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Relativistic Fock space coupled-cluster study of bismuth electronic structure to extract the Bi
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We report the value of the electric quadrupole moment of 209Bi extracted from the atomic data. For this, we
performed electronic structure calculations for the ground 4So

3/2 and excited 2Po
3/2 states of atomic Bi using the

Dirac-Coulomb-Breit Hamiltonian and the Fock space coupled-cluster method with single, double, and full triple
amplitudes for the three-particle Fock space sector. The value of the quadrupole moment of 209Bi, Q(209Bi) =
−418(6) mb, derived from the resulting electric field gradient values and available atomic hyperfine splittings
is in excellent agreement with molecular data. Due to the availability of the hyperfine constants for unstable
isotopes of Bi, current atomic calculation allows also to correct their quadrupole moments.

DOI: 10.1103/PhysRevC.104.034316

I. INTRODUCTION

The quadrupole moment Q is one of the main properties
of the nucleus with an intrinsic spin I � 1.1 It characterizes
the nonsphericity of the nuclear charge distribution. Nuclei
with quadrupole and octupole deformations are good candi-
dates to measure the nuclear Schiff moment, which violates
time-reversal and spatial parity symmetries of fundamental
interactions and can be used to search for the new physics
[1–3]. In deformed nuclei, the Schiff moment can be strongly
enhanced.

The prevailing methods to obtain Q are atomic and molec-
ular spectroscopies. The interaction of the nuclear quadrupole
moment (NQM) with the electric field gradient (EFG) at
the nucleus leads to the shift of the hyperfine structure
components in atomic and molecular spectra. The electric
quadrupole hyperfine structure parameter B, which can be
extracted from the experimental data, is proportional to the
NQM value. Therefore, an accurate theoretical prediction of
the EFG value enables one to extract the value of Q using the
following relation:

Q[b] = B[MHz]

234.9648867 q[a.u.]
, (1)

where q is the electric field gradient in a.u. (=EH/a2
B);

EH = 1 Hartree and aB is the Bohr radius. In many cases,
very accurate data for atomic B constants are available.
However, often the accuracy of the extracted NQM values
is limited by the accuracy of the theoretical prediction of
EFG.
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1In this paper we consider the spectroscopic quadrupole moment.

Note that one should discriminate it from the intrinsic quadrupole
moment Q0 which is not equal to zero even for I = 1/2 nuclei.

The highly charged ions with the 209Bi nucleus have been
recently used to test predictions of quantum electrodynamics
which resulted in the so-called (magnetic dipole) “hyperfine
puzzle” due to the disagreement between the theoretical pre-
dictions [4,5] and experiment [6]. More recently, it has been
shown [7] that the discrepancy was caused by the inaccurate
tabulated value of the magnetic dipole moment of 209Bi. The
209Bi nucleus has the spin I = 9/2 and also possesses the
NQM. Previously, a large set of the values of Q in the range
from −370 mb to −710 mb, has been obtained, see Ref. [8] for
a review. The advanced, up to date atomic calculations gives
Q = −516(15) mb [8], whereas in the recent molecular stud-
ies values lower by 20% were obtained: Q = −420(8) mb [9]
and Q = −415.1 mb [10]. Such a large discrepancy demands
a reconciliation since the experimental uncertainties are in
many cases less than 5%. We believe that the main sources
of this discrepancy are the drawbacks of atomic calculations,
as the neutral bismuth atom has three unpaired electrons and
strong static and dynamic electron correlation effects. There-
fore, the accurate prediction of EFG in the atomic Bi case is
especially a challenging problem.

In the present paper, we apply the Fock space relativistic
coupled-cluster theory with single, double, and full iterative
triple cluster amplitudes developed in our group to extract
the value of EFG for the 209Bi nucleus from the atomic
data. Moreover, we recalculate the Q values for a number
of radioactive isotopes where corresponding atomic data are
available [11,12].

II. FOCK SPACE COUPLED-CLUSTER THEORY FOR THE
THREE-PARTICLE SECTOR

In the present paper, we focus on the ground 4So
3/2 and

excited 2Po
3/2 states of the Bi atom. For both states with the
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same relativistic symmetry, several configurations (6p3)3/2

contribute to wave functions with comparable weights and
thus should be treated on equal footing. Therefore the use of
inherently multireference approaches to describe these states
seems a priori advantageous.

An accurate treatment of electronic structure of heavy-
element atoms and molecules requires to describe simultane-
ously both the relativistic and electronic correlation effects.
For the electronic states with two or more open-shell electrons
the static correlation and its interplay with the dynamic corre-
lation effects has to be thoroughly analyzed and accounted for.
One of the most efficient and reliable methods allowing one to
treat all these effects in a balanced manner is based on the rela-
tivistic multireference coupled-cluster theory in its Fock space
formulation (FS-RCC) [13,14]. The most important feature of
FS-RCC consists in the fact that all the reference determinants
are treated on equal footing allowing one to properly capture
the most important static correlation effects. Up to now, the
applications of FS-RCC were limited to the systems with no
more than two “valence” electrons (unpaired electrons over
the Fermi vacuum state) [15,16]. The attempts to extend the
scope of applicability of its nonrelativistic counterpart to sys-
tems with three or even more (up to six) electrons were made
by Hughes and Kaldor in early 1990s [17–21] and recently
by Meissner and co-authors [22]. Though the reported pilot
applications were restricted to atoms and simple molecules
of second- and third-row elements, the results have clearly
shown that the inclusion of contributions of triple excitation
operators is inevitable to achieve a highly accurate modeling.

The Fock space coupled-cluster theory implies the use of
a series of model subspaces (Fock space sectors) obtained by
distributing various numbers of valence electrons (in our case
from 0 to 3) among “active” spinors. These subspaces form
the model space. The many-electron wave functions ψi are
approximated by

ψi = {exp(T )}N ψ̃i, (2)

where the model vectors ψ̃i are projections of the correspond-
ing wave functions onto the model space, {}N denotes the
normal ordering with respect to the chosen Fermi vacuum
and the cluster operator T is given by a linear combination of
excitation operators. These operators are classified according
to their rank r, and the number of destructed active particles
np

T =
∑
np,r

T
(np)

r . (3)

The sum (3) is truncated at some maximum r value (2,
model with singles and doubles, FS-CCSD, or 3, including
additionally triples, FS-CCSDT). In spite of the truncation,
the exponential form of Eq. (2) ensures the incorporation of
all higher excitations into the wave function. This feature is
known to be of high importance for proper treatment of dy-
namic correlation effects [14]. Furthermore, the use of ansatz
(2) is essential for the exact size-consistency of the results
obtained with truncated cluster operators; the latter feature is
essential for the present problem which requires to correlate
all 83 electrons of neutral Bi.

The equations for the cluster amplitudes can be found,
for example, in Refs. [13,14]. Once the amplitudes are de-
termined, the effective Hamiltonian H̃ matrix is constructed
and diagonalized to obtain energies of electronic states as
eigenvalues and model vectors ψ̃ as eigenvectors:

H̃ = (H {exp(T )}N )Cl , (4)

where H is the many-electron Hamiltonian (e.g., the rela-
tivistic Dirac-Coulomb-Breit one), the subscript Cl marks the
closed part of an operator and the overbar denotes its con-
nected part.

Amplitude equations are solved subsequently for the Fock
space sectors, starting from the zero active particle (vacuum)
sectors. Within the CCSD approximation, all amplitudes are
fully defined by the equations for the vacuum, one-particle
and two-particle sectors; nevertheless, the effective Hamilto-
nian (4) for the three-particle sector can be constructed using
the single and double excitations completely inherited from
the lower sectors [18,20]. Thus the FS-CCSD model suffers
from the rather rough accounting for differential correlation
associated with the addition of a third active electron: this
effect is partially included via “disconnected” products of sin-
gle and double excitations. The lowest-rank excitations with
amplitudes which are specific for the system with three ac-
tive particle are triple excitations destroying all three valence
particles; therefore one can suppose that the incorporation
of triples is even more important than for the lower sectors
where the nonperturbative account of triple excitations (the
FS-CCSDT model) have been demonstrated indispensable for
achieving the meV-level of accuracy for excitation energies
[23]. Unfortunately, the full FS-CCSDT model is too com-
putationally demanding for most practical applications. The
accuracy of the FS-CCSD model is believed to be sufficient
for capturing the bulk of dynamic correlation effects and then
the correction on triples can be introduced by means of the
additive scheme based on the FS-CCSDT calculations in a
reduced basis for a smaller number of correlated electrons
(similar to that employed in [23]).

The relativistic FS-CCSD and FS-CCSDT models for three
open-shell electrons were implemented in the EXP-T program
package [24,25]. The details of this implementation will be
published elsewhere.

III. COMPUTATIONAL DETAILS

In correlation calculations we have used the Dirac-
Coulomb and Dirac-Coulomb-Breit Hamiltonians. They are
given by the following expression:

Hel = �(+)

[
Ne∑

i=1

h(i) +
Ne∑

i< j

Vi j

]
�(+), (5)

where h(i) is the one-particle Dirac Hamiltonian and Vi j is
the interelectronic interaction. Indices i and j run over all
electrons of the system, ri j is the distance between ith and
jth electrons, αi is the vector of Dirac α matrices, �(+)

are projectors on the positive-energy states. In the Dirac-
Coulomb case Vi j = 1/ri j . In the frequency-independent Breit
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TABLE I. The calculated values of the electric field gradient in
a.u.(= EH/a2

B) for the ground 4So
3/2 and excited 2Po

3/2 electronic states
of neutral bismuth and the deduced values of the NQM of 209Bi.

6p3 4So
3/2 6p3 2Po

3/2

EFG:
FS-CCSD 2.983 −10.292
basis set correction 0.055 −0.050
FS-CCSDT − FS-CCSD 0.117 0.276
Breit contribution −0.058 0.088
Total 3.097 −9.978

B, MHz [36] −305.067(2) 978.638(10)
Q(209Bi), mb −419 −417

approximation Vi j is given by the following expression:

Vi j = 1

ri j
− (αi · α j )

ri j
− (αi · ∇i )(α j · ∇ j )ri j

2
, (6)

where ∇i = ( ∂
∂xi

, ∂
∂yi

, ∂
∂zi

) is the gradient operator over i-th
electron coordinates. The second term in Eq. (6) stands for the
magnetic interaction of electrons and is known as the Gaunt
term. The last terms represents the retardation correction to
the instantaneous Coulomb potential.

The main contribution to EFG has been obtained within the
relativistic Fock space coupled-cluster method with single and
double cluster amplitudes using the Dirac-Coulomb Hamilto-
nian and finite-field approach [26] for property calculation.
The target 6s26p3 states of the neutral Bi atom were achieved
in the 0h3p Fock space sector; the closed-shell 6s2 Bi3+
cation was considered as the Fermi vacuum state (the 0h0p
sector) and the 6p spinors comprised the active space. Note
that for this minimal active space the intruder state problem
does not arise and no additional special techniques to suppress
it are required. For this calculation we have used basis set
that contains 43s, 37p, 25d , 17 f , 10g, 8h, and 6i Gaussian
functions. This basis set has been obtained from the uncon-
tracted Dyall’s AAEQZ basis set [27] for Bi by augmenting
it with tight and diffuse s, p, d , f , g functions and addition
of h- and i-type functions using the procedure developed by
us in Refs. [28,29]. Correlation effects for all 83 electrons
have been considered. In the correlation calculations we have
included all virtual orbitals with one-particle energies up to
10000 Hartree which is important for core properties [30,31].
Table I also gives estimated contribution of the basis set com-
ponents with l > 6 missing in the FS-CCSD calculations. This
correction has been obtained using the extrapolation proce-
dure which takes into account contribution of harmonics with
l = 5, 6.

To take into account the contribution of triple cluster
amplitudes, the FS-CCSDT method in the 0h3p sector was
employed. In order to make calculations feasible the basis
set consisting of 36s-, 30p-, 18d-, 13 f -, 6g-, 2h-, and 1i-type
functions was used. This basis set corresponds to the Dyall’s
AAETZ basis set [32] augmented with tight and diffuse s, p
functions and natural g-, h-, and i-type functions [28,29]. In
this calculations 60 inner-core electrons were excluded from
correlation treatment. According to our tests, the contribution

of triple cluster amplitudes is rather stable with respect to
variation of the basis set size and active space size. About
4 × 108 unique cluster amplitudes standing in the exponent
(2) were optimized, suggesting good level of accounting for
dynamic electron correlation effects.

The Breit interaction contribution has been calculated at
the FS-CCSDT level with excluded 60 inner-core electrons as
in the calculation described above and the basis set consisting
of 36s-, 30p-, 18d-, 13 f -, 4g-, 1h-type functions based in the
Dyall’s AAETZ basis set [32].

Dirac(-Gaunt)-Hartree-Fock calculations of the Bi
bispinors were carried out using the DIRAC15 software
[33] for the neutral Bi state. All coupled-cluster calculations
were performed within the EXP-T code [23,24]. Calculations
of matrix elements of the Breit interaction and four-index
transformation of these matrix elements have been performed
within the code developed in Refs. [34,35].

IV. RESULTS AND DISCUSSION

Electric quadrupole hyperfine constants are known for dif-
ferent electronic states of Bi. In the present paper we consider
the ground 6p3 4So

3/2 and the excited 6p3 2Po
3/2 electronic

states as the most precise experimental data for the hyperfine
constants B of 209Bi are available for them [36].

The calculated values of EFG for these two states are given
in Table I. One can see that the triple cluster amplitudes
contribute about +3.8% to the value of EFG for the ground
state and −2.8% for the excited state.

As is described above in the FS-CCSD calculation all 83
electrons were correlated. For the analysis we have also found
that the contribution of 60 1s . . . 4 f inner-core electrons of
Bi contribute about 10% and 7% to the EFG values of the
6p3 4So

3/2 and 6p3 2Po
3/2 states, respectively. This also justifies

the procedure of taking into account triple cluster amplitudes,
where these inner-core electrons were excluded from the elec-
tronic correlation calculation.

As one can see from Table I there is very good agree-
ment between the values of the quadrupole moment of 209Bi
extracted from hyperfine constants for the two considered
electronic states. One can also stress the role of triple cluster
amplitudes: they contribute in an opposite way to the EFG val-
ues of the two considered electronic states. In other words, the
values of the quadrupole moments with EFG values obtained
within the FS-CCSD approach differ more significantly than
in the case when the triple amplitudes are included. This is not
surprising and can be explained by the fact that the inclusion
of (full) triple excitations is required to describe accurately a
system with three valence 6p electrons.

Table I gives the effect of the Breit interaction. For the
ground state, it contributes about 2% to the total value of EFG,
while for the excited state, its contribution is smaller—0.5%.
These contributions are strongly dominated by the Gaunt part,
while the retardation part can be neglected. We have also esti-
mated contribution of quantum electrodynamics effects using
the approach, developed in Ref. [37] and found that it can be
neglected for both states: for the ground state this contribution
is −0.16%, while for the excited state it is −0.04%.
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TABLE II. The experimental values of electric quadrupole hy-
perfine constants B for ground electronic states 4So

3/2 of short-lived Bi
isotopes with mass numbers A and deduced values of the quadrupole
moments of these isotopes. The experimental data for 208Bi isotope
are taken from Ref. [11], while for others from Ref. [12]. The first
value in parentheses for Q corresponds to the uncertainty of the
B constant, the second value corresponds to the uncertainty of the
theoretical value of EFG. In the case of 202Bi, results for two possible
spin assignments are shown.

A Iπ B, MHz Q, mb

202 (5+) −592(48) −813(66)(17)
202 (6+) −718(50) −987(69)(21)
203 9/2− −549(40) −754(55)(16)
204 6+ −400(120) −550(165)(12)
205 9/2− −481(10) −661(14)(14)
206 6+ −318(20) −437(27)(9)
207 9/2− −449(27) −616(37)(13)
208 5+ –358.6(3.9) −493(6)(11)
210 (1−) 112.38(3) 154(0.04)(3)
210m 9− −387(40) −532(55)(11)
212 (1−) 80(225) 110(309)(2)
213 9/2− −491(25) −675(34)(14)

To estimate the uncertainty of the calculated EFG values
we assume that the uncertainty of the basis set correction
is smaller than 50% of its value and the contribution of
correlation effects beyond the FS-CCSDT model can hardly
be notably larger than 50% of the contribution of triple
amplitudes [30,38–40]. As estimated above, the quantum
electrodynamics contribution to EFG is an order of magnitude
smaller than the Breit interaction contribution and can be
neglected. For the ground and excited states this leads to the
uncertainties of 9 mb and 6 mb for Q(209Bi), respectively. As it
can be seen from Table I the experimental uncertainties of the
B constants are negligible. For the 209Bi we average the value
of Q over two considered electronic states and obtain the final
value of Q(209Bi) = −418(6) mb, employing the uncertainty
obtained for the second state.

Our final value of Q(209Bi) coincides within the uncertainty
with the molecular results [9,10]: Q = −420(8) mb [9] and
Q = −415 mb [10]. It is also in the reasonable agreement
with the independently measured values of Q for muonic and
pionic atoms: −370(26) mb [41,42], −500(80) mb [43], but
our uncertainty is much lower.

In Ref. [12] the hyperfine constants B have been obtained
and compiled from previous studies [44,45] for a large number
of short-lived isotopes of Bi in the ground electronic states
4So

3/2 (see also Ref. [11] for an accurate measurement of
B(208Bi). Some of these constants were measured directly and
others were rescaled, see Ref. [12] for details. Using the cal-
culated value of EFG for the ground state of Bi it is possible to
deduce the updated values of the electric quadrupole moments
of these isotopes. Results are given in Table II.

V. CONCLUSION

The present atomic calculation performed at very high
level of theory, the FS-CCSDT method within the Dirac-
Coulomb-Breit Hamiltonian, leads to the value of Q(209Bi),
which is very close to the previous molecular studies. The
experimental values for two different atomic electronic states
were studied to get the value of Q(209Bi). It is shown that the
inclusion of triple cluster amplitudes is of crucial importance
to get almost the same values of the extracted NQM’s for both
atomic levels. Obtained theoretical data allowed us also to
refine the values of NQM of unstable 202–213Bi isotopes.
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