10, 20, 30, 40, and 50 hidden neurons into consideration.
One hidden layer and two hidden layers are compared as well.
The results of the average and standard deviation of RMSE
as a function of the hidden neuron are shown in Figs. 2(e)
and 2(f). From the figure, we can see that the performance
of the sigmoid function and one hidden layer are the best
among four activation functions. We find that 10, 20, and
30 hidden neurons provide the similar RMSEs (about 1.3).
It is the smallest value among of all cases. Therefore, we
consider one hidden layer with ten hidden neurons and apply
the sigmoid function as the activation function.

Figure 3 reports how the value of loss changes with the
number of iterations. From the figure, we can see that the
loss converges quickly, and the number of iterations 1000
is enough to reach a small and stable loss. In addition, the
standard normal distribution is used as the prior of weights,
and 10 000 samples are drawn for each predicted variable.

034317-3



XIAOHANG WANG, LONG ZHU, AND JUN SU PHYSICAL REVIEW C 104, 034317 (2021)

FIG. 2. Comparing the root-mean-square error of predictions us-
ing different activation functions and hidden layers.

III. RESULTS AND DISCUSSION

The BNN predictions are evaluated by the rms deviations,

rms =
√√√√ 1

2Nd

[
Nd∑

n=1

(
Ê (n)

r1 − E (n)
r1

)2 +
Nd∑

n=1

(
Ê (n)

r2 − E (n)
r2

)2

]
,

(8)
where E (n)

r1 and E (n)
r2 are the nth data of low and high GDR

energies, and Ê (n)
r1 and Ê (n)

r2 are their predicted values in the
BNN.

One-dimensional input variable X = {Xi} is considered,
where Xi is one of the ground-state properties. The rms de-
viation for each input ground-state property is shown as a bar
marked by {Xi} in Fig. 4. It is found that the minimum of
the rms deviations is obtained when using the input of mass
number A or charge number Z (rms = 0.96 or 0.98 MeV,
respectively). This is consistent with the fact in Fig. 1 that the
strongest correlation is found between the average of GDR

FIG. 3. The value of loss changes with the number of iterations.

FIG. 4. Root-mean-square deviations between data and BNN
predictions.

energies and mass or charge number. It is also consistent with
the fact that the empirical formula aA−1/3 is often used.

According to the smallest rms deviation, the mass number
A is selected. Then the input ground-state properties are ex-
panded to two-dimensional X = {A, Xi}. Their rms deviations
are marked by {A, Xi} in Fig. 4. It is found that adding one
dimension in the input layer generally improves the BNN
predictions compared to X = {A}. As is well known, the mass
and charge numbers (or mass number and isospin asymmetry)
are independent variables, which can be the identification
of the nuclide. Thus, in the residual approach to study the
nuclear charge radii [6], fission yields [8], and isotopic cross
sections in spallation [9], the mass and charge numbers are
applied as neurons of the input layer. This presupposition
is not the best choice when using the BNN to predict the
GDR energies. In Fig. 4, it is shown that the minimum rms
deviation for the two-dimensional input is obtained by using
{A, β2} as inputs, rather than {A, Z} or {A, δ}. The minimum
rms deviation 0.78 MeV is 19% lower than that using one-
dimensional input {A}. It is consistent with the quadrupole
deformation effect found from Fig. 1. Based on {A, β2}, the
input data are added to three, four, and five dimensions in
sequence. According to the minimum of the rms deviation, the
input variables Qnα , Qβ , and B are selected. The optimal input
variables to train the BNN for predicting GDR energies are
X = {A, β2, Qnα, Qβ, B}, and the rms deviation is 0.65 MeV.

The advantage of the BNN predictions using the op-
timal input {A, β2, Qnα, Qβ, B} compared to those using
two-dimensional input X = {A, δ} can be found in Fig. 5.
The 95% confidence intervals of predictions by the BNN
approach with input {A, δ} are shown in Fig. 5(a) as a (blue)
band. The global decrease of the data with increasing mass is
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FIG. 5. Data of GDR energies compared to the predictions by
BNN using (a) two-dimensional input layer {A, δ} and (b) five-
dimensional input layer {A, β2, Qnα, Qβ, B}. The fitting by the
empirical formula (a + bδ)A−1/3 is also shown as (orange) triangles.

reproduced. However, the data in the regions near A = 150,
200, and 238 deviate from global mass dependence. From
A = 175 to 200, the value of Er1 even increases with increas-
ing mass. Those features of the data cannot be reproduced by
the BNN approach using input {A, δ}.

The BNN predictions using the input {A, β2, Qnα, Qβ, B}
are shown as (blue and red) bands in Fig. 5(b). In the figure,
the arrows point out the cases of nuclei with magic number
20, 50, 82, and 126. It is found that, for the nuclei near
the shell, the two GDR energies are the same, which means
there is only a peak in the GDR spectrum. This feature is
reproduced by the BNN predictions. In the region out of the
shell, there are differences between the low and high GDR
energies. Especially in the region 150 < A < 196 (60 <

Z < 78 and 90 < N < 118), the differences between two GDR
energies are nearly 4 MeV. After training by the data including
the ground-state properties, the BNN predictions display the
deformation effect.

It is worth comparing the predictions by the BNN and em-
pirical formula with the same input variables, i.e., X = {A, δ}.
The empirical formula with parameters is often proposed by
the physics motivated model or phenomenology. For example,
based on the mass dependence, the empirical formula aA−1/3

is used to fit the data of the GDR energies. In order to include
higher order effects, such as the isospin effect, the empirical
formula is extended to (a + bδ)A−1/3. By fitting the data of
the low GDR energy Er1, the parameters a = 61.6 ± 0.5 and
b = 66.9 ± 4.0 are obtained. As shown in Fig. 5(a), the for-
mula (a + bδ)A−1/3 reproduces the global decrease of data
with increasing mass. But the detailed features of the data in
the regions near A = 150, 200, and 238 cannot be reproduced.

The description and prediction of the empirical formula
may be further improved by adding terms for the higher

FIG. 6. Data of GDR energies in nuclei 124−160Nd compared to
the predictions by BNN using (a) two-dimensional input layer {A, δ}
and (b) five-dimensional input layer {A, β2, Qnα, Qβ, B}. In order to
distinguish high GDR energies Er2 from low ones Er1, the data and
predictions of high GDR energies are moved upward by 3 MeV. The
predictions by the BNN are shown as shadows expressing the 95%
confidence intervals.

order effects, such as the shell effect or deformation effect.
Nevertheless, it is not always straightforward as several pre-
requisites are needed. What is the next important effect? How
can the effect be expressed? Is there any coupling with the
known effects? In fact, GDR energies depend on the ground-
state properties, the data of which are abundant and credible.
The BNN approach provides a method for mining useful in-
formation from the data of ground-state properties without the
above prerequisites and sorting the importance of the effects,
as shown in Fig. 4. With this importance order, the effects
may be further studied by the physics motivated model. That
is to say, the physics motivated model is significant both for
the empirical formula and the present BNN approach. It is
used beforehand for the empirical formula but afterward for
the BNN approach.

Figure 6 shows the low and high GDR energies in
124−160Nd as a function of neutron number. The Nd isotopes
display the typical evolution of the quadrupole deformation
[34]. Because of the magic number N = 82, the nucleus 142Nd
has a spherical shape. The quadrupole deformation parameter
β2 as a function of neutron number N shows that the 142Nd
nucleus has a minimum value 0.07, with gradual raises in
two sides. The correlation between the GDR energy splitting
Er2 − Er1 and the deformation parameter β2 has been found
by the TDHF model in Ref. [22]. The TDHF calculations (up
and down triangles in Fig. 6) show that two GDR energies
are the same for 142Nd, but gradually split in both sides of
N = 82. This is the prior physics knowledge about the GDR
energy splitting. Figure 6(a) shows the BNN predictions using
input {A, δ} only. In the region from N = 82 to 90 where
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the experimental data are available, the BNN provides good
predictions for both Er1 and Er2. The predictions by the BNN
agree with the TDHF calculations for N � 82. However, one
sees the overfitting in the region of N < 82. The GDR energy
splitting Er2 − Er1 by the BNN decreases with decreasing N,
which is contrary to prior physics knowledge provided by the
TDHF model.

The predictions by the BNN using the optimal ground-state
properties {A, β2, Qnα, Qβ, B} as inputs are shown in Fig. 6(b).
The selected input layer provides physics guidance in the
BNN and hence actively contributes to reduce the risk of the
numerical fluctuations. In the region with experimental data
(82 � N � 90), the predictions are constrained and hence
the 95% confidence intervals are small. Out of this region,
the confidence intervals are quite large but cover the TDHF
calculations in general. Concerning the prior physics knowl-
edge about the GDR provided by the TDHF calculations, the
overfitting by the BNN disappears after adding the ground-
state properties in the input layer.

The data (circles and squares in Fig. 6) show that both
the 142Nd nucleus and the 144,145,146Nd nuclei have the same
low and high GDR energies. This is different from the TDHF
calculations. In fact, the GDR energies are extracted from
the 144,145,146Nd(γ ,sn) spectra. The 144,145,146Nd(γ ,sn) spectra
(graphs 102–105 in Ref. [18]) display asymmetrical shapes,
but were fitted by a single peak function. Both the TDHF
calculations and BNN predictions indicate that two peaks
fitted to the GDR spectra are necessary for 144,145,146Nd nuclei.
It should be interesting to train the BNN by the GDR spectra
and not the GDR energies, which will be our future effort.

It is worth comparing the BNN to multitask neural
networks (MNNs), which are used to describe GDR key
parameters [42]. The advantage of the MNN is that it can
exploit common information in the shared layer of different
output variables. Also, it can save the number of parameters to
be estimated compared to building multiple neural networks.
Therefore, the MNN is suitable when the sample size is small.
But, like the other variants of neural networks, it can only
provide the predicted values without confidence intervals,
while the BNN can measure the uncertainty of the predictions
and provide confidence intervals. The confidence intervals are
significant when the predictions are extended to the region far

from the measured data. Another difference exists in the input
layer: the inputs are {Z, N, A, β2} in Ref. [42], while those
in our paper are {A, β2, Qnα, Qβ, B}. The same inputs A and
β2 are applied. What makes our paper novel is that we add
the ground-state properties in the input layer, which can avoid
overfitting. Considering the Bayesian statistics in the MNN is
worthy and should be tried in future work.

IV. CONCLUSION

In conclusion, it has been proved in previous works [5–9]
that one can include as much physics as possible in the initial
prediction by using physics motivated models and use the
BNN to fine tune these models by modeling the residuals.
In this paper, a case study on the prediction of GDR energy
is presented to illustrate the new method to provide physics
guidance in the BNN from the input layer without the initial
prediction by the physics motivated model. Microscopic theo-
ries such as Hartree-Fock-based random phase approximation
and time-dependent Hartree-Fock theory have proved that
the GDR energies depend strongly on the ground-state wave
function [20,22]. Based on this dependence, it is proposed to
predict the GDR energies by using the data of the nuclear
properties in the ground state, which are abundant and cred-
ible. Pearson’s correlation coefficients are applied to assess
the statistical dependence between the ground-state properties
and the GDR energies. Then the optimal ground-state proper-
ties are selected as neurons of the input layer in the BNN for
predicting the GDR energies. It is shown that those selected
ground-state properties provide physics guidance in the BNN
and hence actively contribute to avoid overfitting. This paper
gives a demonstration to find effects of the GDR energy by
using the BNN without the physics motivated model, which
may be helpful to discover physics effects from complex
nuclear data.
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