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In this paper we study the low-lying states of neutron-rich 122,124,126,128Cd and 130,132,134,136,138Cd within the
nucleon-pair approximation of the shell model. We adopt the phenomenological Hamiltonian for 122,124,126,128Cd,
and the shell-model effective interaction j j46 for 130,132,134,136,138Cd. The available experimental excitation
energies and quadrupole transition probabilities are well reproduced by our calculation, and we also make
predictions for very neutron-rich Cd nuclei. Based on our calculation, the B(E2; 0+

g.s. → 2+
1 ) values exhibit an

asymmetric feature with respect to the N = 82 shell closure, which mainly comes from the contributions of the
proton transition matrix elements. We also investigate for the eight open-shell Cd nuclei, whether two low-lying
yrast states with spins differing by 2 can be connected by a quadrupole-phonon excitation, and here we take the
proton and neutron quadrupole operators multiplied by 1/r2

0 as our quadrupole phonon operators. We calculate
explicit overlaps between the low-lying yrast states and the constructed quadrupole-phonon states based on the
low-lying yrast states with lower spins, and the results indicate that, for all eight open-shell Cd nuclei, |2+

1 〉 and
|4+

1 〉 can be well described to be the states constructed by coupling the proton or neutron phonon to |0+
g.s.〉 and

|2+
1 〉, respectively. Very interestingly, for 126,124,122Cd and 136,138Cd, the 2+

1 state can be well described to be both
the proton phonon state and the neutron phonon state, which indicates a nonorthogonal feature of these two
phonon states. We further present an analytic relation for the overlap between these two phonon states, which
implies that the proton and neutron phonon states constructed using the quadrupole operators and the 0+

g.s. state
in an open-shell nucleus are almost impossibly orthogonal.

DOI: 10.1103/PhysRevC.104.034312

I. INTRODUCTION

Cd isotopes (with Z = 48) are of particular interest in
nuclear physics. The very long chain from 96Cd to 132Cd,
with experimental information for low-lying states, provides a
very good case for studies regarding nuclear structure changes
associated with the change of the isospin, as well as changes
associated with the crossing of the N = 50 shell closure, the
gradual filling of the N = 50 − 82 major shell, and the cross-
ing of the N = 82 shell closure. The low-lying states of Cd
isotopes also manifest themselves as good examples of vibra-
tional states, which are interpreted to be surface oscillations
of a liquid drop with respect to the equilibrium shape in the
macroscopic view [1]. Nuclei around 100Sn and 132Sn are also
of importance to astrophysical studies of the r p process and r
process.

In Refs. [2–4], the E (2+
1 ) and B(E2; 0+

g.s. → 2+
1 ) for Cd

isotopes have been systematically studied, based on the
Skyrme and Gogny energy density functionals (EDFs), re-
spectively. In Ref. [2], these observables for the long chain
spanning the N = 50–82 major shell were studied using
the beyond-mean-field approach with the Gogny force. In
Ref. [3], those for the Cd nuclei from N = 62 to 84 were
studied using the generator coordinate method (GCM) with
various Skyrme forces and pairing forces. In Ref. [4], those

*Corresponding author: yycheng@phy.ecnu.edu.cn

for the Cd nuclei from N = 78 to 86 were studied using the
quasiparticle random phase approximation (QPRA) including
the phonon-phonon coupling (PPC) together with the Skyrme
interaction.

Within the interacting boson model (IBM) [5], low-lying
states of Cd isotopes with A = 110 − 116 have been inten-
sively studied; see, e.g., Refs. [6–12]. The important role
played by the interplay between the normal spherical-vibrator
states with the U(5) symmetry and the intruder states charac-
terized by the I-spin quantum number was emphasized for the
low-lying yrast and side bands of 110,112,114Cd in Refs. [6,7];
but with more available experimental data of 112,114,116Cd,
it was debated [8–11]. Instead, a recent study [12] where
the U(5) partial dynamical symmetry was considered, i.e.,
particular phonon states were mixed, provided a very good
description to the low-lying yrast and nonyrast states of 110Cd.

For the most neutron-deficient 96Cd with N = Z = 48,
low-lying yrast states are intensively discussed in terms of
spin-aligned isoscalar proton-neutron pairs within the shell
model and in terms of b bosons within the IBM; see, e.g.,
Refs. [13–18].

For the neutron-rich Cd nuclei, within the shell model
(SM), the low-lying states are described to be the states of
a few valence neutron holes or particles together with two
valence proton holes coupled to the 132Sn core. Such a picture
relies on the persistence of the Z = 50 and N = 82 shell gaps.
An earlier experimental result of 130Cd indicated a quenching
of the N = 82 shell [19], while recent results regarding the
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isomeric decays in 130Cd and in 128,126Pd gave evidence of
a robust N = 82 shell closure in neutron-rich Cd and Pd
nuclei [20,21]. In Ref. [22], the shell-model description of
B(E2; 0+

g.s. → 2+
1 ) of 124,126Cd was shown to agree well with

the experimental data. In Ref. [23], a shell-model effective
interaction for the southeast region with respect to the 132Sn
nucleus was presented, with the calculated excitation energies
of low-lying states of 130Cd reproducing experimental data
very well.

In this work we study neutron-rich 122,124,126,128Cd and
130,132,134,136,138Cd nuclei within the nucleon-pair approxima-
tion (NPA) [24,25], which is a pair-truncation scheme of the
nuclear shell model based on the technique of calculating the
commutators between coupled fermion clusters [26]. Such a
pair-truncation scheme of the shell model is shown to be able
to give a good description of low-lying states of semimagic
nuclei, transitional nuclei, and well-deformed nuclei; see, e.g.,
Refs. [27–38]. In Refs. [35,36] it was shown that for low-
lying states of the discussed semimagic nuclei the SM wave
function can be well approximated as one optimized nucleon-
pair basis state, i.e., the SM wave function is approximately
one-dimensional in terms of coupled pair basis states; and
in Ref. [39] for nucleons in single- j shells, very compact
analytic expressions for wave functions of eigenstates with
respect to any two-body interactions were given in terms of
coupled pair basis states. The NPA with isospin symmetry
[40], the version with particle-hole excitations [41], and the
versions considering pairs in the M scheme [42,43] have been
developed in recent years. For a comprehensive review, see
Ref. [44].

For 130,132,134,136,138Cd, we adopt the j j46 effective
interaction of Ref. [23], where the proton-proton and neutron-
neutron parts are both renormalized from the realistic
CD-Bonn potential [45] using the G-matrix method [46], and
the proton-neutron part is derived from the monopole-based
universal interaction VMU [47] plus the M3Y spin-orbit force
[48]. It was shown in Ref. [23] that the j j46 SM effective
interaction provides a good description for low-lying states of
nuclei near 132Sn in this region. For Cd nuclei with N � 82,
their low-lying states are close to the limit of current experi-
mental access, thus experimental data are sparse. In this work,
using the NPA together with the j j46 interaction, our results
agree well with available experimental results for 130Cd [20]
and 132Cd [49], and we further make predictions for excitation
energies and B(E2) values for low-lying states of these Cd
nuclei up to 138Cd.

For 128,126,124,122Cd, we adopt the phenomenological
Hamiltonian including monopole pairing, quadrupole pairing,
quadrupole-quadrupole interactions, as well as the proton-
hole highest-spin pairing interaction with spin 8 and the
neutron-hole highest-spin pairing interaction with spin 10. A
set of strength parameters are obtained by adjusting to fit
the experimental data of these four nuclei. Our NPA results
with such a shell-model Hamiltonian reproduce experimental
energy levels and available B(E2) values very well.

The low-lying yrast excited states of the Cd nuclei dis-
cussed here are expected to be collective vibrational states
with respect to the spherical equilibrium. The (Q)RPA [50,51]
and the IBM [5] are successful in describing such states

microscopically. In the (Q)RPA [50,51] the low-lying excited
states are regarded to be the one-phonon excited states with re-
spect to the (Q)RPA ground state, and by solving the (Q)RPA
equations the structure of the phonon, as well as the structure
of corresponding collective vibration, is determined. Within
the IBM [5], in the U(5) limit the d boson maps to the
quadrupole phonon in the harmonic quadrupole vibration of
a spherical liquid drop [52], thus the quanta of the d boson
number characterize the quadrupole vibrational states with re-
spect to the spherical equilibrium. In Refs. [53–55] interesting
generalizations to non-U(5) cases with β and γ vibrations, by
introducing two different types of d bosons, are discussed.

From another perspective, based on the NPA wave
functions obtained by diagonalization in the pair-truncated
shell-model spaces, we investigate in this work whether two
low-lying yrast states with spins differing by 2 can be con-
nected by a quadrupole-phonon excitation, for 128,126,124,122Cd
and 132,134,136,138Cd. We couple the quadrupole phonon de-
fined below to the low-lying yrast states with spin (I − 2)
to construct phonon states with spin I , and calculate explicit
overlaps between the phonon states and the low-lying yrast
states. For the phonon operators, we consider here compo-
nents of a dimensionless spherical tensor of rank 2, which are
the proton or neutron quadrupole operators, i.e.,

Q(2)(τ ) =
∑
k∈{τ }

r2
kY (2)(θk, ϕk ), τ = π or ν, (1)

divided by r2
0 (r0 is the size parameter of the nucleus, which

is taken to be r0 =
√

h̄
mω

when using the harmonic-oscillator
single-particle wave function within the shell-model frame-
work). Here the subscript k denotes the kth valence particle or
hole, and (rk, θk, ϕk ) are its spherical coordinates; {π} consists
of valence proton holes, and {ν} consists of valence neutron
holes for Cd nuclei with N < 82 and of valence neutron par-
ticles for Cd nuclei with N > 82.

In this work we also study the quadrupole transition prob-
abilities B(E2; 0+

g.s. → 2+
1 ) of the nine Cd nuclei and their

evolution with increasing mass number A, in terms of corre-
sponding proton and neutron transition matrix elements Mπ

and Mν .
This paper is organized as follows. In Sec. II we briefly

introduce our theoretical framework, including the configu-
ration space constructed by coupled nucleon pairs and two
shell-model Hamiltonians adopted in this work. In Sec. III we
present and discuss our calculated results for these nine Cd
nuclei. In Sec. IV we summarize our paper.

II. THEORETICAL FRAMEWORK

A. Nucleon-pair configurations

We begin with the definition of nucleon-pair operators. The
creation operator of a collective nucleon pair with spin r is
defined by

A(r)† ≡ A(r)†
μ =

∑
j1 j2

y( j1 j2r)A(r)†( j1 j2),

(2)
A(r)†( j1 j2) ≡ A(r)†

μ ( j1 j2) = (
a†

j1
× a†

j2

)(r)

μ
,
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where A(r)†( j1 j2) is a noncollective pair, and (a†
j1

× a†
j2

)(r)
μ =∑

m1m1
Crμ

j1m1 j2m2
a†

j1m1
a†

j2m2
with Crμ

j1m1 j2m2
the Clebsch-Gordan

coefficient. Here we denote the creation operator of a particle
in the orbit associated with quantum numbers (n, l, j, m) by
using a†

jm ≡ a†
nl jm. A collective pair creation operator A(r)†

is given by the linear combination of all noncollective pairs
with spin r, with y( j1 j2r) the so-called structure coefficient.
For a system with 2N identical valence nucleons, the pair
basis states are constructed by coupling N nucleon pairs
successively,

[(A(r1 )† × A(r2 )†)(J2 ) × · · · × A(rN )†](JN )|0〉. (3)

The structure coefficients play a key role in the validity
of corresponding pair truncation. Below we briefly introduce
how we fix the structure coefficients in this work. We consider
first the S pair with spin 0. We define

S† =
∑

j

y( j j0)(a†
j × a†

j )
(0) =

∑
j

y( j j0)S†
j . (4)

Then for the system with 2N nucleons the structure coeffi-
cients y( j j0) are determined variationally to minimize the
energy expectation of the S-pair-condensate state [56], i.e.,
determined by solving the following equation

δ
〈SN |H |SN 〉
〈SN |SN 〉 = 0. (5)

We consider next a non-S pair with spin r (r �= 0). We
diagonalize the SM Hamiltonian in the (S†)(N−1)A(r)†( j1 j2)
space with j1, j2 running over all the j orbits, namely in the
space with a generalized-seniority number ν = 2. The lowest-
energy wave function is written in the form

(S†)(N−1)
∑
j1 j2

c( j1 j2)A(r)†( j1 j2), (6)

and we assume A(r)† = ∑
j1 j2

y( j1 j2r)A(r)†( j1 j2) with
y( j1 j2r) = c( j1 j2). For the eight open-shell nuclei
128,126,124,122Cd and 132,134,136,138Cd, the structures of valence-
proton-hole pairs and those of valence-neutron-hole/-particle
pairs are determined separately as above.

B. Shell-model Hamiltonians

For 130,132,134,136,138Cd, we consider valence proton holes
in the 28-50 major shell and valence neutron particles
in the 82-126 major shell. The SM effective Hamiltonian
j j46 of Ref. [23] is adopted. To be specific, based on the
Pandya transformation [57], we derive the effective Hamil-
tonian for valence proton holes and neutron particles with
respect to the core of Z = 50 and N = 82 as follows,
from the j j46 Hamiltonian [23] for valence proton and
neutron particles with respect to the core of Z = 28 and
N = 82:

ε jπ1 = −e jπ1 − 1

2 jπ1 + 1

∑
jπ2

∑
J

(
1 + δ jπ1, jπ2

)
(2J + 1)〈 jπ1 jπ2J|v̂| jπ1 jπ2J〉,

ε jν = e jν + 1

2 jν + 1

∑
jπ

∑
J

(2J + 1)〈 jπ jνJ|v̂| jπ jνJ〉,

V ππ
J ( jπ1 jπ2 jπ3 jπ4) = 〈 jπ1 jπ2J|v̂| jπ3 jπ4J〉,

V πν
J ( jπ1 jν1 jπ2 jν2) = −

∑
J ′

(2J ′ + 1)

{
jπ2 jν1 J ′
jπ1 jν2 J

}
〈 jπ2 jν1J ′|v̂| jπ1 jν2J ′〉. (7)

Here e j is the single-particle energy with respect to the
core of Z = 28 and N = 82, and 〈|v̂|〉 is the normal-
ized two-body matrix element of two valence particles,
taken from the j j46 Hamiltonian; ε jπ and ε jν are the
single proton-hole energy and single neutron-particle en-
ergy with respect to the core of Z = 50 and N = 82, and
V ππ

J ( jπ1 jπ2 jπ3 jπ4) and V πν
J ( jπ1 jν1 jπ2 jν2) are the normal-

ized two-body matrix element of two valence proton holes
and the normalized two-body matrix element of a valence
proton hole and a valence neutron particle, used in our
calculation.

For 128,126,124,122Cd, we consider valence proton holes
in the 28-50 major shell and valence neutron holes in
the 50-82 major shell. The following phenomenological
Hamiltonian including monopole pairing, quadrupole pairing,
and quadrupole-quadrupole interactions is adopted, and the
proton-hole highest-spin pairing interaction with spin 8 and
the neutron-hole highest-spin paring interaction with spin 10
are additionally included to give a good description to the 8+

1

and 10+
1 states of these four Cd nuclei:

H = Hπ + Hν + Hπν,

Hπ =
∑

jπ

ε jπ n̂ jπ +
∑

s=0,2,8

Gs
π

[
P(s)†

π · P̃(s)
π

]

+ κπ [Q(2)(π ) · Q(2)(π )],

Hν =
∑

jν

ε jν n̂ jν +
∑

s=0,2,10

Gs
ν

[
P(s)†

ν · P̃(s)
ν

]

+ κν[Q(2)(ν) · Q(2)(ν)],

Hπν = κπν[Q(2)(π ) · Q(2)(ν)], (8)

with the operators defined as below,

n̂ j =
∑

m

a†
jma jm,

P(0)† =
∑

j

√
2 j + 1

2
(a†

j × a†
j )

(0),
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TABLE I. Hamiltonian parameters adopted for 128,126,124,122Cd.
The single-proton-hole and single-neutron-hole energies, i.e., ε jπ and
ε jν , are taken to be the excitation energies of the single-proton-hole
states of 131In [23,59,60] and those of the single-neutron-hole states
of 131Sn [59], respectively. The interaction strength parameters are
adjusted to fit the experimental energy levels of the four nuclei. G0

τ

(in units of MeV), G2
τ (in units of MeV/r4

0 ) and κτ (in units of
MeV/r4

0 ) with τ = π, ν, as well as κπν (in units of MeV/r4
0 ), are

set to remain the same for the four nuclei; the strength parameter
for the proton-hole highest-spin pairing interaction with spin 8 is
set to be G8

π = 1.8 × 10−6 MeV/r16
0 , and the strength parameter

for the neutron-hole highest-spin pairing interaction with spin 10 is
set to be G10

ν = (−4.764252e−Nn + 0.943860) × 10−8 MeV/r20
0 with

Nn = 2, 4, 6, 8 for 128,126,124,122Cd.

π f5/2 π p3/2 π p1/2 πg9/2

ε 2.750 1.353 0.302 0.000
νg7/2 νd5/2 νd3/2 νs1/2 νh11/2

ε 2.434 1.655 0.000 0.332 0.242
G0

π G2
π κπ G0

ν G2
ν κν κπν

−0.195 −0.055 −0.085 −0.140 −0.020 −0.045 −0.080

P(λ)† =
∑
j1 j2

q( j1 j2λ)
(
a†

j1
× a†

j2

)(λ)
, λ �= 0,

Q(2) =
∑
j1 j2

q( j1 j22)
(
a†

j1
× ã j2

)(2)
,

q( j1 j2λ) = − ( j1‖rλY (λ)‖ j2)

λ̂
. (9)

Here Q(2) is the quadrupole operator defined in Eq. (1), with
its form in the second-quantization representation; ã jm is the
time-reversed operator of a single-particle destruction, and we
use the convention ã jm = (−) j−maj,−m ; ( j1‖rλY (λ)‖ j2) is the
reduced matrix element, and we use the Edmond convention
[58]; λ̂ = √

2λ + 1. The single-proton-hole energies ε jπ and
single-neutron-hole energies ε jν are taken to be the excitation
energies of the single-proton-hole states of 131In [23,59,60]
and those of the single-neutron-hole states of 131Sn [59],
respectively. The strength parameters, G0

τ , G2
τ , and κτ with

τ = π, ν, as well as G8
π , G10

ν , and κπν , are adjusted to fit the
experimental energy levels of the four Cd nuclei. In Table I
we list the parameters adopted in this work.

III. RESULTS AND DISCUSSIONS

For 128,126,124,122Cd we perform the NPA calculation using
the phenomenological Hamiltonian as described in Sec. II.
The pair configuration spaces are constructed using SDGI
pairs (with spin 0,2,4,6) of proton holes and those of neutron
holes. The proton-hole highest-spin pair (0g9/2 × 0g9/2)(8)

and neutron-hole highest-spin pair (0h11/2 × 0h11/2)(10) are
also adopted, which, together with the proton-hole spin-8 pair-
ing interaction and neutron-hole spin-10 pairing interaction
additionally included in the phenomenological Hamiltonian,
are essential to provide a good description of the 8+

1 and 10+
1

states of these four Cd nuclei.
For 130,132,134,136,138Cd we use the effective interaction

j j46 of Ref. [23]. Our configuration spaces are constructed
using SDGI pairs of proton holes and those of neutron parti-
cles. We also adopt the proton-hole highest-spin pair (0g9/2 ×
0g9/2)(8). In Ref. [36] it was shown that for the low-lying
states of 132Cd and 130Pd, the SM wave function can be
approximately represented by one optimized pair basis state
constructed by coupled pairs adopted here.

In Figs. 1 and 2 we present the calculated excitation
energies of the low-lying states for 128,126,124,122Cd and
130,132,134,136,138Cd, in comparison with available experimen-
tal data [20,49,59,61–63]. In Fig. 3, for the nine Cd nuclei, we
present in the upper panel the calculated excitation energies
of the 2+

1 and 4+
1 states and in the lower panel the calculated

R4/2 value, versus the mass number A, as well as available
experimental results. For 128,126,124,122Cd, in Fig. 1 one sees
that the calculated results well reproduce the experimental
data, except for the 2+

2 state of 126Cd. For 130,132,134,136,138Cd,
only the low-lying yrast states of 130Cd, as well as the
2+

1 state of 132Cd, were studied experimentally [20,49], and
their excitation energies are well reproduced by our NPA
calculation using the j j46 interaction as shown in Fig. 2. Note
that for semimagic 130Cd with two valence proton holes, the
NPA results are exactly the same as those given by the SM.

FIG. 1. The excitation energies (denoted as Ex , in units of MeV) of the low-lying states for 128,126,124,122Cd given by our NPA calculation,
in comparison with experimental data [59,61–63].
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FIG. 2. The excitation energies (denoted as Ex , in units of MeV)
of the low-lying yrast states for 130,132,134,136,138Cd given by our NPA
calculation using the j j46 effective interaction of Ref. [23], in com-
parison with available experimental data [20,49]. We also present
the experimental excitation energies of corresponding semimagic Sn
nuclei [59,64] for comparison.

For the low-lying yrast states of 128Cd and 132Cd we also
perform SM calculations, i.e., calculations in the full valence
spaces. In Fig. 4 we present the overlaps between the SM wave
functions obtained in the full spaces and corresponding NPA

FIG. 3. The excitation energies of the 2+
1 and 4+

1 states in the
upper panel and the R4/2 value in the lower panel, versus the mass
number A, for the nine Cd nuclei.

wave functions obtained in the pair-truncated subspaces. One
sees the overlaps are all very close to 1.

For 128,126,124,122Cd, as shown in Fig. 1 the excitation en-
ergies of the 2+

1 states, as well as those of the 4+
1 states,

are close to each other. Correspondingly, the R4/2 values of
the four nuclei are close to each other, and ≈2.5 is given
by our NPA calculation. For 130,132,134,136,138Cd, in Fig. 2 we
also present the available experimental excitation energies of
corresponding semimagic Sn nuclei [59,64] for comparison.
One sees that our calculated excitation energies of 2+

1 , 4+
1 ,

6+
1 of 132Cd are very close to the experimental excitation

energies of corresponding states of 134Sn. This is consistent
with the results of Ref. [36], where it was shown that the SM
wave functions of the 0+

g.s., 2+
1 , 4+

1 , 6+
1 states of 132Cd are

dominated by the pair basis states (|S〉π × |S〉ν )(0), (|S〉π ×
|D〉ν )(2), (|S〉π × |G〉ν )(4), (|S〉π × |I〉ν )(6), respectively. These
indicate that the lowest-seniority scheme works in low-lying
states of 132Cd. Yet, as shown in Fig. 2, at 134Cd the Ex curve
starts to deviate from that of the corresponding Sn nucleus,
and the deviation becomes considerable for the case of 136Cd.
For 132,134,136Cd, we calculate the overlap between the NPA
wave function of the 0+

g.s. state and the S-pair-condensate state,
and the overlap between the NPA wave function of the low-
lying excited state of spin J and the generalized-seniority-2
state with one broken neutron pair of spin J . The overlaps
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FIG. 4. The overlaps between the SM wave functions obtained
in the full valence spaces and corresponding NPA wave functions
obtained in the pair-truncated subspaces, for the low-lying yrast
states of 128Cd and 132Cd.

regarding the 0+
g.s. states are 0.97, 0.91, 0.87; those regarding

the 2+
1 states are 0.91, 0.77, 0.68; those regarding the 4+

1 states
are 0.94, 0.47, 0.21; those regarding the 6+

1 states are 0.96,
0.87, 0.54. In Fig. 3 one sees that the R4/2 values are increasing
gradually from ≈1.5 to ≈2.1 for 132,134,136Cd. These together
reflect that for 132,134,136Cd there is a gradual change from the
lowest-seniority scheme to the spherical-vibrator scheme. For
138Cd, the Ex curve and the R4/2 value are very similar to those
of 136Cd.

In Table II we present our calculated quadrupole transition
probabilities B(E2) of the 2+

1 → 0+
g.s., 4+

1 → 2+
1 , 6+

1 → 4+
1

transitions for the nine Cd nuclei. Regarding the effective
charges, for 122,124,126,128Cd we adopt eπ = −1.65 for va-
lence proton holes and eν = −0.95 for valence neutron holes,
which are optimized with respect to the available experimen-
tal B(E2) values [22]; for 130,132,134,136,138Cd we adopt eπ =
−1.70 for valence proton holes and eν = 0.70 for valence
neutron particles, which are taken from Ref. [23] together with
the j j46 effective interaction.

In the upper panel of Fig. 5 we present our calculated
B(E2; 0+

g.s. → 2+
1 ) values, versus the mass number A, as well

as the available experimental values of B(E2; 0+
g.s. → 2+

1 )
[22]. One sees that our calculated results reproduce the exper-
imental data very well. Note that the B(E2; 0+

g.s. → 2+
1 ) value

is equal to the corresponding B(E2; 2+
1 → 0+

g.s.) value mul-
tiplied by a factor of 5. For comparison, we also present the
theoretical B(E2; 0+

g.s. → 2+
1 ) results given by the SM calcula-

tion [22], those by the beyond-mean-field calculation [2], and
those by the QRPA calculation including the phonon-phonon
coupling [4]. As shown in Fig. 5, for 122,124,126,128Cd our
NPA results are close to those given by the beyond-mean-field
calculation; for 124,126Cd our results are also close to the avail-
able SM results. From 126Cd to 134Cd, the B(E2; 0+

g.s. → 2+
1 )

values given by our NPA calculation, as well as the curvature

TABLE II. Calculated quadrupole transition probabilities B(E2)
(in units of e2fm4) of the 2+

1 → 0+
g.s., 4+

1 → 2+
1 , 6+

1 → 4+
1 transitions

for the nine Cd nuclei, in comparison with available experimental
data [22].

Nuclei Ji Jf BNPA(E2) BExpt.(E2)

122Cd 2+
1 0+

1 690.4 820 (400)
4+

1 2+
1 903.5

6+
1 4+

1 416.7
124Cd 2+

1 0+
1 632.6 700 (380)

4+
1 2+

1 797.4
6+

1 4+
1 411.7

126Cd 2+
1 0+

1 535.9 540 (120)
4+

1 2+
1 659.0

6+
1 4+

1 409.4
128Cd 2+

1 0+
1 368.9

4+
1 2+

1 415.6
6+

1 4+
1 137.0

130Cd 2+
1 0+

1 180.9
4+

1 2+
1 206.7

6+
1 4+

1 146.2
132Cd 2+

1 0+
1 206.8

4+
1 2+

1 185.2
6+

1 4+
1 105.3

134Cd 2+
1 0+

1 379.7
4+

1 2+
1 388.2

6+
1 4+

1 120.0
136Cd 2+

1 0+
1 532.9

4+
1 2+

1 645.1
6+

1 4+
1 251.1

138Cd 2+
1 0+

1 635.7
4+

1 2+
1 761.5

6+
1 4+

1 502.8

when crossing the N = 82 shell closure, are similar to those
given by the QRPA calculation.

Interestingly, one sees in the upper panel of Fig. 5 that
our calculated B(E2; 0+

g.s. → 2+
1 ) values exhibit an asymmet-

ric feature with respect to the N = 82 shell closure, i.e.,
the B(E2; 0+

g.s. → 2+
1 ) value of the neutron-particle Cd nu-

cleus with N = 82 + Nn is smaller than that of corresponding
neutron-hole Cd nucleus with N = 82 − Nn, for all the four
cases of Nn = 2, 4, 6, 8. One also sees that the B(E2; 0+

g.s. →
2+

1 ) values given by the QRPA calculation including the
phonon-phonon coupling [4] have a similar asymmetric char-
acter, for the cases of Nn = 2 and 4. In recent years, the
asymmetric feature of B(E2; 0+

g.s. → 2+
1 ) for Sn isotopes (with

Z = 50) with respect to half of the N = 50–82 major shell, as
well as that for Te isotopes (with Z = 52), has been exten-
sively discussed; see, e.g., Refs. [34,65–67].

Below we study this asymmetric feature of the
quadrupole transition probability B(E2; 0+

g.s. → 2+
1 ), in terms

of corresponding proton and neutron transition matrix
elements Mπ and Mν . The relation between the B(E2) value

034312-6
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FIG. 5. Our calculated quadrupole transition probability
B(E2; 0+

g.s. → 2+
1 ), as well as available experimental data [22], in

the upper panel, and the absolute values of corresponding proton
and neutron transition matrix elements Mπ and Mν in the lower
panel, versus the mass number A. According to our calculation,
for 128,126,124,122Cd and 132,134,136,138Cd, the Mπ/Mν values are all
positive, i.e., the contributions of Mπ and Mν in B(E2; 0+

g.s. → 2+
1 )

are added up for all these eight Cd nuclei. For comparison, we also
present in the upper panel the theoretical B(E2; 0+

g.s. → 2+
1 ) results

given by the SM calculation [22], those by the beyond-mean-field
calculation [2], and those by the QRPA calculation including the
phonon-phonon coupling [4]. See text for details.

and corresponding Mπ and Mν values is

B(E2; αiJi → αf Jf ) = 1

2Ji + 1
|Mπ + Mν |2,

Mτ = (αfJf ||eτ Q(2)(τ )||αiJi ), τ = π, ν, (10)

where Q(2)(τ ) is given in Eq. (1), and the subscripts “f” and
“i” are used to denote the final and initial low-lying states,
respectively. In the lower panel of Fig. 5, we present the ab-
solute values of Mπ and Mν for the nine Cd nuclei. According
to our calculation, for 128,126,124,122Cd and 132,134,136,138Cd,
the Mπ/Mν values are all positive, i.e., the contributions of
Mπ and Mν in B(E2; 0+

g.s. → 2+
1 ) are added up for all these

eight open-shell Cd nuclei. As shown in the lower panel of
Fig. 5, the Mν values are almost symmetric with respect to the
N = 82 shell closure, while the Mπ values for 128,126,124,122Cd
are ≈25 e fm2, and those for 132,134,136,138Cd are smaller,
from ≈14 to ≈24 e fm2. In addition, one sees that for the
case of Nn = 2 the two B(E2; 0+

g.s. → 2+
1 ) values are most

asymmetric; meanwhile, the two Mν values are almost the
same while the two Mπ values are very different from each
other. Thus we conclude that this asymmetric feature of the
B(E2; 0+

g.s. → 2+
1 ) values with respect to the N = 82 shell

closure mainly comes from the contributions of the proton
transition matrix elements. As also shown in the lower panel
of Fig. 5, it is interesting that the Mπ value for 130Cd with
N = 82 is close to those for 128,126,124,122Cd, and with two
more neutrons outside 130Cd the Mπ value has a considerable
decrease.

At last we investigate for 128,126,124,122Cd and
132,134,136,138Cd, whether two low-lying yrast states with spins
differing by 2 can be connected by the quadrupole-phonon
excitation. We calculate explicit overlaps between the
low-lying yrast states and the constructed phonon
states, denoted as 〈ψf |φ(Jf )

i (τ )〉 with the low-lying state
|ψf〉 = |αfJf Mf〉 and the phonon state

∣∣φ(Jf )
i (τ )

〉 = 1

N
∑
κ,Mi

CJf Mf
2κJiMi

Q(2)
κ (τ )

r2
0

|αiJiMi〉, (11)

where the quadrupole operator Q(2)(τ ) is defined in Eq. (1),
and 1

N is the normalization factor. Here we take |ψf〉 = |I+
1 〉

and |ψi〉 = |(I − 2)+1 〉, and in Fig. 6 we present corresponding
overlaps for 128,126,124,122Cd and 132,134,136,138Cd. One sees
that, for all eight open-shell Cd nuclei, |2+

1 〉 and |4+
1 〉 can be

well described to be the states obtained by coupling the proton
or neutron quadrupole phonon to |0+

g.s.〉 and |2+
1 〉, respectively,

with the overlaps approximately equal to or larger than 0.8. In
other words, for all eight Cd nuclei, the connection between
|2+

1 〉 and |0+
g.s.〉 and that between |4+

1 〉 and |2+
1 〉, are dominated

by the proton or neutron quadrupole phonon excitation.
In Fig. 6 one also sees that, interestingly, for 126,124,122Cd

and 136,138Cd, the overlap between the 2+
1 state and the pro-

ton phonon state |φ(2)
g.s.(π )〉 obtained by coupling the proton

phonon to the 0+
g.s. state, and the overlap between the 2+

1 state
and the neutron phonon state |φ(2)

g.s.(ν)〉 obtained by coupling
the neutron phonon to the 0+

g.s. state, are both around 0.8. In
other words, the 2+

1 state of these nuclei can be well described
to be both the proton phonon state and the neutron phonon
state. This indicates that the two phonon states are not orthog-
onal, i.e., the overlap 〈φ(2)

g.s.(π )|φ(2)
g.s.(ν)〉 does not vanish. As

follows, we have an analytic relation for this overlap in terms
of the expectations of the proton-neutron, proton-proton, and
neutron-neutron quadrupole-quadrupole operators in the 0+

g.s.
state:

〈
φ(2)

g.s.(π )
∣∣φ(2)

g.s.(ν)
〉 = 〈0+

g.s.|Q(2)(π ) · Q(2)(ν)|0+
g.s.〉√

〈0+
g.s.|Q(2)(π ) · Q(2)(π )|0+

g.s.〉〈0+
g.s.|Q(2)(ν) · Q(2)(ν)|0+

g.s.〉
. (12)
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FIG. 6. The explicit overlap between the low-lying yrast state with spin I and the phonon state constructed by coupling the proton or
neutron quadrupole phonon, i.e., Q(2) (τ )

r2
0

with τ = π or ν, to the yrast state with spin (I − 2). See text for details.

This relation implies that, in an open-shell nucleus, the
two phonon states |φ(2)

g.s.(π )〉 and |φ(2)
g.s.(ν)〉 are almost im-

possibly orthogonal, due to the essential role played by
the proton-neutron quadrupole-quadrupole interaction in the
0+

g.s. state. For 128,126,124,122Cd the overlap 〈φ(2)
g.s.(π )|φ(2)

g.s.(ν)〉,
i.e., the ratio between the expectation of the proton-neutron
quadrupole-quadrupole operator in the 0+

g.s. state and the ge-

ometric mean value of the expectations of the proton-proton
and neutron-neutron quadrupole-quadrupole operators in the
0+

g.s. state, equals 0.25, 0.34, 0.38, 0.38, respectively, and
for 132,134,136,138Cd this overlap equals −0.18, −0.28, −0.35,
−0.38, repsectively.

It is also worthwhile to note that the overlap 〈ψf |φ(Jf )
i (τ )〉

depends on the wave-function details of the initial and final
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states, which we take to be the low-lying yrast states with
spins differing by 2 in this work. Then the two curves of
the overlaps with τ = π and ν, respectively, in each panel of
Fig. 6, reflect the structure evolution along the yrast line. In
this regard Fig. 6 might indicate that 126Cd, 124Cd, 122Cd have
similar structure evolutions along the yrast lines, and so do the
136Cd and 138Cd nuclei.

IV. SUMMARY

In this paper we study the low-lying states of neutron-
rich 122,124,126,128Cd and 130,132,134,136,138Cd within the
nucleon-pair approximation (NPA) of the shell model. For
122,124,126,128Cd we adopt the phenomenological Hamil-
tonian including monopole pairing, quadrupole pairing,
quadrupole-quadrupole interactions, as well as the proton-
hole highest-spin pairing interaction with spin 8 and the
neutron-hole highest-spin pairing interaction with spin 10;
and for 130,132,134,136,138Cd we adopt the effective interaction
j j46 [23]. The available experimental excitation energies and
quadrupole transition probabilities for the low-lying states
are well reproduced by our calculation, and we also make
predictions for the low-lying states of very neutron-rich Cd
nuclei up to 138Cd.

We study the evolution of the quadrupole transition
probability B(E2; 0+

g.s. → 2+
1 ) from 122Cd to 138Cd, in

terms of corresponding proton and neutron transition ma-
trix elements Mπ and Mν . Based on our calculation, the
B(E2; 0+

g.s. → 2+
1 ) values exhibit an asymmetric feature

with respect to the N = 82 shell closure, which mainly
comes from the contributions of the proton transition matrix
elements.

For the eight open-shell Cd nuclei, we investigate whether
the low-lying yrast states with spin I can be interpreted to be
the phonon states obtained by coupling the proton or neutron
phonon to the low-lying yrast states with spin (I − 2), and
here we take the proton or neutron quadrupole operators mul-
tiplied by 1/r2

0 for our phonon operators. We calculate explicit
overlaps between the yrast states and the constructed phonon
states, and the results indicate that, for all eight open-shell
Cd nuclei, |2+

1 〉 and |4+
1 〉 can be well described as the phonon

states constructed by coupling the proton or neutron phonon
to |0+

g.s.〉 and |2+
1 〉, respectively.

Very interestingly, for 126,124,122Cd and 136,138Cd, the 2+
1

state can be well described to be both the proton phonon state
and the neutron phonon state, which indicates a nonorthogo-
nal feature of these two phonon states. We further present an
analytic relation for the overlap between these two phonon
states. This relation implies that the proton and neutron
phonon states constructed using the quadrupole operators and
the 0+

g.s. state in an open-shell nucleus are almost impossibly
orthogonal, due to the essential role played by the proton-
neutron quadrupole-quadrupole interaction in the 0+

g.s. state.
For future work, the optimization of the quadrupole-

phonon structure, with respect to the NPA wave functions of
the initial and final states, will be of much interest.
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