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Nuclear matter density distributions of the neutron-rich 6,8He isotopes from a sum-of-Gaussian
analysis of elastic proton scattering data at intermediate energies
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Differential cross sections for elastic p- 6He and p- 8He scattering, measured in inverse kinematics at high
momentum transfer up to the first diffraction minimum and at projectile energies around 700 MeV/u at GSI
Darmstadt, are analyzed applying the sum-of-Gaussians (SOG) method based on the Glauber multiple-scattering
theory. The rms point matter radii of 6He and 8He are deduced to be 2.29(6) fm and 2.53(7) fm, respectively, in
close agreement with those from former analyses using phenomenological parametrizations for describing the
matter distributions. With the aid of the measurement at high momentum transfer, the overall radial density
distributions of 6He and 8He are precisely deduced using the SOG method, in particular at small radii. A
pronounced core rearrangement by adding the valence neutrons to an α-like core to form 6He and 8He is
elucidated, and briefly discussed.
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I. INTRODUCTION

During the past three decades there has been a growing
interest in the structure of neutron-rich light nuclei near the
dripline. As fundamental properties, their size and the radial
density distribution of nuclear matter provide one of the most
reliable ways of understanding nuclear structure in light un-
stable nuclei, in particular the halo structure, which exhibits
an extended distribution of the valence neutrons surrounding
a compact core [1–5]. Over the years a large variety of experi-
mental methods have been developed for exploring the nuclear
matter distributions of the stable nuclei [6–10]. Among them,
intermediate-energy (≈500 MeV to 1 GeV) elastic scattering
of hadronic probes, predominantly protons and α particles,
has early become a powerful technique and has been ap-
plied over a wide mass range of nuclei [10–15]. This method
was further improved, and for the first time applied at GSI
Darmstadt for investigating the nuclear matter distributions
in light unstable nuclei using the technique of inverse kine-
matics [3,16–22]. The first experiment of this kind, described
in detail elsewhere [17,18], was performed using the ra-
dioactive beams of 6,8He with incident energies around 700
MeV/u from the FRagment Separator (FRS) of GSI to
irradiate the hydrogen-filled active target IKAR which si-
multaneously served as a gas target and a detector for the
recoil protons. For comparison, elastic proton scattering from
the stable 4He nucleus was measured under the same condi-
tions. The absolute differential cross sections dσ/dt for the
elastic proton scattering from the 4,6,8He nuclei as a func-
tion of the Lorentz-invariant four-momentum transfer squared
−t were measured in the region of low momentum transfer
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0.002 � |t | � 0.05 (GeV/c)2. Later, the matter root-mean-
square (rms) radii Rm and radial matter density distributions
of 4,6,8He were deduced [23] by analyzing the measured dif-
ferential cross sections using the Glauber multiple-scattering
theory [24]. Nevertheless, although theoretical calculations
have shown that the elastic proton scattering measurement at
low momentum transfer is sensitive to the nuclear matter den-
sity at the nuclear periphery, allowing us to deduce the nuclear
size precisely [23], investigations at higher momentum trans-
fer are necessary to explore the densities of the interior nuclear
matter [25,26]. The elastic proton scattering measurement at
higher momentum transfer is therefore of great importance
to improve the accuracy of the determination of the overall
nuclear matter distributions in the 6,8He and other nuclei.

For this purpose, an additional experiment was later ac-
complished at GSI Darmstadt with the aim to measure
the p- 6,8He differential cross sections at higher momentum
transfer close to the first diffraction minimum [19,27]. The
major difference with respect to the previous experiment
was that instead of using the active gaseous target, a liquid
hydrogen target was used for the elastic p- 6,8He scattering
experiment, combined with a proton recoil detector. In that
experiment, dσ/dt at a momentum transfer range, 0.05 �
|t | � 0.2 (GeV/c)2, was successfully measured. To deduce
the matter radii and radial density distributions of 6,8He, the
combined data set of the elastic p- 6,8He scattering cross
sections measured at both low and high momentum transfer,
0.002 � −t � 0.2 (GeV/c)2, was analyzed using the Glauber
multiple-scattering theory with the spin-orbital interaction ex-
plicitly taken into account [28]. An enhanced sensitivity of
the data measured at high momentum transfer to the α-like
core region of the 6,8He densities was found, demonstrating
the important role of the data determined at high momentum
transfer for deducing the shapes of the core of the radial matter
distributions in light halo nuclei [28]. However, a drawback in
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the analysis described in Ref. [28] arises from the application
of phenomenological model parametrizations for describing
the nuclear matter densities, such as the symmetrized Fermi,
Gaussian-halo, and Woods-Saxon distributions, as it makes
local density properties hard to derive [29]. The deduced mat-
ter densities of 6,8He are therefore significantly dependent on
the selection of particular density parametrizations. A similar
drawback exists in the previous analysis of Alkhazov et al.
[23] as well, although a series of different phenomenological
model functions were applied allowing for reducing the model
dependence, and the variation of the results was used as indi-
cator for the systematic uncertainty.

Recently, a sum-of-Gaussians (SOG) method was applied
[30] to analyze the elastic proton scattering data of self-
conjugate doubly magic radioactive 56Ni and stable 58Ni
measured in inverse kinematics at the Experimental Stor-
age Ring (ESR) at GSI Darmstadt in the frame of the EXL
project [31–33]. The SOG method [29] has been successfully
applied for many years for deducing nuclear charge distri-
butions from electron scattering data [34]. The matter radii
and radial density distributions of 56,58Ni were deduced using
this method, and a pronounced difference in the deduced
matter distributions between both nuclei was observed for
the first time [30]. It was demonstrated in this work that
although there is close agreement of the matter radii deduced
using phenomenological parametrizations for modeling the
nuclear matter distributions, the matter density distributions
from the SOG method provide more abundant information on
the nuclear structure, and only the SOG method is capable of
elucidating the characteristic difference in the radial distribu-
tion of nuclear matter [30]. In the present article, we use the
SOG method, which is supposed to produce, as compared to
the use of phenomenological parametrizations for modeling
the nuclear matter distributions, less model-dependent results,
to analyze the combined cross section data of elastic p- 6,8He
scattering at both low and high momentum transfer [18,19] for
deducing the matter rms radii and matter density distributions
of 6He and 8He. The SOG method used in the analysis on
56,58Ni is improved for permitting the applicability of the SOG
method for nuclei with extended nuclear matter distributions
such as expected for 6,8He.

II. SUM-OF-GAUSSIANS METHOD

In the SOG method, the nuclear matter density distribution
for a given atomic nucleus is deduced by fitting the mea-
sured differential cross sections of elastic p nucleus scattering
within the framework of the Glauber multiple-scattering the-
ory [24]. For the case of a compact nucleus, the nuclear matter
density distribution ρ(r), similar to the previous SOG analysis
of the 56,58Ni nuclei [30], is described by a summation of
multi-Gaussian functions at arbitrary radii ri (ri ∈ [0, Rmax]
fm) with arbitrary amplitudes Ai as in Ref. [29],

ρ(r) = 1

2π3/2γ 3

Ng∑
i

Ai

1 + 2r2
i /γ

2

×
(

exp

[
− (r − ri )2

γ 2

]
+ exp

[
− (r + ri )2

γ 2

])
, (1)

where γ is the common width of the Gaussians and Ng is
the total number of Gaussians. γ , Ng, and Rmax are basic
inputs for establishing the given ρ(r), and ri and Ai are the
free fitting parameters. To eliminate the model-dependent ef-
fect by introducing the parametrizations of γ , Rmax, and Ng

(if any), reasonably good physical arguments have been ad-
dressed [30]. The formalism of the SOG density in Eq. (1) was
originally used for studying the charge density distributions of
stable nuclei [29]. In contrast to the 56,58Ni nuclei, in which
no significant extended tail structure is found at large radii
[30], it is well known that the presently investigated 6,8He
nuclei exhibit pronounced tail structures with widely extended
distributions at large radii. Therefore, specific constraints for
the selection of γ and Rmax in the SOG density should be taken
into account as compared to those already used in Ref. [30].

Theoretical calculations [35,36] show that in 6He and 8He,
the radial wave functions for describing the extended mat-
ter distributions have generally a width around two times
that for the core. This indication is well evidenced by the
experimental analysis of the combined p- 6,8He scattering
cross section data using the Gaussian-Gaussian and Gaussian-
oscillator parametrizations for the matter densities, that the
obtained halo radius Rh is nearly two times that of the core
radius Rc for both 6,8He nuclei [28], where Rc and Rh are for
describing the core and halo densities, respectively. To take
this into account, different γ values for the core and the halo
in 6,8He are used in Eq. (1). The γ for describing the α-like
core region of 6,8He (denoted as γc) is taken around 1.0 fm,
limited by the finite nucleon size (≈0.9 fm) and the smallest
oscillatory structure from the various theoretical calculations
(≈1.1 fm), similar to that in Ref. [37]. In contrast, the γ for
the halo region (denoted as γh) is taken as two times that of
γc. For defining the regions of core and halo, a parameter
for quantifying the rms distance from the core center to the
valence neutrons, Rc−h, is used. The value of Rc−h for 6He has
been experimentally deduced to be 3.84(6) fm with the aid of
a geometrical model [2]. Therefore, a value of Rc−h = 4 fm is
taken for 6,8He for the present analysis. In the following SOG
analysis, Rc−h is further randomly varied in the range from
4 to 5 fm to reduce the model dependence. Due to the widely
extended distribution of the loosely bound valence neutrons in
6,8He, the matter density distributions of 6,8He both decrease
slowly at large radii. Therefore, a large Rmax value of 12 fm is
taken. Ng is chosen to be bigger than 12, based on the criterium
of Ng > Rmax/γc.

In Ref. [23], it was found that the experimental cross
sections even at extremely low momentum transfer are not
sensitive to the far periphery part of the nucleus with a pro-
nounced tail structure, so that additional information on the
asymptotic density behavior at large radii, for example that
from theoretical predictions [38], has to be taken into account
to reduce the uncertainties in deducing the matter distributions
at the nuclear periphery due to the weak constraint from the
low momentum transfer data. In the present SOG analysis,
in addition to the experimental data, the asymptotic density
behavior at far peripheral regions predicted by two theoretical
calculations is introduced to supplement the SOG fits. Fol-
lowing the treatment in Ref. [23], for the 6He nucleus, the
far periphery density calculated from a representative wave
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TABLE I. Parameters γc, γh, Rc−h, Rmax, and Ng for establishing the SOG densities of 6He and 8He, and wave functions for constraining
their extended tails. Note that in the SOG analysis, γc, γh, and Ng are randomly varied around the values given in the table, i.e., γc ∈ [0.9, 1.1]
fm, γh ∈ [1.8, 2.2] fm, and Ng ∈ [20, 30], for permitting a larger variability of the shape of the density distribution.

γc γh Rc−h Rmax

Nucleus (fm) (fm) (fm) (fm) Ng Tail function

6He 1.0 2.0 [4.0, 5.0] 12.0 >12 FC [38]
8He 1.0 2.0 [4.0, 5.0] 12.0 >12 Hankel [40]

function model using a three-body wave function with three
Faddeev components (the FC wave function) tabulated in
Ref. [39] is adopted, and for the 8He nucleus, the far periphery
density is adopted as a square of a spherical Hankel wave
function [40] assuming the one-neutron separation energy to
be 2.59 MeV, a summation of the two-neutron separation
energy, 2.14 MeV, and the energy of the resonant state of
the residual 7He, 0.45 MeV (see also Ref. [23]). Here, the
asymptotic density selection from the FC and Hankel wave
functions for constraining the 6,8He tail structures is somewhat
“arbitrary,” but reasonably good physical arguments have been
addressed in Refs. [23,38], that by using the FC wave func-
tion, one is able to well reproduce the present elastic p- 6He
scattering cross section data at low momentum transfer, and
it is also the wave function calculation with the FC wave
function that provides the best description of the empirical
two-neutron separation energy of 0.97 MeV, and that the
periphery asymptotic density behavior from the Hankel wave
function for 8He describes quite well the shape of the pe-
riphery tail of the nuclei with four valence nucleons [20,38].
Moreover, as described below, the theoretical wave functions
are plugged in the present SOG analysis with large uncer-
tainties to weaken the model-dependent effect, if any. The
parametrizations of γc, γh, Rc−h, Rmax, and Ng for establishing
the SOG densities of 6He and 8He, and the wave functions
chosen for constraining their extended tails, are summarized
in Table I. For further permitting a larger variability of the
shape of the density distribution, γc, γh, and Ng are randomly
varied in the following SOG analysis (see below).

In the Glauber multiple-scattering theory [24], the relation
between the differential cross section dσ/dt for elastic pro-
ton scattering and the elastic p-nucleus scattering amplitude,
Fel (q), is given by [12,24]

dσ

dt
= π

k2
|Fel (q)|2, (2)

with

Fel = ik

2π

∫
eiqb

{
1 −

A∏
i

[1 − γpN (b − si )]

}

× ρA(r1, r2, . . . , rA)d3r1d3r2 . . . d3rAd2b. (3)

Here, q is the momentum transfer, k is the wave number of
the incident proton, b is the impact vector, A is the nuclear
mass number, and ρA(r1, r2, . . . , rA) is the density product,
ρA(r1, r2, . . . , rA) = ∏A

i=1 ρi(ri ), where ρi(ri ) is the density
at a given ri for the ith nucleon. The center-of-mass correla-
tions, arising due to the requirement that all nucleon radius
vectors ri have to sum-up to zero, have been taken into ac-

count following Ref. [12]. In practice, the ρA(r1, r2, . . . , rA) is
given by the product, ρA(r1, r2, . . . , rA) = ∏A

i=1 ρ(ri ), where
ρ(ri ) is the density at a given ri deduced using the identical
one-body nucleon distribution ρ(r) defined by Eq. (1) without
distinguishing between neutrons and protons. γpN (b − si ) rep-
resents the ith profile function for the pairwise proton-nucleon
(pN) interactions, where si is the ith transverse nucleon co-
ordinate. The profile function γpN (b) can be related to the
corresponding pN scattering amplitude fpN (q) of pN scatter-
ing as

γpN (b) = 1

2iπk

∫
e−iqb fpN (q)d2q. (4)

Following Ref. [12], only the scalar part of the elementary pN
scattering amplitude is taken into account, and is described
by the standard high-energy parametrization with the total pN
cross sections (σpN ), the ratios of the real to the imaginary
parts of the pN amplitudes (εpN ), and the slope parameters
(βpN ) as

fpN (q) = ik

4π
σpN (1 − iεpN ) exp

(
−q2βpN

2

)
. (5)

For avoiding implementation of some model dependence via
the scattering amplitudes and for improving the accuracy of
the Glauber calculations, experimental values of σpN , εpN , and
βpN at given incident energies are adopted in Eq. (5). For
the present analysis, σpN and εpN at energies of 717 and 671
MeV/u for elastic p- 6He and 8He scattering are evaluated by
MINUIT polynomial fits to the data from the Particle Data
Group (PDG) [41] and Refs. [23,42], respectively. The result-
ing σpN and εpN values are listed in Table II. The uncertainties
of σpN and εpN are the fitting errors. Unlike σpN and εpN , the
experimental data of the slope parameter βpN are rather scarce.
Therefore, the βpN values are adjusted to give the best SOG
description of the measured p- 4He cross section at around
700 MeV/u [18,43] with the known radius under the assump-
tion of βpp = βpn [23]. As the charge rms radius of 4He has
been precisely deduced to be 1.681(4) fm by analyzing the
elastic e- 4He scattering data using a model-independent SOG
method [44], and the neutrons and protons distribute equally
in 4He, the charge radius of 4He is taken as reference. For
the stable 4He, the original SOG density formalism for the
previous SOG analysis of 56,58Ni nuclei is used [30], where
γ is taken as 1.0 fm similar to that of Ref. [37]; Rmax = 5
fm is taken from the independent knowledge on the behavior
of wave functions, that the 4He densities at radii greater than
5 fm decrease rapidly and have a negligible contribution;
Ng > 5 is limited satisfying the criterion of Ng > Rmax/γ .
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TABLE II. pN scattering amplitude parameters, σpN , εpN , and βpN , used for the present SOG analysis of elastic p- 6,8He scattering.

Einc σpp σpn βpN

Reaction (MeV/u) (mb) (mb) εpp εpn (fm2)

p- 6He 717 43.5(1.6) 37.4(1.8) 0.094(41) −0.299(42) 0.183(5)
p- 8He 671 41.4(1.5) 36.7(1.6) 0.132(40) −0.269(42) 0.183(5)

The experimental pN scattering amplitude parameters σpN

and εpN at 700 MeV are obtained from the fits to the ex-
perimental data as σpp = 42.8(1.5) mb, σpn = 37.2(1.8) mb,
and εpp = 0.108(41), εpn = −0.289(42). With the selected
values for γ , Rmax, and Ng, and the obtained pN scattering
amplitude parameters, the free parameters of ri and Ai can
be deduced by a least-squares fit of the calculated to the
measured cross sections of elastic p- 4He scattering using the
SOG method. To reduce the number of parameters, ri is first
randomly distributed within 0–5 fm for each fit. Ten thousand
individual SOG fits are performed. During the fits, γ and Ng

are randomly varied, i.e., γ ∈ [0.9, 1.1] fm, and Ng ∈ [6, 12].
The pN scattering amplitude parameters, σpN and εpN , are also
randomly determined within their experimental uncertainties,
and βpN is randomly taken within 0.1–0.3 fm2. Following the
method described in Ref. [30], the χ2 for the quality of the fits
is defined as

χ2 =
2∑
j

Nj∑
i

⎧⎨
⎩

[ dσexp

dt

∣∣
ti
− ( dσSOG

dt

∣∣
ti

)
/ANor, j



( dσexp

dt

∣∣
ti

)
]2

+
(

1 − ANor, j


Aexp, j

)2}
, (6)

where j = 1, 2 corresponds to two elastic p- 4He scattering
data sets taken from Refs. [18,43]. Nj is the data point number

for the jth data set. dσexp

dt |ti and 

dσexp

dt |ti are the experimental
cross section and its error at a certain momentum transfer ti,
respectively; dσSOG

dt |ti is the calculated cross section at the same
ti. ANor, j is the normalization factor of the calculated results
to the experimental data for the jth data set, and 
Aexp, j is
the uncertainty in the experimental absolute normalization.

Aexp for both data sets has been commonly deduced as
3% in Refs. [18,43]. From the SOG fits, the resulting χ2

distributes from around 70 to several thousand, corresponding
to the quality of the experimental data. As demonstrated in
the inset of Fig. 1, the χ2 forms a sharp peak at the lowest
value side of the χ2 probability histogram. Good fits are
selected with χ2 < 80, allowing for selecting out the fits with
the minimum χ2 values. The same criteria are also applied
for the good fit selection in the 6,8He analyses below. All
selected fits are presented as a bundle of solid lines in Fig. 1.
The measured cross sections are described by these fits rather
well as observed in the figure. Each fit contributing to the
bundle corresponds to one unique point matter rms radius
and one point matter density distribution of 4He. Folding the
resulting point matter rms radius with the proton size, the
folded matter rms radius, Rfolded

m , is deduced, and plotted as
a function of the input slope parameter βpN in Fig. 2. A rather
linear relation between Rfolded

m and βpN is obtained. Using

the precisely deduced 4He charge radius of 1.681(4) fm as
reference by the dashed horizontal area, the corresponding
βpN is obtained via projection as βpN = 0.183(5) fm2, where
the error is indicated by the dashed vertical area. Using this
deduced effective βpN value is considered to account, to some
extent, for the spin effect which has not been explicitly treated
in the present Glauber calculations [12,23]. The point radial
matter density distribution of 4He deduced in the present anal-
ysis with βpN = 0.183(5) fm2 is plotted in Fig. 3, where the
shaded bands in the figure represent the uncertainties at given
radii. For a cross-check, the obtained 4He point matter density
distribution is folded with the proton size, and compared with
an available radial charge density obtained from the earlier
model-independent analysis of elastic e- 4He scattering using
the SOG method which gives a charge radius of 1.676(8) fm
[34] in the figure, where the radial charge density has been
normalized to the mass number of the 4He nucleus. A rather
good agreement for both the folded matter density and the
normalized charge density is achieved within errors. It proves
a good precision and an applicability of the present SOG
method.
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FIG. 1. Measured differential cross section dσ/dt as a function
of the four-momentum transfer squared −t for elastic p- 4He scat-
tering at 700 MeV/u. Squares and dots represent the data taken
from Refs. [43] and [18], respectively. The bundle of solid lines
corresponds to all “good” fits within the framework of the Glauber
multiple-scattering theory using SOG distributions for describing the
matter densities. The inset shows the probability histogram of the
resulting χ 2 values from the SOG fits.
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FIG. 2. Folded nuclear matter rms radius Rfolded
m of 4He as a

function of input slope parameter βpN . The red solid line is the linear
fit to the resulting points. The blue dashed horizontal area indicates
the charge rms radius of 4He, 1.681(4) fm, deduced by analyzing
the elastic e- 4He scattering data using the model-independent SOG
method [44]. The dashed vertical area marks the βpN region corre-
sponding to the known charge rms radius.
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FIG. 3. The point nuclear matter density distribution of p- 4He
deduced from the present SOG analysis of the experimental cross
section of elastic p- 4He scattering with βpN = 0.183(5) fm2 (in
black) is compared with the folded matter density distribution (in
red), and the radial charge density ρc(r) obtained from a model-
independent analysis of elastic e- 4He scattering using the SOG
method which gives a charge radius of 1.676(8) fm [34] (in blue). The
radial charge density has been normalized to the mass number of the
4He nucleus. The dashed lines represent the mean distributions, and
the shaded error bands relate to the errors from the standard deviation
at given radii.

III. RESULTS AND DISCUSSION

Using the parameters listed in Tables I and II, more than
ten thousand SOG fits are performed for the elastic p- 6,8He
scattering cross sections. Similar to the case of 4He, ri is
randomly distributed within [0, Rmax] prior to each fit. γc, γh,
and Ng are randomly varied around the values given in Table I,
i.e., γc ∈ [0.9, 1.1] fm, γh ∈ [1.8, 2.2] fm, and Ng ∈ [20, 30].
Ai is optimized as a free parameter using a least-squares fit
with χ2 defined by Eq. (6). The experimental normalization
uncertainties for the low and high momentum transfer data
sets are taken to be 3% and 2.4% from Refs. [18,27], re-
spectively. To introduce the extended tail constraint with the
wave functions in the fits, a few points from the far periphery
density distributions calculated from the FC and Hankel wave
functions are taken from r = 6.2 fm for 6He and from r = 6.7
fm for 8He to 12 fm for both nuclei, and added to the data
from the experiment. The selections of the starting points are
based on the conclusion presented in Ref. [23], that only ≈1%
nuclear matter contributes to the overall density distributions
at large radii, i.e., at r > 6.2 fm for 6He and r > 6.7 fm for
8He, and the experimentally deduced 6,8He radii are weakly
dependent on the selection of the far periphery density asymp-
totics. The χ2 for the quality of the fits is therefore redefined
by inserting an additional term,

∑
i(

ρw f (ri )−ρSOG(ri )

ρw f (ri )

)2 in Eq. (6),
where ρw f (ri ) and ρSOG(ri ) are the calculated densities using
the given wave function, and the SOG fit at the radius ri.
Large uncertainties 
ρw f (ri) of 30%, are used to allow for
only minor contributions from the wave functions to the fits.
The probability histograms of the overall χ2 values for 6He
and 8He are presented in the inset of Fig. 4. According to the
criterion of having χ2 smaller than 80 for 6He, and smaller
than 120 for 8He, respectively, the good fits for 6,8He are
selected and presented as the two bundles of solid lines in
Fig. 4. As observed from the figure, the SOG fits reproduce
well the overall cross sections at the measured momentum
transfer region for both nuclei.

By averaging the radius values corresponding to all these
fits presented in Fig. 4 with an equal weight, the point matter
rms radii of 6,8He are deduced to be

2.29(6) fm for 6He,
2.53(7) fm for 8He.
The overall errors of the obtained matter rms radii include

contributions (a) due to the experimental statistics (0.02 fm
for both 6He and 8He), and (b) due to the uncertainties of
the SOG fitting procedure including uncertainties of the γc,
γh, Rc−h, and Ng randomizations, the uncertainties of the
pN scattering amplitude parameters, and the uncertainties of
the cross section normalization (0.05 fm for 6He and 0.06
fm for 8He, respectively). The present 6,8He matter radii
are compared with those from former analyses using model-
dependent density parametrizations [23,28,45] in Table III,
where the results from Refs. [23,28] were obtained from
analyzing elastic proton scattering data, whereas the results
of Ref. [45] were obtained from a combined analysis of the
interaction cross sections of 4,6,8He +C reactions, and the
neutron removal cross sections of 6,8He +C reactions. It can
be found from the table that for both 6He and 8He nuclei,
the radii from the present practical model-independent and
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FIG. 4. Measured differential cross sections dσ/dt as a function
of the four-momentum transfer squared −t for p- 6He and p- 8He
scattering at energies around 700 MeV/u. Green squares represent
data measured at low momentum transfer from Ref. [18], and black
dots represent data measured at higher momentum transfer from
Ref. [27]. The measured differential cross section of p- 8He is mul-
tiplied by a factor of 10. The bundle of solid lines corresponds to all
“good” fits within the framework of the Glauber multiple-scattering
theory using SOG distributions for describing the matter densities.
The inset shows the probability histograms of the resulting χ2 values
for 6He (in blue) and 8He (in red), respectively.

previous model-dependent analyses are in close agreement
within errors, demonstrating a weak sensitivity of the matter
rms radii on the constraints made in model-dependent anal-
yses for describing the nuclear matter density. No significant
difference is found between the radius values deduced from
elastic proton scattering data measured at single low momen-
tum transfer [23] and from the combined data at both low
and high momentum transfer [28] for both 6He and 8He. This
result supports previous theoretical predictions, that proton
scattering at low momentum transfer is sensitive to the halo
structures appearing at the periphery of nuclei, and from dif-
ferential cross sections measured with high accuracy at low
momentum transfer the overall nuclear size can be determined
precisely [23,46].

The present work includes the total matter distributions in
6He and 8He evaluated reliably by the SOG method, while
their charge rms radii are deduced with good accuracy from
the isotope shift measurement based on high-precision laser
spectroscopy [47]. By defolding from the finite size of the
proton, the point proton rms radii for 6He and 8He are deduced
to be 1.925(12) fm and 1.807(28) fm, respectively [2]. Using
the obtained point rms radii of nuclear matter and proton,
Rm and Rp, the point neutron rms radii Rn for 6He and 8He
are evaluated to be 2.45(9) fm and 2.73(9) fm, respectively,
using the relation R2

m = (ZR2
p + NR2

n )/A, where Z , N , and
A are the charge, neutron, and mass numbers for a given

TABLE III. Point nuclear matter radii Rm for 6He and 8He from
the present analysis, compared with results from former model-
dependent analyses using different density parametrizations. The
point proton radii Rp, the point neutron radii Rn, and the neutron
and proton radius difference 
Rnp for 6He and 8He are listed in
the third to fifth columns. The Rp values are experimentally deduced
from the high-precision laser spectroscopy data [2,47]; the Rn values
are evaluated from the experimentally deduced Rm and Rp using
the relation R2

m = (ZR2
p + NR2

n )/A; the 
Rnp values are evaluated as

Rnp = Rn − Rp.

Rm Rp Rn 
Rnp

(fm) (fm) (m) (fm)

6He 2.29(6) 1.925(12) [2,47] 2.45(9) 0.53(9)
2.30(7) [23] 2.47(10) 0.54(10)
2.44(7) [28] 2.66(10) 0.74(10)
2.33(4) [45] 2.51(6) 0.58(6)

8He 2.53(7) 1.807(28) [2,47] 2.73(9) 0.92(10)
2.45(7) [23] 2.63(9) 0.82(10)
2.50(8) [28] 2.69(10) 0.88(11)
2.49(4) [45] 2.68 (5) 0.87(6)

nucleus. The differences between neutron and proton radius,

Rnp = Rn − Rp, can be then evaluated to be 0.53(9) fm for
6He and 0.92(10) fm for 8He, respectively. Similarly, Rn and

Rnp are evaluated for the case of model-dependent analyses
[23,28,45]. The obtained 
Rnp values of 6He and 8He favor-
ably compare to those of the present work (see Table III).
The 
Rnp values of 6,8He are definitely thicker than those
of some heavy nuclei with a large neutron excess (such as
116−124Sn [48] and 204−208Pb [6]). This fact is closely related
to the weak binding energies of the valence nucleons in 6,8He
nuclei. The 6He structure has been well understood to consist
of a two-neutron halo outside the α-like core [2,49]. Adding
two more neutrons to 6He to obtain 8He results in an even
larger value of 
Rnp [with a 0.34(10) fm increase], indicating
a halo structure, rather than a skin structure [49], existing in
8He as well.

The radial matter density distributions of the 6,8He nu-
clei deduced in the present analysis are presented with
shaded bands representing the uncertainties in Fig. 5. For
both neutron-rich 6,8He, extended matter distributions are
observed, showing that the matter densities of 6,8He at the
nuclear periphery decrease much more slowly with the radius
than that of the compact 4He displayed in Fig. 3. Similar
results have been also observed in former analyses using
phenomenological parametrizations for the description of the
density distributions (see Refs. [23,28]). Thus, the present
analysis confirms the halo structure in both the 6,8He nuclei.
Of particular interest in the present analysis is to compare the
radial shapes of the matter distributions of 6He and 8He. Sig-
nificantly different shapes of the matter density distributions
between 6He and 8He are observed around the core region,
whereas the densities of 6He and 8He agree within errors with
each other in the very central region. The density of 8He in
the core region turns out to be with increasing r slightly larger
than that of 6He, and up to around 3 fm, both densities coin-
cide again. At even larger radii, the nuclear densities in both
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FIG. 5. Point nuclear matter density distributions deduced from
the experimental cross sections of p- 6He (in blue) and p- 8He (in red)
elastic scattering using the SOG method. The dashed lines represent
the mean distributions deduced; the shaded error bands relate to the
errors from the standard deviation.

6He and 8He decrease slowly as r increases. As compared
to 6He, the density distribution of 8He at large radii is more
extended, which is also reflected in the obtained matter radii
listed in Table III. It should be pointed out that the density
difference between 6He and 8He can be only elucidated in the
present work, as on one side, using the SOG analysis allows
to deduce the density distributions getting rid of the constraint
using the phenomenological parametrizations, and therefore
turns out to be less model-dependent, and on the other side, the
cross section measurement at high momentum transfer helps
to improve the accuracy with which the density at small radii
can be deduced.

For providing further insight into the nuclear structure of
the 6,8He nuclei, the differences of the deduced point matter
density distributions between 6He and 4He, and between 8He
and 6He, multiplied with 4πr2, are plotted in Fig. 6. Pro-
nounced different oscillating structures are observed for the
density difference between 6He and 4He, and between 8He
and 6He. For 6He, formed by adding two neutrons to 4He, in
the region from r = 0 fm to the zero crossing at r = 1.6 fm,
around 0.7 nucleons are found to apparently transfer from the
inner core to the further outside surface, and summing up with
the two additional nucleons, a plus of 2.7 nucleons is found at
r > 1.6 fm. This result reflects a significant core rearrange-
ment effect from 4He to 6He by adding two valence neutrons.
In contrast, after adding two more valence neutrons to 6He
producing 8He, two peaks are exhibited. The peak at small
radii strongly indicates a core compensation due to additional
two valence neutrons outside. In particular, the integration of
the density difference between 8He and 6He from r = 0 fm
to 1.6 fm results in an increase of about 0.6 nucleons in the
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FIG. 6. Differences of the deduced point nuclear matter density
distributions between 6He and 4He (in blue) and between 8He and
6He (in red), multiplied with 4πr2. The dashed lines in the center
of the shaded error band represent the mean density difference. The
numbers refer to the deficit or the excess of the nucleon number in
the integral limits indicated by the vertical dashed lines.

average, thus compensating ≈86% of the 0.7 nucleons lost
from 4He to 6He in the core region. For completeness, the
difference of the point matter density distributions between
8He and 4He is displayed in Fig. 7, and compared with the
difference of the point matter density distributions between
6He and 4He (same as that in Fig. 6). It is interesting to note
that very similar structures are obtained, indicating a moving
of nuclear matter out of the core.

The observed core rearrangement effect by adding the
valence neutrons two-by-two outside the s1/2 shell closure
in 4He finds support from the fact that the experimentally
deduced proton radii of 6He and 8He listed in Table III are
larger than that of 4He supposed to be the core of 6He and
8He, 1.48(3) fm corresponding to the 4He point matter density
distribution displayed in Fig. 3, where the error is calculated
following the same way as for the 6He and 8He nuclei. More-
over, the previous model-dependent analyses of the elastic
p- 6,8He scattering cross sections measured at low momentum
transfer [23], and at both low and high momentum transfer
[28], using the Gaussian-Gaussian and Gaussian-oscillator
density parametrizations which allow us to treat the core and
valence nucleons explicitly also indicate a larger α-like core
radius in 6He and 8He, supporting the present findings.

Both the behavior of the charge radii and core radii in 6He
and 8He, as well as the core rearrangement from 4He to 6He
and to 8He observed in the present work (see Figs. 6 and
7), can be well interpreted by a pronounced center-of-mass
motion of the core around the center of mass of the whole
nucleus [4,23,28,47]. The strength of this effect depends on
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FIG. 7. Same figure as Fig. 6, but for the differences of point
nuclear matter density distributions between 6He and 4He (in blue)
and between 8He and 4He (in red), multiplied with 4πr2.

the strength of the correlation between the valence neutrons.
This interpretation is well supported by recent ab initio cal-
culations (see Ref. [50], and references in Ref. [4]). As for
6He, the recoil motion of the α-like core against the strongly
correlated neutron pair smears out the nuclear matter distri-
bution of 6He, leading to the density rearrangement from the
core to the outside. After adding two more valence neutrons
to form 8He, the four excess neutrons are correlating less and
moving more chaotically around the α-like core, so that the
recoil of the four neutrons to the α-like core becomes weaker.
The weaker recoil effect leads to a weaker smearing-out of
the nuclear matter distribution in 8He, and therefore a com-
pensation of the core density occurs. This interpretation is
also supported by the findings of Chulkov et al. [51] and
Papadimitriou et al. [52] that 8He is not a closed shell nucleus,
and therefore a strong contribution of a 6He +2n configuration
is favored. Consequently, compared to that of 6He given by
α + 2n, the amplitude of the di-neutron configuration in the
ground-state wave function of 8He is reduced, demonstrating
a more chaotic movement of the valence neutrons in 8He,
and therefore, a weaker recoil effect in the center-of-mass
coordinate space is expected in 8He. Other evidence for this
interpretation is found in the geometrical correlation analyses
of the valence neutrons from the experimental 6,8He charge
and matter radii [2], where the rms distance from the center
of mass of 8He to the center of mass of the valence neutrons
is deduced to be 1.07(5) fm, being much smaller than that for
6He, 2.52(5) fm.

Also as shown in Fig. 6, an additional 1.4 nucleons are
distributed at r > 1.6 fm by adding the two valence neutrons
from 6He to 8He. The second peak at large radii shown in
the matter density difference between 8He and 6He suggests
that in addition to the amount of nucleons transferring toward

the core region, there are some of the newly added nucleons
(around 0.5 nucleons from the integration at r > 3.2 fm)
located outside 6He, contributing to the periphery in 8He.
As a consequence, 8He shows a large neutron and proton
radius difference and a significantly more extended density
distribution at the periphery, compared to 6He, resulting in a
significant neutron halo in 8He.

IV. SUMMARY

In this article, differential cross sections for elastic p- 6He
and p- 8He scattering at projectile energies around 700
MeV/u, measured in inverse kinematics in the region from
low to high momentum transfer up to the first diffraction
minimum [0.002 � |t | � 0.2 (GeV/c)2] at GSI Darmstadt,
are analyzed applying the sum-of-Gaussians (SOG) method
based on the Glauber multiple-scattering theory. The rms
point matter radii of 6He and 8He are deduced to be 2.29(6)
fm and 2.53(7) fm, respectively. The present results are in
close agreement with the matter radii of 6,8He deduced from
former analyses using phenomenological parametrizations for
describing the matter distributions. The application of the
SOG method which is, as compared to the previous anal-
yses using phenomenological parametrizations for modeling
the nuclear matter distributions, less model-dependent, allows
us for the first time to elucidate local characteristics of the
overall radial matter densities in both nuclei. In particular,
a significant difference in the shapes of density distributions
between both nuclei at small radii is exhibited, benefiting from
the cross section measurement at high momentum transfer. A
pronounced core rearrangement by adding the valence neu-
trons two-by-two outside an α-like core to form 6He and 8He
is obtained. This core rearrangement can be interpreted by the
pronounced center-of-mass motion of the α-like core around
the center of mass of the 6He or 8He nucleus. The stronger
core rearrangement effect in 6He compared to that in 8He
can be understood in a way that in 6He, the recoil effect of
the two strongly correlated valence neutrons with respect to
the α-like core smears out the nuclear matter distribution,
whereas, in contrast, for 8He, the spatial distribution of the
four valence neutrons is more chaotic, the correlation of the
valence neutrons being reduced, and thus the smearing-out
effect from the recoil between the core and the valence neu-
trons is significantly weakened. In addition, more nucleons are
found to contribute to the periphery tail of 8He, demonstrating
a significant neutron halo in 8He.
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