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Low-energy dipole excitations in 20O with antisymmetrized molecular dynamics
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Low-energy dipole (LED) excitations in 20O were investigated by variation after K projection of
deformation (β)-constraint antisymmetrized molecular dynamics combined with the generator coordinate
method. A low-energy E1 mode, which is caused by surface neutron oscillation along the prolate deformation
was obtained as the 1−

2 state. Moreover, a toroidal dipole (TD) mode with vortical nuclear current was obtained
as the 1−

1 state with one-proton excitation on the relatively weak deformation. The low-energy E1 mode is a
LED excitation peculiar to neutron-rich systems that does not appear in stable oxygen isotopes, whereas the TD
(vortical) mode is a LED excitation that was obtained also in 16O and 18O. The TD and E1 modes separately
appear as the Kπ = 1− and Kπ = 0− components of the deformed states, respectively, but couple with each
other because of K mixing, and shape fluctuation. As a result of the mixing, TD and E1 transition strengths
are fragmented into the 1−

1 and 1−
2 states. The excited bands of Kπ = 0+, Kπ = 0−, and Kπ = 1− with cluster

structures were also obtained in the energy region higher than the LED states.

DOI: 10.1103/PhysRevC.104.034314

I. INTRODUCTION

Low-energy dipole (LED) excitations, that appear in an
energy region lower than giant dipole resonances is a topic
gaining attention in experimental and theoretical research
since a few decades (see, reviews [1–4] and references there
in). Significant dipole strengths have been observed in stable
nuclei in a wide mass-number range from 12C to 208Pb [5–8],
and LEDs in neutron-rich nuclei were discovered in these
two decades as reported for 20O [9–11], 26Ne [12], and
48Ca [13,14]. Various types of dipole modes were considered
for the LEDs such as the neutron skin mode (Pigmy mode) for
E1 strengths [15,16], and the toroidal (also called vortical or
torus) [1,17–25] and cluster [26–32] modes for isoscalar LED
strengths.

A main interest is collective LEDs peculiar to neutron-rich
nuclei, in which valence neutrons play important roles in low-
energy excitations. In theoretical studies based on mean-field
approaches, LED strengths were described as noncollective
single-particle excitations on the spherical or slightly de-
formed ground state [33–38]. However, cluster structures have
been discussed to describe LED states of O isotopes based
on cluster models and antisymmetrized molecular dynamics
(AMD) [32,39–44]. To clarify origins of the LEDs, isospin
characters of LED strengths can be key observables, because
the neutron skin mode (Pigmy mode) has the isovector char-
acter that can be observed by the E1 strengths while the
toroidal and cluster modes tend to involve isoscalar natures
rather than the isovector one. In experimental measurements
of LED strengths, the isovector dipole strengths for 17−22O
were observed in excitation energy Ex � 15 MeV region, and
were found to exhaust a few percentages of the Thomas-
Reiche-Kuhn sum rule [45]. Recently, the E1 and isoscalar
dipole (ISD) transition strengths for individual 1− states were

measured for 20O in Refs. [9–11] that reported a difference
of isospin properties between 1−

1 and 1−
2 states suggesting

existence of different types of LEDs in 20O.
In our previous paper [32], we investigated LED exci-

tations in 18O using variation after K projection (K-VAP)
in the framework of β-constraint antisymmetrized molecular
dynamics (AMD) [46–50] combined with the generator coor-
dinate method (GCM), which was developed for the study of
LED excitations in Ref. [31]. The TD mode of a one-particle
one-hole (1p-1h) excitation and a cluster mode containing a
14C +α structure were obtained, but the low-energy E1 mode
was not obtained in 18O. This result is understood as collective
oscillation of valence neutrons in the neutron skin mode is
difficult in such stable nuclei near the N = Z line in the light-
mass region. Instead, the neutron skin mode is expected in the
further neutron-rich region such as 20O, for which significant
E1 strengths were observed for the 1−

1 and 1−
2 states.

In this paper, we investigate excited states of 20O by ap-
plying the same method of K-VAP and GCM of β-constraint
AMD. We focus on LED excitations and cluster states in
the 20O system in particular. The isospin properties of dipole
transition strengths are investigated in detail, and the roles of
excess neutrons in LED excitations of 20O are discussed in
comparison with 16O and 18O.

This paper is organized as follows. In Sec. II, the cal-
culation method of K-VAP and GCM of β-constraint AMD
and parameter setting is explained. The calculated results for
20O are shown in Sec. III. In Sec. IV, the properties of LED
excitations in 20O are analyzed in detail, and systematics of
LED excitations along the isotope chain, 16O, 18O, and 20O are
discussed. Finally, a summary is given in Sec. V. Definitions
of operators of densities and dipole transitions are given in
Appendix A, and densities and matrix elements of intrinsic
system are explained in Appendix B.
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II. CALCULATION METHOD AND PARAMETER SETTING

To investigate LED excitations, we apply K-VAP and GCM
in the framework of β-constraint AMD to 20O, just as we did
in our previous paper for 18O [32]. For detailed formulation,
the reader is referred to Ref. [32] and references therein.

We first perform energy variation for the β-constraint
AMD wave function after K and parity (Kπ ) projection. Fol-
lowing the K-VAP, we superpose the obtained basis wave
functions with total-angular-momentum and parity (Jπ ) pro-
jection by solving the GCM (Hill-Wheeler) equation for K
and β, and obtain final results of the total wave functions and
energy spectra of the Jπ

k states of 20O. The transition strengths
are calculated for the Jπ

k states. For a detailed discussion, we
also analyze each basis wave function in the intrinsic frame
before the superposition.

An AMD wave function for A-body system � is ex-
pressed using a Slater determinant of single-particle wave
functions [48,51]:

� = A[ψ1ψ2 · · · ψA], (1)

where ψi represents the ith single-particle wave function writ-
ten by a product of spatial, spin, and isospin functions as
follows:

ψi = φ(Zi )χ (ξi )τi, (2)

φ(Zi ) =
(

2ν

π

) 3
4

exp

[
−ν

(
r − Zi√

ν

)2]
, (3)

χ (ξi ) = ξi↑|↑〉 + ξi↓|↓〉, (4)

τi = p or n. (5)

Here, Zi and ξi are complex variational parameters for Gaus-
sian centroids and spin directions, respectively. For the width
parameter ν, a fixed value is used for all nucleons.

In the K-VAP method, the energy variation is done for the
parity- and K-projected AMD wave function |�〉 = P̂K P̂π |�〉
with the quadrupole deformation β constrains. Here, P̂π and
P̂K are the parity- and K-projection operators, respectively.
In the present calculation, Kπ = 0+, Kπ = 0−, and Kπ = 1−
are adopted to obtain the Kπ bases optimized for the ground
and dipole states. The β constraint is imposed for the AMD
wave function during the energy variation. We follow the
definition of the quadrupole deformation parameters β and γ

adopted for the βγ -constraint AMD in Ref. [52], however,
the constraint is imposed only on β but not on γ in the present
β-constraint AMD. It means that γ is optimized for each β

and can be finite.
After K-VAP with each β value, we obtained the optimized

AMD wave functions |�π
K (β )〉 for Kπ = 0+, Kπ = 0−, and

Kπ = 1−, which we call as K0+(β ), K0−(β ), and K1−(β )
bases, respectively. To obtain the total wave functions and
energy spectra of the Jπ

k states of 20O, the GCM calculation
is performed by superposing the basis wave functions along
β as

|�π (Jk )〉 =
∑
K,K ′

∑
β

cKK ′ (β )P̂J
MK ′ P̂π

∣∣�π
K (β )

〉
, (6)

where P̂J
MK is the angular-momentum-projection operator,

and coefficients cKK ′ (β ) are determined by diagonalizing the
Hamiltonian and norm matrices. For the negative-parity states,
K mixing is taken into account and mixing of the K0−(β ) and
K1−(β ) bases were considered.

The total wave functions for the Jπ
k states obtained after

GCM are used to calculate the transition strengths such as
the E1, E2, and E3 strengths. For dipole transitions from
the ground state, we consider three types of dipole opera-
tors, E1, TD, and compressive dipole (CD) operators used
in Refs. [21,53]. The E1 operator is the isovector dipole
operator, whereas the TD and CD operators are isoscalar
type operators that can measure the nuclear vortical and com-
pressional dipole modes, respectively. For a dipole operator
D = {E1, TD, CD}, the transition strength B(D; 0+

1 → 1−
k ) is

given as |〈1−
k ||M̂D||0+

1 〉|2. The definitions of dipole operators
and transition strengths are given in Appendix A.

The effective Hamiltonian used in the present study is
given as

H =
∑

i

ti − TG +
∑
i< j

vcoulomb
i j + Veff. (7)

Here, ti and TG are the kinetic energy of the ith nucleon
and that of the center of mass, respectively, and vcoulomb

i j
is the Coulomb potential. The effective nuclear potential
Veff includes the central and spin-orbit potentials. We use
the MV1 (case 1) central force [54] with the parameters
W = 1 − M = 0.38 and B = H = 0, and the spin-orbit part
of the G3RS force [55,56] with the strengths u1 = −u2 =
−3000 MeV. This set of parametrization is identical to that
used for the AMD calculations of p-shell and sd-shell nu-
clei in Refs. [57–60]. It describes the energy spectra of 12C
including 1− states. The width parameter is chosen as ν =
0.16 fm−2, which reproduces the nuclear size of 16O with a
closed p-shell configuration in the harmonic oscillator shell
model.

III. RESULTS OF 20O

A. Energies and band structure

By performing the energy variation for the Kπ -projected
AMD wave function, we obtain the wave functions of the
K0+, K0−, and K1− bases at each β value. The Kπ -projected
energy curve of the K0+ bases is shown in Fig. 1(a), whereas
the K0− and K1− bases are shown in Fig. 1(b). Energy
minimums exist around β = 0.2, which corresponds to the
intrinsic states of the ground 0+ and lowest 1− states. In the
larger β region, there is no local minimum. The intrinsic struc-
ture changes with an increase of β along the energy curves as
shown in Figs. 2 and 3, which display intrinsic matter density
of typical positive- and negative-parity bases, respectively.
The intrinsic structure around the energy minimum has a weak
deformation and changes to the prolate deformation with a
cluster structure at β = 0.52, and finally a developed cluster
structure of 16C +α appears in the K0+(0.84) base as shown
in Figs. 2(a), 2(b), and 2(c) for the K0+(0.32), K0+(0.52),
and K0+(0.84) bases. In the negative-parity case, the K0−
and K1− bases degenerate in β � 0.7 region [see Fig. 1(b)].
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FIG. 1. K-projected energy curves of 20O obtained by K-VAP of
β-constraint AMD plotted as a function of quadrupole deformation
β. The energy curve for the K0+(β ) bases is shown in panel (a) and
those for the K0−(β ) and K1−(β ) bases are shown in panel (b).

Cluster structures appear in the K0− and K1− bases as β

increases. Because of this clustering, the K0− energy becomes
lower than the K1− energy in the β � 0.7 region because
the developed cluster structure favors the K0− component. In
the large β region, the negative-parity bases have the 16C +α

cluster structure similar to the K0+ bases [see Fig. 2(c) and
Fig. 3(d)].

The energy spectra of 20O are obtained after the GCM
calculation using the basis wave functions obtained by K-VAP
of β-constraint AMD. The calculated binding energy is 141.7
MeV, which is slightly smaller than the experimental value
(151.36 MeV). The positive- and negative-parity energy spec-
tra are shown in Figs. 4 and 5, respectively. To discuss band
structure, we show theoretical energy spectra for band mem-
ber states, which can be classified into Kπ = 0+, Kπ = 0−,
and Kπ = 1− bands, and that for the 1−

2 state along with the
calculated B(E2) values of in-band transitions on the left, and
the experimental energy spectra and B(E2) values on the right
of the figures. Figures 6 and 7 show the GCM amplitudes for
the band-head states, which are defined by squared overlap
with each base. In the GCM calculation, we obtain many en-
ergy levels as a result of diagonalization of adopted basis wave
functions. However we only focus 0+ and 1− states that have
significant overlaps with certain bases and their band members
that are identified by E2 transition strengths. Those states can
be understood as physical excited modes that can be described
by the present framework of K-VAP and GCM of β-constraint
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FIG. 2. The matter densities of K0+ bases at (a) β = 0.32,
(b) 0.52, and (c) 0.84. The intrinsic densities are integrated along
the Y axis and plotted on the Z-X plane. The unit is fm−2.
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FIG. 3. The same as Fig. 2 but for the (a) K1−(0.32),
(b) K0−(0.44), (c) K1−(0.64), and (d) K0−(0.84) bases.

AMD. For other 0+ and 1− states, the GCM amplitudes are
fragmented into many basis wave functions indicating that
such states have no specific character, and therefore it may not
be appropriate to give quantitative discussions in the present
calculation.

The ground band (Kπ = 0+
1 band), which consists of the

0+
1 , 2+

1 , and 4+
1 states is constructed from the basis wave

functions with weak deformation around the energy minimum
of the Kπ = 0+ energy curve. The calculated E2 transition
strengths in the ground band are small because of a proton
shell closure feature. This result is qualitatively consistent
with the experimental B(E2) value, but quantitatively, under-
estimates the observed data.

Above the ground band, two Kπ = 0+ bands are built on
the 0+

2 and 0+
4 states showing cluster structures. The lower

and higher cluster bands on the 0+
2 and 0+

4 states are labeled
as Kπ = 0+

cl,1 and Kπ = 0+
cl,2 bands, respectively. The former

(Kπ = 0+
cl,1) band is mainly formed by the K0+(0.52) base

[Fig. 2(b)], which has a deformed structure with clustering of
a parity asymmetric 6p + 2p (six and two protons) structure
of the proton density as described later in detail. The latter
(Kπ = 0+

cl,2) band contains the dominant component of the
K0+(0.84) base [Fig. 2(c)] with a developed 16C +α cluster
structure. Because of the largely deformed intrinsic structure
for these cluster bands, strong E2 transitions are obtained for
in-band transitions, in particular, in the Kπ = 0+

cl,2 band.
In the calculated negative-parity levels, we obtain the 1−

1
and 1−

2 states in the low-energy region (see Fig. 5). The
Kπ = 1−

1 band is built on the 1−
1 state, whereas the 1−

2 state
does not form a clear band structure. As shown in Fig. 7, the
1−

1 and 1−
2 states in the low-energy region contain components

of basis wave functions in the β � 0.6 regions correspond-
ing to weak or normal deformations shown in Figs. 3(a)
and 3(b). The 1−

1 state is dominated by the K1− component,
which contributes to the Kπ = 1− band structure, whereas
the 1−

2 state contains larger K0− component than the K1−

034314-3



YUKI SHIKATA AND YOSHIKO KANADA-EN’YO PHYSICAL REVIEW C 104, 034314 (2021)

 0

 5

 10

 15

 20

 25

0+
1

2+
1

4+
1

0+
2

2+
3

4+
3

6+
2

0+
4

2+
8

4+
6

6+
3

0+

2+

4+
2+0+

4+
2+
2+

0+

4+, 3-4+ 4+(0+)
0+2+

Theory exp.

Kπ=0+
2

Kπ=0+
4

1.1

0.3

49

66

87

249

302

379

5.6 ± 0.4

5.76 ± 0.13

E
ne

rg
y 

(M
eV

)

FIG. 4. Energy spectra of positive-parity states in 20O obtained
by GCM and those of experimental data. In the calculated spectra, the
Kπ = 0+

1 , Kπ = 0+
cl,1, and Kπ = 0+

cl,2 bands are shown together with
the B(E2) values of in-band transitions. The experimental B(E2)
values are taken from Refs. [10,11]. The unit of B(E2) is e2fm4.

component. Note that these two states have significant K
mixing and shape fluctuation along β. In high-lying negative-
parity spectra, Kπ = 1− and Kπ = 0− bands are formed from
the 1−

6 and 1−
9 states, respectively. These bands are formed

by largely deformed bases with developed cluster structures,
and they can be understood as cluster bands, which we label
as Kπ = 1−

cl and Kπ = 0−
cl bands, respectively. The Kπ = 0−

cl
band has a remarkable cluster structure of the K0− bases in
β > 0.8 region in particular. The dominant component of this
state is the K0−(0.84) base [Fig. 3(d)], which has a developed
16C +α structure similar to the Kπ = 0+

cl,2 cluster band, and
therefore the Kπ = 0+

cl,2 and Kπ = 0−
cl are regarded as the

parity partner states of the 16C +α clustering. However, the
Kπ = 1−

cl band is dominated by the K1−(0.64) base [Fig. 3(c)]
with a weaker cluster structure than the Kπ = 0−

cl band.
Although the experimental information for negative-parity

states is not enough to allocate band structures, we tenta-
tively allocate present 1−

1 and 1−
2 states to the experimental

1−
1 (5.36 MeV) and 1−

2 (6.84 MeV) states. The E3 transition
from the 3− (5.62 MeV) state to the 0+

1 state was observed to
have a significant strength of B(E3) = 170 ± 14 e2fm6 [11].
We obtain B(E3; 3−

1 → 0+
1 ) = 87.5e2fm6 between the Kπ =

1−
1 and ground bands in this result. This value is of the

same order as the experimental data and supports our conclu-
sion that our Kπ = 1−

1 band corresponds to the experimental
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FIG. 5. Energy spectra of negative-parity states in 20O obtained
by GCM and experimental negative-parity spectra. In the calculated
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0+
4 states of the Kπ = 0+
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9 states of
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2 state.

1−
1 (5.36 MeV) and 3− (5.62 MeV) states. For dipole tran-

sition strengths from the ground to low-lying 1− states, we
will show the result in Sec. IV A for discussions of dipole
transition properties.

B. Single-particle states in deformed states

To investigate single-particle configurations in a mean field
picture, we analyze single-particle orbits in the dominant com-
ponents of the band-head 0+ and 1− states and the 1−

2 state.
For each base, the wave function is expressed by a single
Slater determinant, for which the nonorthogonal set of Gaus-
sian single-particle wave functions can be transformed into an
orthogonal set of single-particle orbits in a mean-field as done
in Refs. [57,61]. Figures 8 and 9 show single-particle orbits
in the dominant bases of the positive- and negative-parity
states, respectively. For each basis, single-particle densities
(color maps) of the highest neutron and proton orbits are
shown together with the total proton density (contour lines).
Figures 8(a), 8(b), and 8(c) show results of the K0+(0.32),
K0+(0.52), and K0+(0.84) for the Kπ = 0+

1 , Kπ = 0+
cl,1, and

Kπ = 0+
cl,2 bands, respectively. The K0+(0.32) base for the

Kπ = 0+
1 band is described by four neutrons in sd orbits

around a weakly deformed core of the 16O ground state, and
it roughly corresponds to a 0h̄ω shell-model configuration.
The K0+(0.52) base for the Kπ = 0+

cl,1 band has the character
of two-proton excitation p−2

π (sd )2
π of a 2h̄ω configuration in

terms of the mean-field picture. In the cluster picture, the
proton structure of this band has a parity asymmetric 6p + 2p
structure and analogous to the proton part of the 16O(0+

2 ) state
having a 12C +α cluster structure. The K0+(0.84) base for
the Kπ = 0+

cl,2 band has the developed 14C +α-cluster core
with two neutrons in an elongated negative-parity orbit. This
neutron orbit has three nodes along the Z axis and corresponds
to a molecular called the σ orbit. We label this negative-parity
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FIG. 8. Density distribution of protons and those of single-
particle orbits in the (a) K0+(0.32), (b) K0+(0.52), and
(c) K0+(0.84) bases, which correspond to the Kπ = 0+

1 , Kπ = 0+
cl,1,

and Kπ = 0+
cl,2 bands, respectively. The upper panels show the proton

density distributions by the contour lines. In the middle and lower
panels, the density of the highest neutron and proton orbits are shown
with color maps, respectively, with the total proton density (contour
lines). The matter densities of these bases are shown in Fig. 2.

σ orbit as σ f p in the association of a f p orbit. The K0+(0.84)
base is associated with 4h̄ω configuration with two-proton and
neutron excitation in the mean-field picture. Note that, after
the GCM calculation, the final wave function of the Kπ = 0+

cl,2
band contains not only the K0+(0.84) component but also
significant mixing of K0+(β > 0.84) bases with the last two
neutrons not in the molecular σ f p-orbit but localized around
the 14C cluster forming a dinuclear structure of 16C +α cluster.
It means that the Kπ = 0+

cl,2 band is a mixture of two types of
clustering. One is the molecular orbital structure of the 14C +α

cluster core with two neutrons in the σ f p orbit and the other is
the dinuclear 16C +α structure.

Figures 9(a), 9(b), 9(c), and 9(d) present the results for
the K1−(0.32), K0−(0.44), K1−(0.64), and K0−(0.84) bases,
which correspond to the 1−

1 and 1−
2 states, and the Kπ = 1−

cl
and Kπ = 0−

cl bands, respectively. The K1−(0.32) base for
the 1−

1 state can be understood as one proton excitation from
the p shell and associated with the (1, 0, 0)−1(0, 0, 2)1 [or
(0, 1, 0)−1(0, 0, 2)1] configuration in terms of harmonic oscil-
lator orbits (nx, ny, nz ). Furthermore, the K1−(0.44) base for
the 1−

2 state has one proton excitation as a leading component
but cannot be interpreted by a simple 1p-1h configuration.
Instead, the proton excitation induces the parity asymmetric
collective excitation in the proton and neutron parts as can
be seen in the asymmetry of the highest neutron orbit and
that of the proton density in Fig. 9(b). The K1−(0.64) base
for the Kπ = 1−

cl band corresponds to a 3h̄ω excitation with
one neutron in the σ f p-orbit around the developed cluster
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FIG. 9. The same as Fig. 8, but the results for the (a) K1−(0.32), (b) K0−(0.44), (c) K1−(0.64), and (d) K0−(0.84) bases, which correspond
to the Kπ = 1−

1 band, the 1−
2 state, Kπ = 1−

cl , and Kπ = 0−
cl bands, respectively. The matter densities of these bases are shown in Fig. 3.

core having two-proton excitation. The K0−(0.84) base for
the Kπ = 0−

cl band has the dinuclear structure of developed
16C +α clustering.

Let us compare the intrinsic configurations the positive-
and negative-parity cluster bands; the Kπ = 0+

cl,1, Kπ = 0+
cl,2,

Kπ = 1−
cl , and Kπ = 0−

cl bands. In these four cluster bands,
the proton density has asymmetric shapes due to the 6p + 2p
structure and shows nC + α clustering. In terms of the neutron
configuration, the Kπ = 0+

cl,1, Kπ = 1−
cl , and Kπ = 0+

cl,2 bands
have zero, one, and two neutrons in the σ f p orbit around the
cluster core, respectively. As the number of σ f p-orbit neutrons
increases from zero to two, the cluster structure develops. It is
interesting that the Kπ = 0+

cl,2 band also contains significant
mixing of the 16C +α component, which is the dominant
component of the Kπ = 0−

cl band. Therefore, an alternative
interpretation is that the Kπ = 0+

cl,2 and Kπ = 0−
cl bands form

parity doublet partners of the 16C +α structure.

IV. DISCUSSIONS

A. Properties of dipole excitations

1. Dipole transition strengths

The dipole transition strength function from the 0+
1 state

is calculated using the 0+
1 and 1−

k states obtained with the
GCM calculation. Figure 10(a) shows the E1 strengths.
The energy-weighted ISD strengths are plotted in ratio
to the energy-weighted sum rule (EWSR) as shown Fig. 10(b).
The transition strengths for the CD and TD operators are
shown in Figs. 10(c) and 10(d), respectively. Significant E1

and TD transition strengths are obtained for the two LED
states, 1−

1 and 1−
2 states. The 1−

1 state has a remarkable TD
and significant E1 strengths, whereas the 1−

2 state has remark-
able E1 strength. Compared with the TD strengths, the CD
transitions to the two LED states are rather weak as 0.3%
(0.15%) of the EWSR for the 1−

1 (1−
2 ) states. In Table I,

we compare the present results of the E1 and ISD transition
strengths to the 1−

1 and 1−
2 states with the experimental data
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FIG. 10. Dipole transition strengths for the (a) E1, (b) ISD,
(c) TD, and (d) CD operators from the 0+

1 state. For the ISD oper-
ator, the energy-weighted strengths are plotted in ratio to the EWSR
defined by Ref. [5].
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TABLE I. Calculated and experimental values of the excitation
energies of the 1−

1 and 1−
2 states and the E1 and ISD transi-

tion strengths from the 0+
1 state. For the ISD transitions, the

energy-weighted strength ratios ( fISD) to the EWSR are listed. The
experimental data are taken from Refs. [9–11].

Calculation

Ex (MeV) B(E1) (e2fm2) fISD (%)

1−
1 6.25 1.11 × 10−2 0.31

1−
2 9.59 1.56 × 10−2 0.15

Experiment

1−
1 5.36(5) 3.57(20) × 10−2 2.70(32)

1−
2 6.84(7) 3.79(26) × 10−2 0.67(12)

of the 1−
1 (5.36 MeV) and 1−

2 (6.84 MeV) states. This result
qualitatively describes the significant E1 strengths measured
for the 1−

1 (5.36 MeV) and 1−
2 (6.84 MeV) states, though the

quantitative agreement with the data is not satisfactory. For the
ISD strengths, this calculation fails to obtain significant ISD
strengths as large as the observed ISD strength to the 1−

1 state
reported recently [11]. Our result for weak ISD transitions to
LED states agrees to a mean-field calculation [38].

2. Transition current and strength densities for LED in 20O

We calculate the transition current and strength densities
in the intrinsic frame using the dominant bases to discuss
the properties of the low-energy dipole excitations 0+

1 → 1−
1,2.

The definitions for the transition current and strength densities
are given in Appendix B. For the intrinsic states of the 0+

1 ,
1−

1 , and 1−
2 states, we choose the K0+(0.32), K1−(0.32),

and K0−(0.44) bases, respectively, to describe the leading
properties of each state, and calculate the transition current
densities of the K0+(0.32) → K1−(0.32) and K0+(0.32) →
K0−(0.44) transitions. In the calculation, normalized K eigen-
states projected from the wave functions �π

K (β ) are used as
explained in Appendix B. Note that, the 1−

1 , and 1−
2 states

significantly contain the K-mixing and shape fluctuation along
β, which contributes to the final GCM results of the 1−

1 ,
and 1−

2 states, but such higher order effects are omitted for
simplicity in the this analysis in the intrinsic frame.

The calculated transition current densities are shown in
Fig. 11. Vector plots in the left, middle, and right panels
show the proton and neutron parts and the isovector com-
ponent of the transition current densities, respectively. The
strength densities of the TD and E1 operators are shown
in Fig. 12. The vortical flow of the proton current density
is induced by the 1 proton excitation (1, 0, 0)−1(0, 0, 2)1 in
the K0+(0.32) → K1−(0.32) transition, which corresponds
to the 1−

1 excitation as shown in the transition current den-
sity in Fig. 11(a). This vortical proton current contributes to
the remarkable TD strength density as shown in Fig. 12(a)
and describes the TD nature of the 1−

1 excitation. However,
the K0+(0.32) → K0−(0.44) transition for the 1−

2 excitation
show a translational flow along the deformed (Z) axis rather
than a vortical flow [see Fig. 11(b)]. The neutron part of the
translational flow, in particular, is widely distributed across
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FIG. 11. (Upper) Transition current densities δ jK (r) from the K0+(0.32) base to the K1−(0.32) corresponding to the 0+
1 → 1−

1 transition
and (lower) those to the K0−(0.44) base for 0+

1 → 1−
2 . The vector plots of the densities in the Z-X plane at Y = 0 are shown. The proton and

neutron currents are shown in the left and middle, respectively, and the isovector currents are shown in the right. The vector plots are multiplied
by 30 in (a)–(c), by 50 in (d) and (e), and by 100 in panel (f).
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FIG. 12. (Left) TD strength densities MK
TD for K0+(0.32) →

K1−(0.32) and (right) E1 strength densities MK
E1 for K0+(0.32) →

K0−(0.44). The former and the latter correspond to the 0+
1 →

1−
1 and 0+

1 → 1−
2 transitions, respectively. The strength densities

MK (X,Y, Z ) and |X |-weighted values |X |MK (X,Y, Z ) on the Z-X
plane at Y = 0 are shown in upper and lower panels, respectively.

a wide X range. The surface neutron flow in the region of
|X | = 2–4 fm and Z ∼ 2 fm is produced by valence neutron
oscillation in the parity asymmetric orbit [Fig. 9(b)] around
the prolate core, which is induced by the proton excitation.
This neutron surface flow, as shown in Fig. 12(d), gives the
dominant contribution to the E1 strength of the K0+(0.32) →
K0−(0.44) transition and is a major source of the strong
E1 transition to the 1−

2 state. In the internal region of the
prolately deformed core, the proton and neutron flows cancel
each other, but give some contribution to the E1 strength
because of the recoil effect. This result indicates that the parity
asymmetry of the cluster core and that of the valence neutron
orbit, which are induced by the two-proton excitation, play an
important role in the enhanced E1 strength of the K0−(0.44)
base.

In the this analysis of the K1−(0.32) and K0−(0.44) bases,
a clear difference is found in the transition properties be-
tween the two LED modes; the TD nature in the K1−(0.32)
base and the E1 character in the K0−(0.44) base. These two
LED modes, the TD and E1 modes appear separately as
vortical and translational excitations of nuclear current in the
Kπ = 1− and Kπ = 0− components of the deformed states,
respectively. However they couple with each other in the 1−

1
and 1−

2 states after the superposition of the GCM calculation
via significant K-mixing and shape fluctuation as mentioned
previously. Therefore, the TD strength of the K1−(0.32) base
is fragmented into the 1−

1 and 1−
2 states, and the E1 strength of

the K0−(0.44) base is split into the two states. Nevertheless,
since the 1−

1 state retains the dominant TD nature, it has a

relatively large TD strength and constructs the Kπ = 1− band
structure.

B. Systematic analysis of LED excitations in O isotopes

To clarify the roles of valence neutrons in the LED ex-
citations in 20O, we discuss systematics of dipole excitation
properties in O isotopes by comparing the present results with
previous results obtained using the same framework for 16O
and 18O. Figure 13 shows the theoretical energy spectra of the
0+

1,2 and 1−
1,2 states in 16O, 18O, and 20O. The intrinsic matter

densities of the dominant bases in the excited states are also
shown in the figure. In each of 16O, 18O, and 20O, two 1− states
are obtained in the low-energy region.

These LED states have significant isoscalar dipole
strengths of the TD and/or CD operators. Figure 14 shows
the isoscalar, proton, and neutron components of the TD and
CD strengths for the 1−

1 and 1−
2 states of the O isotopes.

According to the previous analysis, we identified the 16O(1−
1 )

and 18O(1−
1 ) states as TD mode, which is characterized by the

vortical flow of the transition current densities. These LED
states in 16O and 18O correspond to the present TD mode of
the 20O(1−

1 ) state. The TD mode is described by the Kπ = 1−
component of the 1p-1h excitation of deformed states in all
three cases. The isoscalar components of the TD strengths
of the 1−

1 and 1−
2 states are largest in 16O because of the

coherent (isoscalar) contribution from the proton and neutron
parts, but relatively small in 18O and 20O because of the lack
of contribution from the neutron part.

Figure 15 shows the E1 strengths for the 1−
1 and 1−

2 states
of the O isotopes. The low-energy E1 mode is obtained only
in the 20O as the 20O(1−

2 ) state, which is produced by the
previously described surface neutron oscillation on the prolate
deformation induced by proton excitation. The 16O(1−

2 ) and
18O(1−

2 ) states are not E1 modes but have a distinct character,
that is, the asymmetric cluster structure that forms parity part-
ners with the 16O(0+

2 ) and 18O(0+
2 ) states, respectively. Note

that the 20O(0+
2 ) state has a cluster structure but its parity dou-

blet partner 1− state is not obtained. In the structure change
from the 16O(0+

2 ) state along the isotope chain, the clustering
is weakened in the 18O(0+

2 ) state and further suppressed in the
20O(0+

2 ) state by excess neutrons and no longer constructs the
parity doublet 1− state of the 20O(0+

2 ) state.
Finally, we comment on the CD strengths in the LED

states of O isotopes. As shown in Fig. 14(a), the strong CD
transition was obtained in the TD mode of 16O, which is con-
sistent with the experimental observation of the ISD strength
of the 16O(1−

1 ). However, the present calculation does not
degenerate such a strong CD strength in the TD mode of
20O, and fails to describe the observed ISD strength of the
20O(1−

1 ) state. According to the previous analysis in Ref. [31],
the origin of the strong CD transition in the 16O(1−

1 ) state
is significant K mixing of the TD mode and coupling with
other deformed bases via the β fluctuation. The contribution
of the CD strengths contained in the K0− component of the
normal deformation is essential. However, in the present result
of 20O, the low-lying E1 appears in the K0− component of
the normal deformation, which contributes only weakly to the
CD strength. In the present calculation of GCM along the β
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FIG. 14. The IS, proton, and neutron components of the TD and
CD strengths for the 1−

1 and 1−
2 states of 16O, 18O, and 20O calculated

with K-VAP and GCM of β-constraint AMD. The TD strengths of
(a) 16O, (c) 18O, and (e) 20O are shown in the left, and the CD
strengths of (b) 16O, (d) 18O, and (f) 20O are shown in the right.
Proton and neutron components are multiplied by a factor of four
to compare the IS component. The results for 16O and 18O are taken
from Refs. [31,32].

deformation, only the lowest base at each β is obtained by
the energy optimization, and thus energetically higher bases
containing the CD strength may be missing. To overcome
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The results for 18O are taken from Ref. [32].
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this problem, it is necessary to extend the present framework
to properly include important bases for the low-lying CD
strengths.

V. SUMMARY

K-VAP and GCM of β-constraint AMD were used to in-
vestigate LED excitations in 20O. Two LED states, the 1−

1 and
1−

2 states were obtained. The 1−
1 state is a weakly deformed

state with one-proton excitation, whereas the 1−
2 state has a

normal deformation with the parity asymmetric structure.
In a detailed analysis of the dipole transition properties of

these LED states, the 1−
1 state is considered the TD mode,

while the 1−
2 state is associated with a low-energy E1 mode.

The TD strength in the former mode is produced by vortical
nuclear current, whereas the E1 strength in the latter mode is
contributed by surface neutron current on the prolate deforma-
tion induced by proton excitation. These two modes, the TD
(vortical) and E1 modes, appear separately as the Kπ = 1−
and Kπ = 0− components of the deformed states, but they
couple with each other in the 1−

1 and 1−
2 states of 20O via the

K-mixing and shape fluctuation along β. Therefore, the TD
and E1 strengths are fragmented into both 1− states.

In comparison with the experimental data of the E1 and
ISD transition strengths to the 1−

1 (5.36 MeV) and the 1−
2 (6.84

MeV) states, the present calculation qualitatively described
the experimental E1 strengths for the 1−

1 and 1−
2 states, but

much underestimated the significant ISD transition strengths
observed for the 1−

1 state by one order.
Concerning quantitative reproduction of experimental data

of transition strengths, the present calculation of 20O tends to
underestimate observed B(E1) and B(E2) values. A possi-
ble reason for the underestimation might be that the present
framework is not enough to describe details of proton ex-
citations because of the Z = 8 shell closed nature. Further
development of the framework, for instance, deformation con-
straints on each of proton and neutron parts, may be useful to
improve the calculation.

To clarify the roles of valence neutrons in LED excitations
in 20O, systematics of the LED excitations in 16O, 18O, and
20O were discussed in comparison for the present 20O result
with the previous 16O and 18O results obtained using the
same framework. The TD mode was obtained as the lowest
1−

1 state in 16O, 18O, and 20O. However, the low-energy E1
mode was found only in the 20O(1−

2 ) state but not in the
16O and 18O systems. The previous results indicated that the
16O(1−

2 ) and 18O(1−
2 ) states differ from the 20O(1−

2 ) state and
are parity doublet partners in the Kπ = 0− cluster band with
the 0+

2 states in the Kπ = 0+ bands. This indicates that the
low-energy E1 mode is a LED excitation caused by valence
neutron oscillation that is peculiar to the neutron-rich O sys-
tem but does not appear in O isotopes near the N = Z line.
Instead, the cluster mode appears in LED states in nuclei near
the N = Z line.
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APPENDIX A: OPERATORS AND STRENGTHS OF
DENSITIES, TRANSITION CURRENT DENSITIES, AND

DIPOLE TRANSITIONS

Isoscalar and isovector components of the density and cur-
rent density operators are defined as

ρ(r) =
A∑

k=1

δ(r − rk ), (A1)

ρIV =
A∑

k=1

eeff

e
δ(r − rk ), (A2)

jnucl(r) = −ih̄

2m

A∑
k=1

{∇kδ(r − rk ) + δ(r − rk )∇k}, (A3)

jnucl,IV(r) = −ih̄

2m

A∑
k=1

eeff

e
{∇kδ(r − rk ) + δ(r − rk )∇k},

(A4)

where the factor eeff/e is N/A for protons and −Z/A for
neutrons.

For dipole transitions, we consider three types of dipole
operators, E1, TD, and CD operators as done in Ref. [32],
which were used in Refs. [21,53],

M̂E1(μ) = N

A

∑
i∈p

riY1μ(r̂i ) − Z

A

∑
i∈n

riY1μ(r̂i ), (A5)

M̂TD(μ) = −1

10
√

2c

∫
dr (∇ × ĵnucl(r)) · r3Y 11μ(r̂), (A6)

M̂CD(μ) = −1

10
√

2c

∫
dr ∇ · ĵnucl(r) r3Y1μ(r̂), (A7)

where Y jLμ(r̂) are vector spherical harmonics and ĵnucl(r) is
the convection nuclear current defined by

ĵnucl(r) = −ih̄

2m

A∑
k=1

{∇kδ(r − rk ) + δ(r − rk )∇k}. (A8)

For the total wave functions of the Jπ
n states obtained after

GCM, the dipole transition strengths from the ground state are
calculated. For a dipole operator D = {E1, TD, CD}, the tran-
sition strength B(D; 0+

1 → 1−
n ) is given as |〈1−

n ||M̂D||0+
1 〉|2.

Notably, the CD transition strength corresponds to the stan-
dard ISD transition strength with the relation,

B(CD; 0+
1 → 1−

n ) =
(

1

10

En

h̄c

)2

B(ISD; 0+
1 → 1−

n ), (A9)

where En is the excitation energy of the 1−
n state.
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APPENDIX B: DENSITIES OF INTRINSIC SYSTEM IN THE
BODY-FIXED FRAME

In the present calculation with K-VAP of β-constraint
AMD, each intrinsic wave function �π

K (β ) for a K0+(β ),
K0−(β ), or K1−(β ) base is expressed by a Slater determinant,
and its intrinsic densities are given as the diagonal densities
calculated for |k〉 = |�π

K (β )〉 as

ρ(r) ≡ 〈k|ρ̂(r)|k〉, (B1)

ρIV(r) ≡ 〈k|ρ̂IV(r)|k〉. (B2)

The transition densities and transition current densities
from a K0+(β0) base to K1−(β1) and K0−(β2) bases are cal-
culated in the intrinsic (body-fixed) frame for the K-projected
bases,

|i〉 = P̂K=0|�+
K=0(β0)〉, (B3)

| f 〉 = P̂K=−1 − P̂K=1

√
2

|�−
K=1(β1)〉 ≡ | f K=1〉, (B4)

| f 〉 = P̂K=0|�−
K=0(β2)〉 ≡ | f K=0〉, (B5)

where |i〉 and | f 〉 are normalized as 〈i|i〉 = 〈 f | f 〉 = 1 by defi-
nition. The transition densities and transition current densities
for initial |i〉 and final | f 〉 states are given as,

δρ(r) ≡ 〈 f |ρ̂(r)|i〉, (B6)

δρIV(r) ≡ 〈 f |ρ̂IV(r)|i〉, (B7)

δ j(r) ≡ 〈 f | ĵnucl(r)|i〉, (B8)

δ jIV(r) ≡ 〈 f | ĵnucl,IV(r)|i〉. (B9)

The local matrix elements MK
TD,E1(r) of the TD and E1

operators are calculated at Y = 0 on the Z-X plane in the
intrinsic frame as,

MK=0
TD (X, 0, Z ) = 1

10c

√
3

4π

[
(2X 2 + Z2)δ jK=0

Z

− ZXδ jK=0
X

]
, (B10)

MK=1
TD (X, 0, Z ) = 1

10c

√
3

4π

[
(X 2 + 2Z2)δ jK=1

X

− ZXδ jK=1
Z

]
, (B11)

MK=0
E1 (X, 0, Z ) =

√
3

4π
ZδρK=0

IV , (B12)

MK=1
E1 (X, 0, Z ) =

√
3

8π
XδρK=1

IV , (B13)

where δρK
IV = 〈 f K |ρ̂IV(r)|i〉 and δ jK = 〈 f K | ĵnucl(r)|i〉 at r =

(X, 0, Z ). Note that MK
TD(r) and MK

E1(r) correspond to the
integrand of the TD and E1 transition matrix elements and
are termed TD and E1 strength densities, respectively, in this
paper.
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