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Short-range correlation physics at low renormalization group resolution
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Recent experiments have succeeded in isolating processes for which short-range correlation (SRC) physics is
dominant and well accounted for by SRC phenomenology. But an alternative and compelling picture emerges
from renormalization group (RG) evolution to low RG resolution. At high RG resolution, SRCs are identified
as components in the nuclear wave function with relative pair momenta greater than the Fermi momentum.
Scale separation results in wave-function factorization that can be exploited with phenomenologies such as the
generalized contact formalism or the low-order correlation operator approximation. Evolution to lower resolution
shifts SRC physics from nuclear structure to the reaction operators without changing the measured observables.
We show how the features of SRC phenomenology manifested at high RG resolution are cleanly identified at
low RG resolution using simple two-body operators and local-density approximations with uncorrelated wave
functions, all of which can be systematically generalized. We verify that the experimental consequences to date
follow directly at low resolution from well-established properties of nucleon-nucleon interactions such as the
tensor force. Thus the RG reconciles the contrasting pictures of the same experiment and shows how to get correct
results using wave functions without SRC components. Our demonstration has implications for the analysis of
knockout reactions for which SRC physics is not cleanly isolated.
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I. INTRODUCTION

Short-range correlations (SRCs) in atomic nuclei are usu-
ally identified as components of the nuclear wave function
with nucleon pair momenta well above the Fermi momentum
[1]. There has long been an apparent need for such SRCs to ac-
count for measured cross sections [2], but direct evidence has
been nebulous until recent experiments succeeded in cleanly
isolating this physics [1,3–10]. SRC phenomenologies have
been developed that account for the observations, but they
seem to be at odds with successful descriptions of nuclear
structure such as the shell model that do not feature explicit
short-range structure in the nuclear wave function. The appli-
cation of the renormalization group (RG) can make sense of
this conflict. RG methods are used to analyze critical phenom-
ena in condensed matter [11] and evolve the strong coupling
and parton distributions in high-energy quantum chromody-
namics (QCD) [12,13]. Applied to nuclei, the RG shows how
SRC physics is manifested differently at varying resolution
scales. Here we will illustrate how the RG can bridge low- and
high-resolution treatments of the same experiment, shedding
light on the implications of SRC physics and on long-standing
discrepancies between theory and experiment [14].

To avoid misunderstanding, we must from the beginning
distinguish between experimental resolution and RG resolu-
tion as manifested in nuclear applications. The experimental
resolution is set by the momentum of the probe, with the
resolving power limited to distances of order the correspond-
ing wavelength. The RG resolution is also determined by a

limiting wavelength, which is set not by external kinematics
but by the choice of decoupling scale in the RG-evolved
Hamiltonian. This scale dictates the minimum wavelength or
maximum momentum available for the wave functions of low-
energy states (and the nuclear ground states in particular). A
high-RG-resolution description has a “hard” Hamiltonian that
mixes high-momentum components into low-energy states,
i.e., SRCs. A low-RG-resolution description has a “soft”
Hamiltonian for which the ground-state wave function is
closer to the mean-field limit with the largest momenta not
far from the Fermi momentum kF. We emphasize that either
of these descriptions (or a continuum of intermediate RG
resolutions) can be applied to the same experiment.

For visualization, cartoon pictures of these resolutions are
shown in Figs. 1 and 2. Although only qualitative, such pic-
tures give intuition for interpreting experiments. In Fig. 1
we visualize configurations that might be sampled at differ-
ent RG resolutions. Only at high-RG resolution do we find
a high-momentum pair. In practice we associate the high-
resolution picture with local phenomenological Hamiltonians,
in particular the Argonne V18 (AV18) potential [15] and its
associated three-body forces [16,17], which have been fea-
tured in most of the recent analyses of SRC experiments
[1]. AV18 describes nucleon-nucleon observables within ex-
perimental accuracy up to the inelastic threshold and the
elastic part of the cross section reasonably well up to much
higher energies. The AV18 momentum distributions in nu-
clei extend well above 4 fm−1 or 800 MeV (in units where
h̄ = c = 1), as caricatured in Fig. 2 (see also the figures in
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FIG. 1. Cartoon snapshots of a nucleus at (a) low-RG and
(b) high-RG resolutions. The back-to-back nucleons at high-RG
resolution are an SRC pair with small center-of-mass momentum.

Sec. IV). For concreteness we associate the low-resolution
picture with the shell model (configuration interaction), either
in its phenomenological form [18,19] or derived from ab initio
methods such as coupled cluster or the in-medium similarity
RG [20]. In this picture, nucleon momentum distributions die
off rapidly above kF.

The smoking gun experiments for SRCs in the high-RG-
resolution picture come in two varieties: inclusive reactions
with carefully chosen kinematics [21–25] and experiments
featuring the knockout and detection of two high-momentum
nucleons [3–7,9,26]. These experiments manifest key features
of high-resolution SRC phenomenology [1]:

(1) Universal high-momentum nucleon distributions. Ra-
tios of inclusive cross sections at selective kinematics
(high Q2 and x � 1.4–1.5) for different nuclei show
plateaus, implying that momentum distributions at
high momenta have the same shape for all nuclei. The
relative height of the plateau defines the SRC scaling
factor a2 and is related to the relative probability of
finding a two-nucleon SRC in the nuclei (e.g., see
Ref. [27]).

FIG. 2. Cartoon of a nuclear single-particle momentum distribu-
tion at high RG resolution. The region below kF is a Fermi sea of
nucleons. Above kF the distribution is dominated by SRC pairs, with
center-of-mass momenta of order kF. At low RG resolution, the upper
branch is greatly suppressed.

(2) Kinematics of the knocked out nucleons. SRC pairs are
in S waves with relative momentum larger than kF and
total momentum of order or less than kF. So when one
of the paired nucleons has a direct one-body interac-
tion (e.g., it absorbs a virtual photon), the other flies
out almost back-to-back with respect to the original
momentum in the laboratory frame. The experimental
analysis implies that roughly 10–20% of nucleons in
the nucleus are members of an SRC pair.

(3) Ratio of np to pp knocked out pairs for intermediate
relative momentum (300–500 MeV). One might expect
that the ratio of neutron-proton (np) to proton-proton
(pp) pairs knocked out would be given by basic count-
ing [28]. In fact the ratio for intermediate momenta
shows a strong dominance of np pairs over pp or nn
pairs. This is interpreted as resulting from the domi-
nance of the nucleon-nucleon (NN) tensor interaction
in this momentum regime, which generates 3S1 (np
only) but not 1S0 SRC pairs.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei. The ratios imply that
the high-momentum fraction of protons is greater for
N > Z than for N = Z . The SRC interpretation is that
excess neutrons correlate with core protons, so that
protons “speed up” in neutron-rich nuclei. In contrast,
the high-momentum fraction of neutrons remains con-
stant.

(5) Transition from np dominance of SRC pairs to ratios
expected from scalar counting. As the momentum of
the knocked out pairs increases, the dominance of the
tensor part of the NN interaction gives way to prob-
ing the repulsive core, which affects all pairs equally.
Therefore the ratio of np to pp pairs relaxes toward the
scalar limit.

These effects are all consistent with two phenomenological
approaches. The generalized contact formalism (GCF) model
uses a factorization ansatz for the nuclear many-body wave
function applied to these high-momentum transfer processes
[29–33]. The low-order correlation operator approximation
(LCA) [27,34,35] is used to compute how SRCs affect nu-
clear momentum distributions; it does so by shifting the SRC
physics from the wave function to a correlation operator,
which is in turn parametrized (the LCA will be discussed
further in Sec. IV).

The GCF embodies the pictures in Figs. 1(b) and 2, with
the nuclear wave function relevant for SRC physics events
represented as a product of a short-distance piece that mul-
tiplies a mean-field piece. When applied to the distribution
of pair momenta in coordinate and momentum space (mean-
ing the probability to find two nucleons within a distance r
or having a relative momentum q), these quantities take the
factorized form

ρA
GCF,α (r) = CNN,α

A

∣∣φα
NN (r)

∣∣2
, (1)

nA
GCF,α (q) = CNN,α

A

∣∣φ̃α
NN (q)

∣∣2
. (2)

Here A is the nucleon number (protons plus neutrons) and α is
a spin index. The common coefficient is called a “contact” in
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analogy to the quantity defined in cold atom physics [36,37].
The two-body functions are extracted from the short-distance
(high-momentum) dependence of the zero-energy solutions to
the Schrödinger equation for a given NN interaction.1

There is now substantial literature on applying the GCF
phenomenology to SRC experiments [9,29,31–33,38,39]; we
summarize only the major features here. The A indepen-
dence of the φ functions immediately implies that both the
short-distance and high-momentum dependence of the pair
distributions in different nuclei will be universal. This sug-
gests that taking ratios will divide out model dependence,
giving support to the early focus on cross section ratios
of various sorts in experimental analyses (e.g., two-nucleon
knockout to integrated single-nucleon knockout). Ratios of
contacts are scale and scheme independent, as validated by
microscopic ab initio calculations using both hard and soft
(although not fully soft) interactions. Three-body effects are
implicitly treated as negligible.

The success of the SRC pair interpretations and the GCF
might seem to be conclusive evidence that the high-RG-
resolution picture is the only correct one. But in fact these
observations can be explained as well by a very different
picture, in which the Hamiltonian is at low-RG resolution and
therefore soft, while the interaction of a virtual photon probe
is not with a single nucleon that is part of an SRC pair but
with two nucleons in the Fermi sea (i.e., a two-body current).
We claim that all of the same observables are reproduced in
this alternative picture, with simpler calculations. This might
seem to be a nuclear Rashomon effect [40], in which differ-
ent observers give contradictory interpretations of the same
event. The RG shows how these pictures can both describe
the phenomena and how to continuously transform from one
to the other. We note that these contrasting pictures have been
discussed in the nuclear RG literature for at least a decade
[41–44], but this work has not made a substantial impact
or when cited has often been misunderstood. We hope the
presentation here will prove to be more accessible.

In the remainder of this paper we flesh out the story,
striving to provide intuitive explanations of how it plays out.
In Sec. II we give a selected history of the two alternative
pictures of nuclei and the experiments that seemed to require
SRCs in nuclei. This takes us up to the present where the
conflict persists; we reconcile the pictures in Sec. III by means
of the RG. We provide low-resolution explanations of the SRC
experiments, some directly and some by showing how the
GCF phenomenology emerges from an RG treatment and the
operator product expansion. A basic second-quantized treat-
ment that enables a systematic many-body treatment of the
unitary RG approach, along with representative calculations
supporting the Sec. III explanations, is presented in Sec. IV.
Section V provides a selection of takeaways in the form of
questions and answers, and some implications for other ex-
periments where SRC physics may play a role. Section VI is
a brief summary and guide to future work.

1It would be misleading to call them wave functions, as pointed out
originally in Ref. [2].

II. HISTORICAL ANTECEDENTS

Since the 1950s, two apparently contradictory pictures of
nuclear structure have been developed and successfully ap-
plied [45]. The first stems from the shell model of Goeppert
Mayer and Jensen, originally a description of independent
particles moving in a mean field. Refinements from that era
include the collective model of Bohr and Mottelson, which
showed that the vibrational and rotational excitations of nuclei
can be described in terms of the time evolution of a self-
consistent mean field. This provided a unified description of
single-particle and collective degrees of freedom in nuclei.
The key characteristic for our discussion is that the momen-
tum distribution did not include high-momentum nucleons
(that is, with momenta well above kF), as depicted in Fig. 1(a).

In Ref. [2], Brueckner et al. considered the possibility of
nonlinear phenomena altering the strong short-range interac-
tion evident in free space: “...the success of the shell model
has often been assumed to indicate that the two-body forces in
nuclear matter are in fact much weaker and long-ranged and
can lead in an excellent approximation to a uniform Hartree
field acting on the nucleons.” They go on to soundly reject this
conjecture by considering five high-energy reactions and con-
cluding that the measured cross sections can only result from
a nucleon momentum distribution with a significant tail: “This
momentum distribution differs substantially from that for the
shell model of the nucleus and thus provides strong evidence
for correlation in the nuclear ground-state wave function.”
This is the alternative picture in Figs. 1(b) and 2, which fea-
tures in particular a component of the nuclear wave function
consisting of pairs of nucleons with large relative momentum
but a center-of-mass momentum of order the Fermi momen-
tum. Brueckner et al. explained this picture as arising from
the strong short-range repulsion in the nucleon-nucleon (NN)
interaction, which was the accepted explanation for the NN
S-wave phase shifts turning negative at high energies. Thus
the SRC was born.

A key takeaway from Ref. [2] is that SRCs were argued
for as essential wave-function features because there was
no other way to explain the cross section: “Consequently it
follows that the usual assumptions of the shell-model theory
of the nucleus, that the particles move independently in a
uniform potential, cannot be other than very approximately
correct.” Each example was analyzed in the Born approxi-
mation, which gave a transparent interpretation; for example,
deuteron pickup: ejection by fast neutrons (of order 100 MeV)
of fast deuterons by nuclei. In the picture of Fig. 1(a), the
fast incident neutron would have too-small matrix elements
with the mean-field protons to enable the observed deuterons
to form; this required the picture of Fig. 1(b). At this level
of approximation, a momentum distribution with a tail like in
Fig. 2 could be fit.

However, this clear picture was subsequently muddied by
consideration of final state (and initial state) interactions (e.g.,
see Ref. [46]). The clean extraction of a momentum distribu-
tion was no longer clean. Nevertheless, the picture associated
with a hard Hamiltonian persisted and Brueckner led the way
in developing methods to handle such interactions and also
explain how independent-particle behavior could arise. This
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proved to be a difficult program to carry out with precision us-
ing the expansion and resummation techniques of Brueckner
theory. Instead, the most successful demonstration that hard
Hamiltonians (and the Argonne potential in particular) led to
quantitative predictions of the low-lying spectra of light nu-
clei was made using quantum Monte Carlo methods [47,48].
This might have seemed to resolve which picture was correct.
Yet, in the meantime, “phenomenological” approaches such
as the shell model and nuclear energy density functionals
were successful in describing a wide range of data using soft
interactions [19,45].

An experimental advance that promised to shed light on
nuclear momentum distributions was the development of elec-
tron scattering facilities that could detect knocked-out protons
in coincidence with the scattered electrons. At NIKHEF and
other electron scattering facilities, these (e, e′ p) experiments
were used to probe occupied shell-model orbitals and map out
their momentum distributions [49,50]. The extracted shapes
were consistent with orbitals having the appropriate sepa-
ration energy and radius, but the overall normalization was
significantly lower than predicted by an independent-particle
model. In the high-resolution picture, this was explained by
the depletion of orbitals by both short-range and long-range
correlations, of order 15–20% for each. Once again, however,
this potentially clean resolution was spoiled by final-state
interactions (despite efforts to use parallel or antiparallel
kinematics to suppress other reaction mechanisms) [51]. The
picture was further muddied by purely theoretical consider-
ations in Ref. [52], which showed that field redefinitions or
unitary transformations imply the picture of high-momentum
SRC pairs is not unique. This would turn out to be a foreshad-
owing of the RG reconciliation of hard and soft pictures.

With subsequent experimental and theoretical advances,
the modern nuclear Rashomon effect grew more acute from
both sides. The problem of cleanly verifying the picture
in Fig. 1(b) was apparently solved by experiments first at
Brookhaven National Laboratory (BNL) and then more ex-
tensively at Jefferson Laboratory (JLab) that knocked out and
detected both members of SRC pairs (plus inclusive exper-
iments with specially chosen kinematics). By restricting to
events with the appropriate kinematics in the final states, a
series of experiments has established the key features listed in
Sec. I [1]. At the same time, a picture closer to Fig. 1(a) (or
at least with reduced high-momentum SRCs) has been behind
explosive progress in ab initio (microscopic) calculations of
nuclei, which have pushed well beyond where calculations
with hard potentials have been computationally feasible [20].
To reconcile these pictures, we need to modify the hard po-
tential into a soft one, while at the same time preserving the
results from high-momentum-transfer experiments. This can
be accomplished by unitary renormalization group evolution.

III. RECONCILIATION BY THE RENORMALIZATION
GROUP

A. Applying a unitary RG

The renormalization group techniques developed by Wil-
son in the late 1960s and early 1970s formalized the ideas

of block spinning introduced by Kadanoff, through which
shorter distance scales in a system are averaged over, leaving
only contributions from successively longer distance scales
[53–55]. By eliminating these degrees of freedom (dofs),
the underlying universal behavior was revealed, which was
directly applied to explain critical phenomena (second-order
phase transitions). The other major class of RG applications
from this period aimed to improve perturbation theory. This
use of RG dates from Gell-Mann and Low in 1954 [56] and
matured in applications to high-energy scattering in QCD
[57,58]. The basic idea is that a mismatch of external energy
scales and those internal to loop integrals (i.e., sums over
states) can generate large logarithms that modify the naive
convergence of perturbation theory. Running the RG can shift
strength between couplings and loop integrals to minimize the
impact of the logarithms [59]. The nuclear applications of the
RG inherit features of both types of RG applications [60].

In the early 1990s, independent efforts by Glazek and
Wilson, who sought a Hamiltonian formalism for quantum
chromodynamics (QCD) [61,62], and Wegner, who worked
on condensed matter problems [63], led to unitary RG evolu-
tion approaches that drove many-particle Hamiltonians to be
increasingly energy diagonal. This alleviates problems with
small energy denominators. The similarity RG (or SRG),
particularly in the unitary flow equation form proposed by
Wegner [64], subsequently proved to be well suited for low-
energy nuclear physics. SRG applications built on a long
history of unitary transformation methods in nuclear physics
and especially the earlier introduction of RG for nuclear
Hamiltonians by Bogner and Schwenk [65–67]. The SRG is
technically simpler (e.g., for evolving three-body forces) and
highly versatile; it can be applied in free space for interactions
and operators [44], and in the nuclear medium as a many-body
solution method [20,68,69].

B. Schematic look at factorized matrix elements

The technical aspects of the SRG are well documented
in the literature [68–72]. For our purposes we do not need
to know how the unitary transformations are generated, but
only their actions and characteristics. Figure 3 provides a
schematic guide to how a ratio of matrix elements of high-
momentum operators is transformed from high RG resolution
to low RG resolution. For simplicity we take ground-state
matrix elements and a ratio between nucleus with A nucleons
to the deuteron. This setup is directly related to the experi-
ments for inclusive cross section ratios [21–25], but we can
interpret the details more generally. In Sec. IV we provide a
second-quantized formulation that validates the developments
sketched here.

The SRG parameter λ is taken to be of order kF or slightly
higher; it provides a dividing scale between mean-field and
high-momentum physics as in Fig. 2 and it serves as the res-
olution scale (because only momenta less than λ are included
in the low-energy wave functions). Details of the subplots in
Fig. 3 are

(a) The ground-state bra and ket are coded blue to indicate
they are calculated using an unevolved hard interaction
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FIG. 3. Schematics of what happens with high-momentum operators and low resolution states. (See the text for details.)

(e.g., AV18 plus three-body for definiteness). There
are both high-momentum and low-momentum contri-
butions to |ψA〉 and |ψd〉. The operator is also blue,
which signifies there are only contributions from high
momenta q > λ. For example, it could be a pair or
single-nucleon momentum distribution evaluated at q.

(b) The unitary transformation at λ is denoted Uλ. Here we
write it as a momentum matrix. The combination U †

λUλ

is the identity matrix, so it can be inserted anywhere in
our expression.

(c) We insert U †
λUλ between the operator and wave

function vectors with the plan of acting with the trans-
formations on each. The ratio of matrix elements is
unchanged.

(d) We designate the soft evolved ground-state matrix el-
ement with λ and code it red. Acting with Uλ on the
original wave function yields the same result as evolv-
ing the Hamiltonian and then diagonalizing to extract
the ground state.

(e) It is evident here that to maintain the same matrix ele-
ment that the operator must also be evolved by UλOU †

λ .
(f) When the unitary transformation is sandwiched be-

tween a part that is purely low momentum (k < λ)
and a part that is purely high momentum (q > λ),
then it approximately factorizes into disjoint pieces.
This factorization is derived in Refs. [41,42]. The
low-momentum part F lo(k) is only weakly depen-
dent on momentum. The factorization approximation
is typically good at the 10–15% level and correc-
tions are calculable. The leading factorization explains
the dominant behavior but if greater precision is de-

sired one can always simply use the full unitary
transformation.

(g) Upon substitution of the factorized unitary transforma-
tion, we see that the numerator and denominator have
individually separated into a purely high-momentum
part that carries the full dependence on the momentum
of the operator but is state independent, and a purely
low-momentum part that is independent of the opera-
tor but depends on the nucleus.

(h) For convenience we have simply rearranged the factor-
ized parts of the matrix elements. This is the leading
term in an operator product expansion. If we focus
on the red (high momentum) parts, we immediately
obtain the universal (i.e., state-independent) behavior
of any high-momentum operator. Note that this applies
to low-lying excited states as well. With the choice of a
momentum distribution this is also the embodiment of
the GCF in Eq. (2) [or Eq. (1) if we work in coordinate
space instead].

(i) For the case of the same operator in numerator
and denominator, they cancel, leaving a purely low-
momentum ratio that turns out to be scale and scheme
independent (to leading order). This is the GCF contact
ratio, which is the type of ratio that will dominate
the ratio of inclusive cross sections. Note that it is a
“mean-field” quantity, i.e., it only depends on the soft
ground-state wave function.

Thus the GCF physics naturally emerges from a low-
resolution perspective but in a form that is systematically
improvable and more easily generalized.
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FIG. 4. Ratio of |U (k0, q)U †(q, k0 )| with fixed k0 = 0.1 fm−1 for
the coupled 3S1 to 1S0 channels. Results are for the AV18 [15] and
Gezerlis N2LO (1.0 fm) [73] potentials.

Returning to (e) and (g) for the specific case of the pair dis-
tribution at high momentum, we see that it is sufficient to look
at the unitary transformation of the high-resolution operator
in a two- or three-body space, independent of any nucleus or
state. The two-body unitary transformation can be expanded
in the NN channels without reference to a particular state (see
Sec. IV for details). In Fig. 4 the ratio of |U (k0, q)U †(q, k0)|
for the coupled 3S1 to 1S0 channels is plotted as a function of q
with fixed k0 = 0.1 fm−1. This ratio directly relates to the frac-
tion of knocked-out pairs that are np versus pp or nn. We see
the dominance of 3S1 to 1S0 in the region around 2 fm−1(400
MeV), where the tensor force is strong and the 1S0 potential
has a node, decaying to a combinatoric fraction at high mo-
mentum. The result is insensitive to details as the dependence
on k0 is very weak for q > λ. We also see that similar results
are obtained for the local chiral EFT potential from Gezerlis
et al. [73] (this is true for any other chiral potential [74]).

One might have expected that the dominance of the tensor
means that the operator will be sensitive to 3D1 admixtures
in the ground state even when evolved. This is not the case,
as illustrated in Fig. 5. The high-resolution results (λ = ∞)
do come dominantly from the 3D1–3D1 part for momenta q
where the tensor force dominates, while it is more evenly split
with 3S1–3S1 (in a scheme/scale dependent way) at higher
momenta. But the low-resolution results (λ = 1.35 fm−1 here)
are always heavily dominated by the 3S1–3S1 part. Note that
the same pattern holds for both the phenomenological AV18
potential and the Gezerlis N2LO chiral EFT potential. This
S-wave dominance implies that simple ground-state wave
functions with local density approximations (LDAs) will work
quite well at low RG resolution, as verified in the next section.

IV. CALCULATING AT LOW RG RESOLUTION

In this section we use second quantization to more pre-
cisely characterize the SRC physics and show how simplified

FIG. 5. Percentage contributions from each channel to the matrix
element of the momentum distribution in the deuteron with q = 2, 3,
and 4 fm−1 for AV18 (left bar at each λ value) and Gezerlis N2LO
(right bar) potentials. We compare unevolved and SRG-evolved (both
wave function and operator, so the net matrix element is unchanged)
results where λ = 1.35 fm−1.

calculations (e.g., using LDAs) are meaningful. The details
of how factorization works in second-quantized form have
already been worked out in Ref. [42], which we build on
for the current discussion. The results presented here are
only a sampling of what is possible, using the crudest ap-
proximation. Nevertheless, they suffice to show that low-RG
resolution calculations can reproduce all the features of SRC
phenomenology listed in Sec. I. In future work we will explore
more accurate approximations and calibrate the theoretical
uncertainties [74].

A. Second-quantized unitary transformations

The SRG unitary transformation at flow parameter λ takes
the schematic second-quantized form

Ûλ = Î +
∑

δU (2)
λ a†a†aa

+
∑

δU (3)
λ a†a†a†aaa + [four-body] + · · · , (3)

where we have suppressed the single-particle indices and
combinatoric factors. There is no one-body term, which
would have only a sum over a†a operators. The leading
approximations illustrated in Fig. 3 can be formulated in
second-quantization by always consistently truncating the op-
erator products such as Ûλ ÔÛ †

λ at the (vacuum) two-body
level. In practice this is cleanly carried out by applying Wick’s
theorem in operator form.

The two-body term in Eq. (3) in a plane-wave single-
particle basis is

1

4

∑
k,k′,K

δŨ (2)
λ (k, k′) a†

1
2 K+k

a†
1
2 K−k

a 1
2 K−k′a 1

2 K+k′ , (4)

where k and k′ are relative momenta in the two-body
subspace, K is the total momentum, and δŨ (2)

λ is an
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antisymmetrized matrix element [i.e., δŨ (2)
λ = δU (2)

λ (1 +
P12), where P12 exchanges particles 1 and 2]. For notational
compactness we suppress the spin and isospin indices on
δŨ (2)

λ ; the latter dependence will be explicit later when δŨ (2)
λ

is decomposed into the usual NN partial-wave channels. The
form in Eq. (4) follows from the structure of the SRG flow
equation and the properties of the two-nucleon Hamiltonian,
which are inherited by δŨ (2)

λ . Particular features of relevance
in the present context are that the first-quantized function
δŨ (2)

λ is completely determined in the two-body system and
depends on k and k′ but not K from Galilean invariance,
three-body contributions are subleading (more on this below),
and δŨ (2)

λ (k, k′) factorizes as in Fig. 3(f) for |k| < λ and
|k′| � λ.

A simple example of how truncating at the two-body
level plays out is the verification of the unitary condition in
Fig. 3(b). We start by multiplying Eq. (3) and its hermitian
conjugate and note that even maximally contracted terms
involving three-body or higher terms from Û † or Û will be
three-body or more, and therefore are omitted. Only the fully
contracted part of the a†a†aaa†a†aa term from the δU pieces
will have the leading two-body form, so the net result for the

leading approximation in the plane-wave basis as in Eq. (4) is

Û †
λ Ûλ = Î + 1

4

∑
k,k′,K

[
δŨ (2)†

λ (k, k′) + δŨ (2)
λ (k, k′)

+ 1

2

∑
k′′

δŨ (2)†
λ (k, k′′)δŨ (2)

λ (k′′, k′)

]
× a†

1
2 K+k

a†
1
2 K−k

a 1
2 K−k′a 1

2 K+k′

= Î, (5)

where the coefficient function in square brackets is identically
zero from the unitary condition applied to (unsymmetrized)
U (2)(k, k′) = δk,k′ + δU (2)(k, k′).

To find the evolved form of other operators, we simply
sandwich the second-quantized operator expansion between
Ûλ and Û †

λ , apply Wick’s theorem, and truncate at the two-
body level. For example, the leading approximation for the
evolved pair momentum distribution n̂ττ ′

λ (q, Q) for isospin
projections τ and τ ′ takes the form

n̂λ(q, Q) = Ûλ n̂∞(q, Q)Û †
λ

≈ n̂∞(q, Q) + 1

4

∑
k

δŨ (2)
λ (k, q)a†

1
2 Q+k

a†
1
2 Q−k

a 1
2 Q−q

a 1
2 Q+q

+ 1

4

∑
k

δŨ (2)†
λ (q, k)a†

1
2 Q+q

a†
1
2 Q−q

a 1
2 Q−k

a 1
2 Q+k

+ 1

8

∑
k,k′

δŨ (2)
λ (k, q)δŨ (2)†

λ (q, k′)a†
1
2 Q+k

a†
1
2 Q−k

a 1
2 Q−k′a 1

2 Q+k′ , (6)

where the unevolved (λ = ∞) pair momentum distribution is

n̂∞(q, Q) = 1

2

∑
σ,σ′

a†
1
2 Q+q

a†
1
2 Q−q

a 1
2 Q−q

a 1
2 Q+q

, (7)

and we have suppressed spin and isospin indices in Eq. (6) and
(7). If Eq. (6) is summed over q at fixed Q, a simple change
of labels in the sums manifests that, by consistently truncating
to the two-body operators, the full normalization comes from
the unevolved distribution, with the terms depending on δŨ (2)

λ

canceling by the unitary condition, as in Eq. (5).
In practice we evaluate matrix elements of δŨ (2)

λ in the two-
body space using antisymmetrized kets expanded in partial
waves [75]:

|k1σ1τ1 k2σ2τ2〉 = 1√
2

∑
S,MS

∑
L,ML

∑
J,MJ

∑
T,MT

〈σ1σ2|SMS〉

× 〈τ1τ2|T MT 〉
√

2

π
Y ∗

LML
(̂k)〈LMLSMS|JMJ〉

× [1 − (−1)L+S+T ] |Kk(LS)JMJT MT ),
(8)

where k ≡ 1
2 (k1 − k2), K ≡ k1 + k2, and σ and τ denote the

spin and isospin projections, respectively. The factor of
√

2/π

comes from the completeness relation in relative momentum

space 1 = 2/π
∫ ∞

0 dkk2|k〉〈k|. Formulas are given in the Ap-
pendix for the momentum distributions in the LDA that are
used in Sec. IV B.

The decomposition in Eq. (6) is exact for the deuteron. The
contributions of the individual pieces are shown in Fig. 6 for
the AV18 potential unevolved and evolved to λ = 1.35 fm−1,
which we take as a representative low-resolution RG scale
for nuclear ground states. The full momentum distribution
at high-resolution is shown as a solid line, which is also
equal to the sum of the low-resolution pieces. The matrix
element of the “Î” piece from (6) (first term) has support
only for low momenta; in heavier nuclei it will correspond
to the mean-field region of Fig. 2. The terms linear in
δŨ are negative at low momentum, removing strength from
this region. (Note, the absolute value of δŨ is shown in
Fig. 6.) The δŨδŨ † piece is the sole contributor to the high-
momentum region above 2 fm−1. The region where the “Î”
and linear δŨ terms fall off while the δŨδŨ † term dom-
inates is shifted to higher momenta with increasing values
of λ [74].

When taking matrix elements of the δŨδŨ † term in a
low-resolution wave function, Q, k, k′ will all be soft, so for
|q| > kF the δŨ functions will be in the factorization regime.
This will isolate the q dependence of the pair distribution as in
Fig. 3(h). For the deuteron, only the 3S1–3D1 part of δŨ will
contribute.
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FIG. 6. Contributions to the deuteron momentum distribution
nd

λ (q) with AV18 and λ = 1.35 fm−1 from the expectation value of
Eq. (6) in the unevolved (λ = ∞, labeled “High res.”) and evolved
wave functions. The latter is split into three pieces, with the sum
indistinguishable from the unevolved curve. The normalization is
2
π

∫ ∞
0 dq q2nd

λ (q) = 1.

How accurate will the truncation to the two-body level
be for A > 2? Calculations of bulk quantities such as en-
ergies and radii are sensitive to three-body contributions at
low resolution, but their role is amplified by cancellations of
the kinetic and potential energies. The cluster hierarchy of
the potential itself is maintained in the SRG evolution. For
high-momentum distributions, we expect that the two-body
contribution will dominate. This is supported by the work of
Neff et al. [76] on the pair distribution in the alpha parti-
cle, which showed some λ dependence near 2 fm−1 in the
dominant S = 1, T = 0 spin-isospin channel when integrat-
ing over the center-of-mass momentum Q (with significant
dependence in the other channels) but very little dependence
at Q = 0; in all cases there is little dependence above 3 fm−1.
In future work we will use the RG running (i.e., the λ de-
pendence) to test the truncation error in our calculations [74].
We emphasize that corrections from three-body operators are
fully accessible within our approach and that good approxima-
tions to these contributions are possible. Finally, we note that
truncation at the two-body level has much in common with
the leading term of the Brueckner expansion [2,74]. This has
implications for SRC physics at high density, e.g., in neutron
stars, where three-body physics is essential for a quantitative
description.

B. Local density approximation calculations

At low resolution there are various options for calculating
SRC physics as manifested in the experiments described in
Sec. I. By softening the Hamiltonian, the nuclear ground-
state wave functions become less correlated, more amenable
to many-body perturbation theory, and more universal in
nature. Furthermore, for operators evaluated at the highest
momenta, the details of long-range correlations should be-

come less important. Indeed, the physics is focused on short
distances, which suggests that an LDA should work well,
particularly as the unitary transformations in the factorization
region (δŨ (2)

λ (k, k′) with |k| < λ and |k′| � λ) are weakly
dependent on the low momentum [44]. Figures included as
Supplemental Material [78] illustrate the factorization of the
δŨδŨ † term in Eq. (6).

We illustrate how to formulate an LDA by starting
with the second-quantized version of the unevolved single-
particle momentum distribution for isospin projection τ from
coordinate-space integrals (cf. Ref. [79]):

nτ (q) =
∫

dr
∫

dr′ 〈�A|ψ̂†
τ (r′)ψ̂τ (r)|�A〉e−iq·(r−r′ )

=
∫

dR
∫

ds ρτ
DM(R, s)eiq·s, (9)

where R = (r + r′)/2, s = r′ − r, and ρτ
DM(R, s) is the den-

sity matrix for the A-body nucleus. We implement an LDA as
the leading term in a density matrix expansion (DME) [80]:

ρτ
DM(R, s) ≈ ρτ (R)ρSL

(
skτ

F (R)
) + · · · (10)

where the Slater function is ρSL(z) ≡ 3
z j1(z), the local Fermi

momentum is kτ
F (R) = (3π2ρτ (R))1/3 with ρτ the proton or

neutron number density normalized to Z or N , and we have
applied angle averaging. Negele and Vautherin showed this
was a good approximation for not-too-large values of s [80].

If we substitute (10) into (9) and integrate over s, we find

nτ (q) ≈ 2
∫

dR θ
(
kτ

F (R) − q
)
, (11)

with the factor of 2 from the spin sum. This is a poor ap-
proximation at very low q because of the contribution to the
integral from large s, but its generalizations to include the
SRG unitary transformations provide a quantitative reproduc-
tion of momentum distributions at high momenta. All of the
second-quantized terms with δŨ will be of the form a†a†aa.
These have the same structure as a Hartree-Fock energy for a
nonlocal potential, to which we can apply the corresponding
DME from Refs. [80,81]. This approximation has a single
spatial integration with two θ functions featuring the local
Fermi momenta. (The explicit formulas for the low-resolution
LDA momentum distributions are given in the Appendix.)

We demonstrate the LDA for proton momentum distribu-
tions using the AV18 potential in Fig. 7, for which we can
compare to quantum Monte Carlo calculations [77,79,82]. We
use proton and neutron densities generated from the SLy4
Skyrme functional [83] using the HFBRAD code [84]. We
expect the approximations to be valid at least for momenta
above the gray-shaded regions and indeed the agreement is
quite reasonable, particularly at the highest momenta. (We
exclude the predictions below q = 0.6 fm−1 because of the
poor approximation; better treatments will be presented in
Ref. [74].) It is evident that the high momentum tails are
very similar across the nuclei; this is the manifestation of
the universal behavior of these distributions. There is a clear
signature of the sharp cutoff caused by the θ functions in
Eq. (A1) at momenta near the Fermi momentum kF. We expect
a smoother distribution with higher-order contributions to the
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FIG. 7. Proton momentum distributions for 12C, 16O, and 40Ca calculated in the LDA for q > 0.6 fm−1. Here we use AV18 to SRG evolve
the operator setting λ = 1.35 fm−1, and divide each distribution by the proton number Z . The gray-shaded sections are where q < λ. Black
dots correspond to AV18 quantum Monte Carlo calculations [77].

DME as well as from long-range correlations. From Table I
we see evidence that the s waves dominate the contributions
to these momentum distributions.

The high-momentum tail of any momentum distribution
will be scale and scheme dependent, i.e., dependent on the
potential used. We can reproduce results at low-RG resolu-
tion for any initial potential, but the reaction operators must
be consistently evolved. As is evident from Fig. 3, we can
cancel out the scale and scheme dependence in many cases by
taking ratios. We show examples in Figs. 8 and 9 for the pair
distribution at Q = 0. A clarifying feature of the LDA is that
the theta functions defining the Fermi sea imply simple con-
sequences for the pair distribution when Q = 0. In particular,
the proton and neutron Fermi spheres overlap, so when N � Z
the product of the theta functions is unity for the proton Fermi
momentum below kp

F , independent of kn
F .

In Fig. 8 we show ratios of the pp + pn to nn + np pair
momentum distributions at Q = 0 as a function of q for six
nuclei from 12C to 208Pb. We restrict the range of the plot
to the region where SRC physics is expected to dominate.
The ratio is equal to 1 for N = Z nuclei at all q, as expected
from factorization as illustrated in Fig. 3 if the nucleus in
numerator and denominator are the same. Even though there
are no high-momentum nucleons in the low-resolution wave
function, the result is consistent with phenomenology that
the proton and neutron high-momentum distributions should

TABLE I. Percentage contributions from s waves and selected p
waves to proton momentum distributions for q > 2 fm−1. We show
NX /N with N ∼ ∫ ∞

2 dq q2nA
λ (q), where nA

λ (q) is the proton distribu-
tion for nucleus A with evolved operator at λ = 1.35 fm−1 and X
denotes using only one partial wave.

Nucleus 1S0 (%) 3S1 (%) 3P0 (%) 1P1 (%) 3P1 (%)

12C 15.5 78.9 1.0 0.8 3.8
16O 15.5 79.1 1.0 0.8 3.6
40Ca 15.4 78.7 1.1 0.9 4.0
48Ca 15.4 78.5 1.1 0.9 4.1
56Fe 15.4 78.4 1.1 0.9 4.2
208Pb 15.4 78.4 1.1 0.9 4.2

be about the same [1]. In the region of np dominance near
q = 2 fm−1 (400 MeV), this ratio should be unity independent
of N/Z , while there is N/Z dependence away from this region
because there are more nn than pp pairs.

In Fig. 9 we show ratios of the pp to pn pair distributions
as a function of q for the same nuclei as in Fig. 8. The ratio
dips down to essentially zero just before 2 fm−1and then rises
to about 0.15 at 4 fm−1. This trend is also observed in the
GCF calculations [10,38] and reflects the transition from the
dominant effect of the tensor force toward the scalar limit.
In the low-resolution calculations here, this dependence on
q is purely from the high-momentum part of the factorized
unitary transformations. The ratio shows no dependence on
N/Z because the pair momentum distribution at high q and
Q = 0 is restricted entirely by the proton Fermi sphere in the
δŨδŨ † term of Eq. (A3) for N � Z nuclei.

Finally, in Fig. 10 we compare calculated SRC scaling
factors a2 using AV18 to values for nuclei extracted from

FIG. 8. Ratios of pp + pn to nn + np for various nuclei calcu-
lated in the LDA with the leading two-body truncation of the pair
distribution operator evaluated at Q = 0. Here we use AV18 and set
λ = 1.35 fm−1.
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FIG. 9. Ratios of proton-proton to proton-neutron distributions
using AV18 and λ = 1.35 fm−1.

inclusive cross section ratios [7,23]. Following the prescrip-
tion of Ref. [27], we estimate a2 by integrating single-
nucleon probability distributions (phase-space weighted
nA

λ (q), summing proton and neutron distributions) over a high-
momentum range:

a2(A) = lim
q→∞

PA(q)

Pd (q)
≈ 2

A

∫
qhigh dq q2nA

λ (q)∫
qhigh dq q2nd

λ (q)
. (12)

We apply the LDA to both the numerator and denominator,
which may help to cancel systematic errors. Results using
densities from the SLy4 Skyrme functional [83] are shown in
red and results using densities from the Gogny functional [85]
in blue. The “error bars” (which are not statistical uncertainty
intervals) are established by using integration ranges qhigh =

FIG. 10. SRC scaling factors a2 calculated using AV18 accord-
ing to Eq. (12). See text for further details.

2–∞ fm−1and qhigh = 3.8–4.5 fm−1 [27]. The agreement
with experiment is consistent with these error bars.

The magnitude of a2 and the trend with A can be roughly
understood at low-RG resolution from a mean-field treatment
of the leading operator product expansion for the integrands
in Eq. (12) [41,86,87]. This means a factorization approxima-
tion to δU (k, q) (including constant k dependence) and the
dominance of the 3S1 contribution. When applied to the third
term of Eq. (A1), which is the only contribution to the a2

integrals, the short-distance q dependence cancels in the a2

ratio and we are left with integrals of the θ functions over
total momentum K and relative momentum k. The integrals
decouple after switching to single-particle momenta, yielding
a product of the proton and neutron densities at R. Thus a2 is
simply given by the ratio of (1/A)

∫
d3R ρp(R)ρn(R) factors,

as would be expected from the schematic treatment in Fig. 3.
This ratio accounts for about 80% of a2 and the variation
of the integral with A tracks the A dependence from 4He to
208Pb quite closely. The remaining 20% comes primarily from
the 1S0 contribution, with the relative weighting of 1S0 and
3S1 dependent on the relative q dependence in the δU matrix
elements seen in Fig. 4.

C. Low-resolution take on SRC physics

Here we revisit the key features of high-resolution SRC
phenomenology from Sec. I, now understood from low res-
olution via Fig. 3 and through our explicit LDA calculations
from Sec. IV B.

(1) Universal high-momentum nucleon distributions. The
entire sequence in Fig. 3 illustrates the outcome of
taking ratios of inclusive cross sections. Figure 3(h)
in particular is the embodiment of universal distribu-
tions, with the dependence on the nucleus factorized
from the dependence on the high momenta. Explicit
calculations of the momentum densities manifest the
factorization as seen in Fig. 7, where each nucleus
exhibits the same q dependence. The kinematic thresh-
olds selected for the inclusive experiments are those
necessary for this clean factorization to hold. For SRG
parameter λ comparable to kF, this corresponds to
the conditions for factorization as well as complete
dominance of the two-body current. In taking ratios,
the high-momentum part cancels out, so the leading
dependence of the plateau heights in the cross-section
ratio, namely a2, is a mean-field quantity [38,41],
which is well reproduced in our approximations (see
Fig. 10). The conditions here hold for any high-
momentum current.

(2) Kinematics of the knocked-out nucleons. If we look
at Fig. 3(e), we see that the external high-momentum
current operator is connected to the soft, evolved low-
energy wave function by the operator Û †. That wave
function has mostly Fermi sea nucleons and nearby ad-
mixtures. When Û † acts, we can read off from Eq. (3)
that connecting to a high-momentum nucleon must
come from the δU †

λ part. Since this part starts with
a two-body piece with the same pair center-of-mass
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momentum K as for the states annihilated from
the Fermi sea or near the Fermi surface, the high-
momentum states must be a pair with center-of-mass
momentum distribution the same as the Fermi sea. Fur-
thermore, the contributions are dominated by relative
s waves (see Table I). Thus this basic part of SRC
phenomenology [88] follows immediately.

We can address the role of the omitted three-body
terms either through direct evolution, which is nontriv-
ial but well-established technology for SRG evolution
[89], or indirectly by considering the dependence on
the SRG flow parameter λ. Weak dependence indicates
small effects of three-body (and higher-body) opera-
tors. The work of Neff, Feldmeier, and Horiuchi [76]
used the indirect method for the SRG-evolved nucleon
pair distributions for A = 3 and A = 4. For example,
they look at pair densities with SRG two-body-only
unitary transformations in helium-4 and identify where
there is λ dependence. There is almost no depen-
dence for K = 0 pairs, but with larger center-of-mass
momentum it is significant, meaning that three-body
contributions cannot be neglected. When integrated
over K there is slight λ dependence near 2 fm−1 in
the dominant S = 1, T = 0 channel and strong de-
pendence in the other channels. In all cases the λ

dependence is small above 3 fm−1. The λ dependence
for the calculations presented here will be explored in
detail in future work [74].

(3) Ratio of np to pp knocked-out pairs for intermediate
relative momentum (300–500 MeV). Tensor dominance
follows directly from calculations of the unitary trans-
formation operator in the two-body subspace. Figure 4
shows the ratio of unitary transformations in the dom-
inant s waves. The ratio of triplet to singlet shows the
peak near q = 2 fm−1 for both potentials, associated
with a zero in the 1S0 channel and the enhanced tensor
contribution in the 3S1 channel. Figure 5 shows that
despite the tensor dominance, at low-RG resolution
the coupling to the wave function is through the s
waves, not tensor correlations in the wave functions.
The consequences for experimental ratios are illus-
trated in Figs. 8 and 9, which are consistent with SRC
phenomenology.

(4) Ratio of knockout cross sections from neutron-rich
nuclei compared to N = Z nuclei.

In the region of np dominance, the pairs coupled
from the Fermi sea are almost all np pairs, so the
high-momentum proton and neutron distributions are
the same, independent of the N/Z ratio in the mean-
field part. This is seen in Fig. 8 and is an immediate
consequence of the δU part being dominated by the 3S1

channel and this term in Û creating pairs. So whatever
low-energy wave function it hits, it will always “kick
above the Fermi sea” an equal number of neutrons and
protons.

(5) Transition from np dominance of SRC pairs to ra-
tios expected from scalar counting. This transition is
manifested in Figs. 4 and 9. In the low-RG resolution
formalism, it is simply a consequence of the two-body

physics that is encapsulated in the two-body unitary
transformations by the SRG evolution. This physics is
well known from NN scattering.

The generalized contact formalism. As already noted, the
GCF phenomenology is built on a factorization ansatz for the
many-body wave function when a pair of nucleons has small
relative distance or high relative momenta. This leads to the
pair distributions in coordinate and momentum space taking
the forms in Eqs. (1) and (2), respectively.

The parallel formulation at low-RG resolution is that the
dependence on r or q in the wave function becomes the cor-
responding part of the factorized unitary transformation. As
such, it is the leading term in an operator product expansion
[41,42,44,86]. A key advantage of the RG formulation is that
systematic corrections are well defined.

The low-order correlation operator approximation (LCA).
The LCA methodology can be used to compute observables
for nucleon knockout reactions that are dominated by SRCs.
The high-resolution ground-state wave function |�A〉 or nu-
cleus A is related to a simple wave function |�A〉 (a Slater
determinant in practice) through a correlation operator G̃:

|�A〉 = 1√
〈�A|G̃†G̃|�A〉

G̃|�A〉. (13)

The LCA consists in approximating G̃ by central (Jastrow),
tensor, and spin-isospin SRC correlations with terms corre-
sponding to two-body operators. The dominant contribution
to the SRC part of the nuclear momentum distribution takes
the form [27]

nA
SRC(q) ∼

∑
NN ′∈{p,n}

∑
αβ

∑
K,k,k′

G̃†
12

(
K
2

+ k − q
)

× G̃12

(
K
2

+ k′ − q
)

× 〈Nα, N ′β|a†
K
2 +k

a†
K
2 −k

a K
2 +k′a K

2 −k′ |Nα, N ′β〉,
(14)

where the α, β sum runs over occupied single-particle states
in the Slater determinant |�A〉. The parallels to our low-
RG resolution formulation are apparent, both using a simple
many-body wave function and with the correlation function
taking the place of our two-body unitary transformations.
Note that these functions are not unitary and they are con-
structed by matching to ab initio results rather than being
constructed directly. It will be interesting to make more de-
tailed comparisons.

V. DISCUSSION: TAKEAWAY POINTS

In this section we summarize some of the takeaway points
from an RG-based perspective on SRC physics in the form of
answers to frequently asked questions.

(1) What is short-range-correlation (SRC) physics? SRC
physics is short-distance physics manifesting at high
RG resolution as high-relative-momentum nucleon
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pairs, while such pairs are suppressed at low RG res-
olution. The SRC momentum scale starts where the
tensor force dominates the NN interaction (around
2 fm−1 = 400 MeV or a bit lower). The SRC pairs
have center-of-mass momentum distributions with a
width comparable to the Fermi momentum.

(2) Where does the short-range physics of SRC pairs
appear at low RG resolution? With decreas-
ing RG resolution, this physics will shift from
wave functions (structure) to interaction operators
(potential/reactions) with smooth momentum depen-
dence. This was demonstrated explicitly and quan-
titatively for deuteron electrodisintegration [90,91].
The characteristics of this SRC physics can be
identified from the unitary transformation operator
evaluated in a few-body space (it is dominantly two-
body).

(3) Which is the correct picture of nuclei, with hard or
soft potentials? The RG explains that both hard and
soft pictures are correct descriptions of nature (actu-
ally there is a continuum of pictures!), if one treats
structure and reactions consistently (i.e., at the same
RG resolution).

(4) What is the best choice of RG resolution scale? Wein-
berg’s third law of progress in theoretical physics [59]
states “You can use any degrees of freedom you like
to describe a physical system, but if you choose the
wrong ones you’ll be sorry!” For applications to hard
scattering in QCD, the resolution scale is chosen to be
of order the characteristic four-momentum transfer so
that the reaction mechanism can be calculated in per-
turbation theory and factorization is well established.
But the best choice of scale may not be so clear for
analyzing SRC experiments because of the tradeoffs.

(5) Is SRC physics missing from low-RG resolution
descriptions of nuclei? It is not missing. The Hamil-
tonians at low resolution are constructed to match
energies or scattering observables for low-energy
bound states. This can be seen explicitly through
RG evolution (e.g., with the SRG), where short-
distance modification of wave functions in coordinate
space due to repulsive core or tensor interactions,
or the related high-momentum tail of momentum-
space wave functions, is smoothly suppressed with
the lowering of the RG scale and the potential shifts
by weakly momentum-dependent pieces. If appropri-
ate (i.e., consistent) operators are omitted, then SRC
physics will be missed, but it can always be accom-
modated in a consistent calculation.

(6) What are the advantages of a high-RG-resolution
description of nuclei? A high-RG description enables
models of short-distance physics that use resolved
degrees of freedom. This can mean that the domi-
nant reaction mechanism is particularly simple (e.g.,
one-body currents). The high-RG-resolution GCF
phenomenology provides a reasonable, if not yet
high-precision, description of SRC experiments to
date. It is also the starting point for evolution to low
resolution.

(7) What are the advantages of a low-RG-resolution de-
scription of nuclei? The nuclear structure is increas-
ingly perturbative at low resolution. Many ab initio
methods only work at lower resolutions and many-
body perturbation theory becomes usable. Scale
separations and factorization are better exploited.
Universal behavior is more apparent. Final-state in-
teractions have been shown to be suppressed for
deuteron electrodisintegration and this is expected to
be a general phenomena based on local decoupling.

(8) What does it mean for structure and reaction mod-
els to be consistent? There are several aspects to
consistency. One aspect is the scale and scheme.
If one uses a low-resolution wave function with
high-resolution reaction operators, this is inconsis-
tent and can lead to apparent quenching. To maintain
consistency at different scales, one can start with
a consistent Hamiltonian and current operators and
evolve them together with an RG approach like SRG.

(9) How do you connect the pictures at two resolu-
tions? Using the (similarity) renormalization group!
The consistent low-RG resolution operators can be
evolved from high resolution (even many-body oper-
ators). Unitary evolution is an important aspect if we
want to describe high-experimental-resolution probes
of low-RG-resolution nuclei. Or, consistent operators
can be fit. (The latter possibility will be explored in
future work [74].)

(10) How does RG resolution relate to experimental res-
olution? RG resolution is set by the decoupling
scale, which dictates what momenta are part of a
low-energy wave function. Note that for unitary RG
evolution, like the SRG, this is a separation scale; the
high-momentum components are not eliminated but
appear only in wave functions of high-energy states.
Experimental resolution is set by the kinematics of
the experiment. These are independent! The RG reso-
lution is not a measurable quantity but rather a choice
of the analysis.

(11) Can high-momentum nuclear distributions be mea-
sured experimentally? They can be extracted from
experiment in a scale/scheme dependent manner.
This is the same situation as with QCD parton dis-
tributions. Note that this means that high-momentum
distributions using different Hamiltonians (which
will manifest scale and scheme dependence) will not
agree.

(12) When you soften a Hamiltonian, do you “harden”
the interaction operators? No. SRG makes unitary
transformations, so no physics is lost, but it is non-
perturbatively “reshuffled.” (Note that this means that
an SRG-evolved Hamiltonian will have the same lim-
itations or virtues as the original Hamiltonian.) Low-
energy states filter operators so only low-momentum
components of the operator contribute to matrix ele-
ments. This leads to numerous simplifications. Purely
high-momentum operators (meaning operators con-
necting to only high-momentum physics) factorize
and the dependence on high momentum is state
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independent. This is the manifestation of an opera-
tor product expansion. Where the tensor interaction
plays a role, there is a deemphasis of D-wave physics
compared to S-wave contributions. Reduced final-
state interactions are observed. The complication is
from higher many-body operators, but these can be
evolved in few-body spaces.

(13) What are the implications for other knock-out re-
actions? Analyses of intermediate energy nucleon
knock-out experiments often mix a high-resolution
reaction mechanism (e.g., eikonal model) with a low-
resolution structure description (e.g., shell model)
[14,92]. Such a mismatch applied to the electron-
scattering SRC experiments considered here would
lead to essentially zero cross section predicted theo-
retically because the contribution from the two-body
current at low RG resolution would be entirely omit-
ted and the one-body current has no support at
high momentum. This implies that RG evolution of
the reaction operators may be relevant for resolv-
ing systematic discrepancies between measured cross
sections and theoretical predictions [14,92] (see also
Ref. [93]).

VI. SUMMARY

We have demonstrated that high-RG-resolution SRC
physics is faithfully incorporated at low resolution by uni-
tary RG evolution, with weakly correlated wave functions
and simple evolved operators. We have also confirmed that
at low resolution the consequences of SRC experiments fol-
low directly from basic and well-established nuclear physics:
the density dependence of nuclei and characterisitcs of the
nucleon-nucleon interactions, in particular the tensor force
and short-distance repulsion. Furthermore, the basic features
of the SRC phenomenologies, in particular the GCF and the
LCA, emerge naturally by consideration of low resolution.
The systematic SRG framework points to how to improve
them.

The value so far of the SRC knockout experiments is not
new insight into the internucleon interactions or features of
the many-body wave functions. Indeed, we have seen that

all that is needed to explain the observations are familiar
features of the NN interaction from phenomenological or chi-
ral EFT potentials well understood from pion exchange and
fitting to NN scattering data. Rather, it is the demonstration
that this physics can be isolated and controlled that opens
the possibilities to understand more complicated reactions. A
better understanding of how to analyze reactions is critical
for rare isotope nuclear physics and extensions of the SRC
experiments can be a gateway. Combined with RG analyses,
such experiments can help calibrate and test reactions cleanly
and set the stage for extensions to more complicated knockout
reactions.

Planned extensions of the present investigations in the short
term include [74] further examining the SRG resolution (λ)
dependence; improving the treatment of the ground-state wave
function with DME corrections; relaxing the truncation to
two-body operating, quantifying the corrections and seeking
tractable approximations; and reexamining (e, e′ p) knockout
reactions studied at NIKHEF and other electron scattering
facilities [49,50]. Work on all of these areas is in progress.
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APPENDIX: LDA FORMULAS

In this Appendix we summarize the LDA formulas applied
in Sec. IV B. The single-nucleon momentum distribution is

nτ
λ(q) =

∫
d3R

{
2θ

(
kτ

F − q
) + 32

∑
L,S,T

′ ∑
J

(2J + 1)
2

π

∫ ∞

0
dk k2(k(LS)JT |δU |k(LS)JT )

∑
τ ′

|〈ττ ′|T τ + τ ′〉|2θ(
kτ

F − q
)

×
∫ 1

−1

dx

2
θ
(
kτ ′

F − |q − 2k|) + 2
∑

L,L′,S,T

′ ∑
J

(2J + 1)

(
2

π

)2 ∫ ∞

0
dk k2

∫ ∞

0
dK K2

∫ 1

−1

dy

2

×
∫ 1

−1

dz

2
(k(LS)JT |δU ||q − K/2|(L′S)JT )(|q − K/2|(L′S)JT |δU †|k(LS)JT )

×
∑
τ ′

|〈ττ ′|T τ + τ ′〉|2 θ
(
kτ

F − |K/2 + k|) θ
(
kτ ′

F − |K/2 − k|)}, (A1)
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where the local Fermi momentum is kτ
F (R) = [3π2ρτ (R)]1/3 with ρτ the proton or neutron number density normalized to Z or

N . For the angle averaging we have defined

|q − 2k| =
√

q2 + 4k2 − 4qkx, |q − K/2| =
√

q2 + K2/4 − qKy, |K/2 ± k| =
√

K2/4 + k2 ± Kkz. (A2)

A primed summation means a restriction to L + S + T odd and L + L′ even. Integration over
∫

d3q/(2π )3 yields the full
normalization of nτ

λ(q) from the first line in Eq. (A1) while the unitary condition from Eq. (5) expanded in partial waves enforces
cancellation of the second and third terms after changing variables appropriately.

The pair momentum distribution in the LDA assuming spherical symmetry is (with explicit R or R′ dependence)

nττ ′
λ (q, Q) = 1

2

∫
d3R 2θ

(
kτ

F (R) − |Q/2+q|)
∫

d3R′ 2θ
(
kτ ′

F (R′) − |Q/2−q|)− 1

32
(2π )3δ3(q)δτ,τ ′

∫
d3R 2θ

(
kτ

F (R) − |Q/2|)

+ 2
(2π )3

4π

∫
d3R

∑
L,S,T

′ ∑
J

(2J + 1)
2

π
(q(LS)JT |δU |q(LS)JT )|〈ττ ′|T τ + τ ′〉|2θ(

kτ
F (R) − |Q/2 + q|)

× θ
(
kτ ′

F (R) − |Q/2 − q|) + (2π )3

4π

∫
d3R

∑
L,L′,S,T

′ ∑
J

(2J + 1)

(
2

π

)2

×
∫ ∞

0
dk k2(k(LS)JT |δU |q(L′S)JT )(q(L′S)JT |δU †|k(LS)JT )

× |〈ττ ′|T τ + τ ′〉|2 θ
(
kτ

F (R) − |Q/2 + k|) θ
(
kτ ′

F (R) − |Q/2 − k|), (A3)

where for |Q| �= 0 we average over the angle between Q and k to evaluate the θ functions in the last term. The first two lines
carry the full normalization of the momentum distribution. It is easily verified that an integration over

∫
d3q/(2π )3

∫
d3Q/(2π )3

of these terms in the LDA followed by integrations over R and R′ yield Z (Z − 1)/2 if τ = τ ′ = 1/2, N (N − 1)/2 if τ =
τ ′ = −1/2, and NZ/2 if τ = ±1/2 while τ ′ = ∓1/2. The unitary condition from Eq. (5) expanded in partial waves enforces
cancellation of the third and fourth terms after integrating over q, for any Q. This is manifest after switching labels for k and q
in the last term.

The angle average of the θ function in the second term of Eq. (A1) is

F ττ ′
1 (q, k) =

∫ 1

−1

dx

2
θ
(
kτ ′

F − |q − 2k|)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if q < kτ ′

F and 2k < kτ ′
F − q,

kτ ′
F

2−(q−2k)2

8kq if q < kτ ′
F and kτ ′

F − q < 2k < kτ ′
F + q,

kτ ′
F

2−(q−2k)2

8kq if kτ ′
F < q < kτ

F and q − kτ ′
F < 2k < q + kτ ′

F ,

0 otherwise.

(A4)

The angle average of pairs of theta functions that appear several times in Eqs. (A1) and (A3) is given by

F2(Q, k) =
∫ 1

−1

dz

2
θ
(
kτ

F − |Q/2 + k|)θ(
kτ ′

F − |Q/2 − k|)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if k < kmin

F − Q
2 ,

(kmin
F )2−(k−Q/2)2

2kQ if k < kmin
F + Q

2 and kmin
F − Q

2 < k < kmax
F − Q

2 ,

(kavg
F )2−k2−Q2/4

kQ if kmax
F − Q

2 < k and k <

√(
kavg

F

)2 − Q2

4 ,

0 otherwise,

(A5)

where

kmin
F ≡ min

(
kτ

F , kτ ′
F

)
, (A6)

kmax
F ≡ max

(
kτ

F , kτ ′
F

)
, (A7)

kavg
F ≡

√
1

2

(
kτ

F
2 + kτ ′

F

2)
. (A8)

Extensions of the local density approximation applied here are discussed in Ref. [74].

034311-14



SHORT-RANGE CORRELATION PHYSICS AT LOW … PHYSICAL REVIEW C 104, 034311 (2021)

[1] O. Hen, G. A. Miller, E. Piasetzky, and L. B. Weinstein,
Rev. Mod. Phys. 89, 045002 (2017).

[2] K. Brueckner, R. Eden, and N. Francis, Phys. Rev. 98, 1445
(1955).

[3] I. Korover et al. (Jefferson Lab Hall A Collaboration), Phys.
Rev. Lett. 113, 022501 (2014).

[4] O. Hen et al., Science 346, 614 (2014).
[5] M. Duer et al. (CLAS Collaboration), Nature (London) 560,

617 (2018).
[6] M. Duer et al. (CLAS Collaboration), Phys. Rev. Lett. 122,

172502 (2019).
[7] B. Schmookler et al. (CLAS Collaboration), Nature (London)

566, 354 (2019).
[8] R. Cruz-Torres et al. (Jefferson Lab Hall A Tritium Collabora-

tion), Phys. Rev. Lett. 124, 212501 (2020).
[9] A. Schmidt et al. (CLAS Collaboration), Nature (London) 578,

540 (2020).
[10] I. Korover et al. (CLAS Collaboration), Phys. Lett. B 820,

136523 (2021).
[11] D. J. Amit and V. Martin-Mayor, Field Theory, the Renormaliza-

tion Group, and Critical Phenomena, 3rd ed. (World Scientific,
Singapore, 2005).

[12] G. Sterman, J. Smith, J. C. Collins, J. Whitmore, R. Brock,
J. Huston, J. Pumplin, W.-K. Tung, H. Weerts, C.-P. Yuan, S.
Kuhlmann, S. Mishra, J. G. Morfín, F. Olness, J. Owens, J. Qiu,
and D. E. Soper, Rev. Mod. Phys. 67, 157 (1995).

[13] M. Peskin and D. Schroeder, An Introduction to Quantum Field
Theory (Addison-Wesley, Reading, MA, 1995).

[14] T. Aumann et al., Prog. Part. Nucl. Phys. 118, 103847
(2021).

[15] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[16] J. Carlson, V. R. Pandharipande, and R. B. Wiringa, Nucl. Phys.
A 401, 59 (1983).

[17] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J.
Carlson, Phys. Rev. C 64, 014001 (2001).

[18] K. Heyde, Basic Ideas and Concepts in Nuclear Physics: An
Introductory Approach (CRC Press, Boca Raton, 2004).

[19] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, Berlin, 2005).

[20] H. Hergert, Front. Phys. 8, 379 (2020).
[21] K. Egiyan et al. (CLAS Collaboration), Phys. Rev. C 68, 014313

(2003).
[22] K. Egiyan et al. (CLAS Collaboration), Phys. Rev. Lett. 96,

082501 (2006).
[23] N. Fomin et al., Phys. Rev. Lett. 108, 092502 (2012).
[24] Z. Ye et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. C

97, 065204 (2018).
[25] D. Nguyen et al. (Jefferson Lab Hall A Collaboration), Phys.

Rev. C 102, 064004 (2020).
[26] D. W. Higinbotham and O. Hen, Phys. Rev. Lett. 114, 169201

(2015).
[27] J. Ryckebusch, W. Cosyn, T. Vieijra, and C. Casert, Phys. Rev.

C 100, 054620 (2019).
[28] C. Colle, O. Hen, W. Cosyn, I. Korover, E. Piasetzky, J.

Ryckebusch, and L. B. Weinstein, Phys. Rev. C 92, 024604
(2015).

[29] R. Weiss, B. Bazak, and N. Barnea, Phys. Rev. C 92, 054311
(2015).

[30] M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. C 94,
044309 (2016).

[31] R. Weiss, R. Cruz-Torres, N. Barnea, E. Piasetzky, and O. Hen,
Phys. Lett. B 780, 211 (2018).

[32] R. Weiss, I. Korover, E. Piasetzky, O. Hen, and N. Barnea,
Phys. Lett. B 791, 242 (2019).

[33] R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky,
A. Schmidt, L. B. Weinstein, and N. Barnea, Phys. Rev. C 103,
L031301 (2021).

[34] J. Ryckebusch, W. Cosyn, and M. Vanhalst, J. Phys. G 42,
055104 (2015).

[35] J. Ryckebusch, W. Cosyn, S. Stevens, C. Casert, and J. Nys,
Phys. Lett. B 792, 21 (2019).

[36] S. Tan, Ann. Phys. (NY) 323, 2952 (2008).
[37] S. Tan, Ann. Phys. (NY) 323, 2971 (2008).
[38] R. Cruz-Torres et al., Nat. Phys. 17, 306 (2021).
[39] J. Pybus, I. Korover, R. Weiss, A. Schmidt, N. Barnea, D.

Higinbotham, E. Piasetzky, M. Strikman, L. Weinstein, and
O. Hen, Phys. Lett. B 805, 135429 (2020).

[40] R. Anderson, Can. J. Commun. 41, 249 (2016).
[41] E. R. Anderson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry,

Phys. Rev. C 82, 054001 (2010).
[42] S. K. Bogner and D. Roscher, Phys. Rev. C 86, 064304

(2012).
[43] R. Furnstahl, in Proceedings of the International Conference on

Nuclear Theory in the Supercomputing Era, Ames, Iowa, 2013,
edited by A. M. Shirokov and A. I. Mazur (Pacific National
University, Khabarovsk, Russia, 2014), p. 371.

[44] A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C
102, 034005 (2020).

[45] M. Preston and R. Bhaduri, Structure of the Nucleus (Addison-
Wesley, Reading, MA, 1975).

[46] K. R. Greider, Phys. Rev. 114, 786 (1959).
[47] S. C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51,

53 (2001).
[48] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,

K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[49] A. E. L. Dieperink and P. K. A. Huberts, Annu. Rev. Nucl. Part.
Sci. 40, 239 (1990).

[50] J. J. Kelly, Adv. Nucl. Phys. 23, 75 (1996).
[51] A. Bianconi, S. Jeschonnek, N. N. Nikolaev, and B. G.

Zakharov, Nucl. Phys. A 608, 437 (1996); 616, 680(E) (1997).
[52] R. Furnstahl and H. Hammer, Phys. Lett. B 531, 203 (2002).
[53] L. P. Kadanoff, Phys. Phys. Fiz. 2, 263 (1966).
[54] K. G. Wilson, Phys. Rev. B 4, 3174 (1971).
[55] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[56] M. Gell-Mann and F. E. Low, Phys. Rev. 95, 1300 (1954).
[57] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
[58] H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
[59] S. Weinberg, in Asymptotic Realms of Physics (MIT Press,

Cambridge, 1983), pp. 1–19.
[60] S. K. Bogner, R. J. Furnstahl, S. Ramanan, and A. Schwenk,

Nucl. Phys. A 784, 79 (2007).
[61] S. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863

(1993).
[62] S. D. Glazek and K. G. Wilson, Phys. Rev. D 49, 4214 (1994).
[63] F. Wegner, Ann. Phys. (Leipzig) 506, 77 (1994).
[64] F. Wegner, Phys. Rep. 348, 77 (2001).
[65] S. K. Bogner, T. T. S. Kuo, A. Schwenk, D. R. Entem, and

R. Machleidt, Phys. Lett. B 576, 265 (2003).
[66] S. K. Bogner, A. Schwenk, T. T. S. Kuo, and G. E. Brown,

arXiv:nucl-th/0111042.

034311-15

https://doi.org/10.1103/RevModPhys.89.045002
https://doi.org/10.1103/PhysRev.98.1445
https://doi.org/10.1103/PhysRevLett.113.022501
https://doi.org/10.1126/science.1256785
https://doi.org/10.1038/s41586-018-0400-z
https://doi.org/10.1103/PhysRevLett.122.172502
https://doi.org/10.1038/s41586-019-0925-9
https://doi.org/10.1103/PhysRevLett.124.212501
https://doi.org/10.1038/s41586-020-2021-6
https://doi.org/10.1016/j.physletb.2021.136523
https://doi.org/10.1103/RevModPhys.67.157
https://doi.org/10.1016/j.ppnp.2021.103847
https://doi.org/10.1103/PhysRevC.51.38
https://doi.org/10.1016/0375-9474(83)90336-6
https://doi.org/10.1103/PhysRevC.64.014001
https://doi.org/10.3389/fphy.2020.00379
https://doi.org/10.1103/PhysRevC.68.014313
https://doi.org/10.1103/PhysRevLett.96.082501
https://doi.org/10.1103/PhysRevLett.108.092502
https://doi.org/10.1103/PhysRevC.97.065204
https://doi.org/10.1103/PhysRevC.102.064004
https://doi.org/10.1103/PhysRevLett.114.169201
https://doi.org/10.1103/PhysRevC.100.054620
https://doi.org/10.1103/PhysRevC.92.024604
https://doi.org/10.1103/PhysRevC.92.054311
https://doi.org/10.1103/PhysRevC.94.044309
https://doi.org/10.1016/j.physletb.2018.01.061
https://doi.org/10.1016/j.physletb.2019.02.019
https://doi.org/10.1103/PhysRevC.103.L031301
https://doi.org/10.1088/0954-3899/42/5/055104
https://doi.org/10.1016/j.physletb.2019.03.016
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1038/s41567-020-01053-7
https://doi.org/10.1016/j.physletb.2020.135429
https://doi.org/10.22230/cjc.2016v41n2a3068
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.86.064304
https://doi.org/10.1103/PhysRevC.102.034005
https://doi.org/10.1103/PhysRev.114.786
https://doi.org/10.1146/annurev.nucl.51.101701.132506
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1146/annurev.ns.40.120190.001323
https://doi.org/10.1016/0375-9474(96)00248-5
https://doi.org/10.1016/S0375-9474(97)00122-X
https://doi.org/10.1016/S0370-2693(01)01504-0
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevB.4.3174
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRev.95.1300
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1016/j.nuclphysa.2006.11.123
https://doi.org/10.1103/PhysRevD.48.5863
https://doi.org/10.1103/PhysRevD.49.4214
https://doi.org/10.1002/andp.19945060203
https://doi.org/10.1016/S0370-1573(00)00136-8
https://doi.org/10.1016/j.physletb.2003.10.012
http://arxiv.org/abs/arXiv:nucl-th/0111042


TROPIANO, BOGNER, AND FURNSTAHL PHYSICAL REVIEW C 104, 034311 (2021)

[67] S. K. Bogner, T. T. S. Kuo, and A. Schwenk, Phys. Rep. 386, 1
(2003).

[68] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl.
Phys. 65, 94 (2010).

[69] R. J. Furnstahl and K. Hebeler, Rep. Prog. Phys. 76, 126301
(2013).

[70] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys. Rev. C
90, 024325 (2014).

[71] S. Binder, J. Langhammer, A. Calci, and R. Roth, Phys. Lett. B
736, 119 (2014).

[72] H. Hergert, S. K. Bogner, J. G. Lietz, T. D. Morris, S. Novario,
N. M. Parzuchowski, and F. Yuan, in An Advanced Course
in Computational Nuclear Physics, Lecture Notes in Physics
Vol. 936 (Springer, Cham, 2017), p. 477.

[73] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K.
Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323
(2014).

[74] A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl (unpublished).
[75] W. Dickhoff and D. Van Neck, Many-Body Theory Exposed!

(World Scientific, Singapore, 2005).
[76] T. Neff, H. Feldmeier, and W. Horiuchi, Phys. Rev. C 92,

024003 (2015).
[77] R. Wiringa, Single-nucleon momentum distributions (last up-

dated September 18, 2020), https://www.phy.anl.gov/theory/
research/momenta/

[78] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevC.104.034311 for additional figures.

[79] R. B. Wiringa, R. Schiavilla, S. C. Pieper, and J. Carlson,
Phys. Rev. C 89, 024305 (2014).

[80] J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972).
[81] S. K. Bogner, R. J. Furnstahl, and L. Platter, Eur. Phys. J. A 39,

219 (2009).
[82] D. Lonardoni, A. Lovato, S. C. Pieper, and R. B. Wiringa,

Phys. Rev. C 96, 024326 (2017).
[83] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer,

Nucl. Phys. A 635, 231 (1998); 643, 441(E) (1998).
[84] K. Bennaceur and J. Dobaczewski, Comput. Phys. Commun.

168, 96 (2005).
[85] J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1980).
[86] J.-W. Chen, W. Detmold, J. E. Lynn, and A. Schwenk,

Phys. Rev. Lett. 119, 262502 (2017).
[87] J. E. Lynn, D. Lonardoni, J. Carlson, J. W. Chen, W. Detmold,

S. Gandolfi, and A. Schwenk, J. Phys. G 47, 045109 (2020).
[88] E. Cohen et al. (CLAS Collaboration), Phys. Rev. Lett. 121,

092501 (2018).
[89] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev. Lett.

103, 082501 (2009).
[90] S. N. More, S. König, R. J. Furnstahl, and K. Hebeler,

Phys. Rev. C 92, 064002 (2015).
[91] S. N. More, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C 96,

054004 (2017).
[92] J. A. Tostevin and A. Gade, Phys. Rev. C 90, 057602 (2014).
[93] J. Wylie, J. Okołowicz, W. Nazarewicz, M. Płoszajczak, S. M.

Wang, X. Mao, and N. Michel, arXiv:2107.12160.

034311-16

https://doi.org/10.1016/j.physrep.2003.07.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1088/0034-4885/76/12/126301
https://doi.org/10.1103/PhysRevC.90.024325
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1103/PhysRevC.90.054323
https://doi.org/10.1103/PhysRevC.92.024003
https://www.phy.anl.gov/theory/research/momenta/
http://link.aps.org/supplemental/10.1103/PhysRevC.104.034311
https://doi.org/10.1103/PhysRevC.89.024305
https://doi.org/10.1103/PhysRevC.5.1472
https://doi.org/10.1140/epja/i2008-10695-1
https://doi.org/10.1103/PhysRevC.96.024326
https://doi.org/10.1016/S0375-9474(98)00180-8
https://doi.org/10.1016/S0375-9474(98)00570-3
https://doi.org/10.1016/j.cpc.2005.02.002
https://doi.org/10.1103/PhysRevC.21.1568
https://doi.org/10.1103/PhysRevLett.119.262502
https://doi.org/10.1088/1361-6471/ab6af7
https://doi.org/10.1103/PhysRevLett.121.092501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevC.92.064002
https://doi.org/10.1103/PhysRevC.96.054004
https://doi.org/10.1103/PhysRevC.90.057602
http://arxiv.org/abs/arXiv:2107.12160

