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We present predictions for the neutron matter equation of state, from leading to fourth order of chiral effective
field theory, using recently developed, accurate chiral nucleon-nucleon potentials. For the many-body method,
we employ the nonperturbative particle-particle ladder approximation, that is, we solve the G-matrix equation.
We find the impact of subleading three-neutron forces to be mild and attractive. We also show order-by-order
predictions for the symmetry energy, and discuss its density dependence in relation to empirical constraints. For
the nuclear matter equation of state, in this work we adopt an empirical parametrization with good saturation
properties. This is to highlight, specifically, the energy and pressure in neutron matter, particularly when
comparing with empirical constraints.
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I. INTRODUCTION

The idealized, infinite system known as nuclear matter has
traditionally served as a convenient testing ground for theories
of nuclear forces. Symmetric nuclear matter (SNM) offers
the opportunity to explore the relationship between saturation
properties and bulk properties of finite nuclei, an issue that is
receiving considerable attention [1–6].

Theoretical predictions of neutron-rich matter are equally
important and particularly timely, as they complement ongo-
ing and planned experimental efforts. PREX-II [7] has just
been completed, and more experiments, such as CREX [8]
and MESA [9], seek to place high-precision constraints on
the neutron radii and neutron skins of 48Ca and 208Pb, and will
further elucidate the relation between the neutron skin and the
energy and pressure in neutron-rich matter.

Furthermore, the equation of state (EoS) of neutron-rich
matter has recently been brought to the forefront of nuclear
astrophysics due to its relevance for calculating properties
of neutron stars. Neutron stars are important natural labora-
tories for constraining theories of the EoS for neutron-rich
matter, to which the mass-radius relationship of these stellar
objects is sensitive. The radius of the average-mass neutron
star is especially sensitive to the pressure gradient in neu-
tron matter around normal densities [10]. Interest in these
compact stars has increased considerably as we have en-
tered the “multimessenger era” of astrophysical observation.
The GW170817 neutron star merger event has yielded new
and independent constraints on the radius of a neutron star
[11,12]. More precisely, with the constraint that a mass of
2 M� [13] is supported by the EoS, the radii of the two
neutron stars are reported as R1 = (11.9 ± 1.4) km and
R2 = (11.9 ± 1.4) km, with the respective mass ranges con-
strained at (1.18–1.36) M� (for M1) and (1.36–1.58) M� (for
M2) [14].

It is the purpose of this paper to present our latest re-
sults for the EoS of neutron matter (NM) and the properties
of the symmetry energy. We will use high-quality nuclear
forces constructed within the framework of chiral effective
field theory (EFT). Over the past several years, chiral EFT
has evolved into the most favorable approach for develop-
ing nuclear interactions: it provides a systematic way to
construct nuclear two- and many-body forces on an equal
footing [15] and allows us to assess theoretical uncertainties
through an expansion controlled by an organizational scheme
known as “power counting” [16]. Furthermore, chiral EFT
maintains consistency with the underlying fundamental the-
ory of strong interactions, quantum chromodynamics (QCD),
through the symmetries and symmetry breaking mechanisms
of low-energy QCD.

We present order-by-order calculations, including sublead-
ing three-nucleon forces (3NFs) up to next-to-next-to-next-to-
leading order (N3LO), with proper uncertainty quantification.
Thus, we are able to draw reliable conclusions about the con-
vergence pattern of the chiral perturbation series up to fourth
order.

Our main focal point is the symmetry energy. It is puz-
zling that the findings from the recent PREX-II experiment
[17]—(38.29 ± 4.66) MeV and (109.56 ± 36.41) MeV, for
the symmetry energy at saturation and the slope parameter
L, respectively—are at variance with a very large number
of experimental measurements and theoretical predictions of
the symmetry energy and its density dependence, as noted
by the authors of Ref. [17]. Therefore, we will also discuss
our predictions in relation to empirical constraints. In particu-
lar, we provide microscopic values for the symmetry energy
and its slope at densities at and below saturation density,
in light of recent observations about the methods to extract
those constraints. By constraining the symmetry energy over
a range of densities below saturation—having identified the
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densities at which a specific observable is maximally sensitive
to the symmetry energy—the model dependence arising from
extrapolation to normal density can be avoided [18].

This paper is organized as follows. First, we review the
main aspects of our calculations of NM and the symmetry
energy; see Sec. II. Predictions are presented and discussed in
Sec. III, and our observations and conclusions are summarized
in Sec. IV.

II. DESCRIPTION OF THE CALCULATIONS

We perform microscopic calculations of the energy per
particle in neutron matter using the nonperturbative particle-
particle ladder approximation, which generates the leading-
order contributions in the traditional hole-line expansion. The
Bethe-Goldstone equation for two particles in an uncoupled
state with total center-of-mass momentum �P and initial rela-
tive momentum �q0 in nuclear matter with Fermi momentum
kF is, after angle averaging of the Pauli operator Q:

GP,z,kF (q, q0)

= V (q, q0) +
∫ ∞

0
dkk2 V (q, k)Q(k, P, kF )G(k, q0)

z − [ε( �P + �k) + ε( �P − �k)] + iδ
.

(1)

When calculating the single-particle potential U , the potential
V requires a factor of 1/2 in the density-dependent potential
at the Hartree-Fock level [19]:

V = V2NF + (1/2)VDD, (2)

where the first term is the actual NN potential and the second
term stands for a density-dependent effective 3NF (discussed
below). First, a self-consistent solution is obtained for the
single-particle potential U and the G matrix, which are related
as

U (k1) =
∫

d3k2( �qo, �P) 〈 �qo|GP| �qo〉, (3)

where k1,2 are single-particle momenta.
The energy per neutron is then evaluated as

E

N
= 〈T (k1)〉(kF ) + 〈U (k1)〉(kF ), (4)

where the averages are taken over the Fermi sea.
The input two-nucleon forces (2NFs) and 3NFs are de-

scribed next.

A. The two-nucleon force

The 2NFs employed in this work are part of a set which
spans five orders in the chiral EFT expansion, from leading
order (LO) to fifth order (N4LO) [20]. For the construction of
these potentials, the same power counting scheme and regu-
larization procedures are applied through all orders, making
this set of interactions more consistent than previous ones
[21]. Another novel and important aspect in the construc-
tion of these new potentials is the fact that the long-range
part of the interaction is fixed by the πN low-energy con-
stants (LECs) as determined in the recent and very accurate

(a) (b) (c)

FIG. 1. Diagrams of the leading 3NF: (a) the long-range 2PE,
depending on the LECs c1,3,4; (b) the medium-range 1PE, depend-
ing on the LEC cD; (c) the short-range contact, depending on the
LEC cE .

analysis of Ref. [22]. In fact, for all practical purposes, er-
rors in the πN LECs are no longer an issue with regard to
uncertainty quantification, which we will estimate based on
chiral truncation error. Furthermore, at the fifth (and high-
est) order, the nucleon-nucleon (NN) data below the pion
production threshold are reproduced with excellent precision
(χ2/datum = 1.15). (Of course, we will use the neutron-
neutron versions of the potentials.)

Iteration of the potential in the nonperturbative Lippmann-
Schwinger equation requires cutting off high-momentum
components. This is accomplished through the application of
a regulator function for which the nonlocal form is chosen:

f (p′, p) = exp[−(p′/�)2n − (p/�)2n], (5)

where p′ ≡ | �p ′| and p ≡ | �p | denote the final and initial nu-
cleon momenta in the two-nucleon center-of-mass system,
respectively. We use � = 450 MeV throughout this work. The
potentials are relatively soft as confirmed by the Weinberg
eigenvalue analysis of Ref. [23] and in the context of the
perturbative calculations of infinite matter of Ref. [24].

B. The three-nucleon force

Three-nucleon forces first appear at the third order of the
chiral expansion (N2LO) of the �-less theory, which is the one
we apply in this work. At this order, the 3NF consists of three
contributions [25]: the long-range two-pion-exchange (2PE)
graph, the medium-range one-pion-exchange (1PE) diagram,
and a short-range contact term. For completeness, we show
all topologies in Fig. 1; note, however, that the contributions
depending on c4, cD, and cE vanish in neutron matter [26].

In infinite matter, it is possible to construct approxi-
mate expressions for the 3NF as density-dependent effective
two-nucleon interactions as derived in Refs. [27,28]. They
are represented in terms of the well-known nonrelativis-
tic two-body nuclear force operators and, therefore, can be
conveniently incorporated in the usual NN partial wave for-
malism and the particle-particle ladder approximation for
computing the EoS. When using density-dependent potentials,
one must use the appropriate combinatoric factor to avoid
overcounting of the 3NF. That is, we apply

V = V2NF + (1/3)VDD, (6)

in the calculation of the energy per particle [compare with
Eq. (2), appropriate for the calculation of the single-particle
potential].
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(a) (b) (c) (d) (e)

FIG. 2. Some diagrams of the subleading 3NF, each being representative of a particular topology: (a) 2PE; (b) 2P1PE; (c) ring; (d) 1P
contact; (e): 2P contact. Note that the 1P-contact topology makes a vanishing contribution.

The effective density-dependent two-nucleon interactions
at N2LO consist of six one-loop topologies. Three of them are
generated from the 2PE graph of the chiral 3NF and depend
on the LECs c1,3,4, which are already present in the 2PE part
of the NN interaction. Two one-loop diagrams are generated
from the 1PE diagram, and depend on the low-energy constant
cD. Finally, there is the one-loop diagram that involves the
3NF contact diagram, with LEC cE . Again, the last two sets
do not contribute in neutron matter.

The 3NF at N3LO has been derived [29,30] and applied in
some nuclear many-body systems [24,31–33]. The long-range
part of the subleading chiral 3NF consists of (cf. Fig. 2):
the 2PE topology, which is the longest-range component of
the subleading 3NF, the two-pion-one-pion exchange (2P1PE)
topology, and the ring topology, generated by a circulating
pion which is absorbed and re-emitted from each of the three
nucleons. The in-medium NN potentials corresponding to
these long-range subleading 3NFs are given in Ref. [34] for
SNM and in Ref. [35] for NM. The short-range subleading
3NF consists of (cf. Fig. 2) the one-pion-exchange-contact
topology (1P contact), which gives no net contribution, the
two-pion-exchange-contact topology (2P contact), and rela-
tivistic corrections, which depend on the CS and the CT LECs
of the 2NF and are proportional to 1/M, where M is the
nucleon mass. We include those contributions as well and find
them to be in the order of a fraction of 1 MeV. The in-medium
NN potentials corresponding to the short-range subleading
3NFs can be found in Ref. [36] for SNM and in Ref. [37]
for NM.

The LECs we use in this work are displayed in Table I
(for completeness, we also list c4, even though it is redundant
for NM. A technical remark is in place: speaking in practical
terms, when the subleading 3NFs are included, the c1 and c3

LECs are replaced by −1.20 and −4.43 GeV−1, respectively.
This is because most of the subleading two-pion-exchange
3NF can be accounted for by a shift of the LECs in the leading
3NF equal to −0.13 GeV−1 (for c1) and 0.89 GeV−1 (for c3)
[29], plus additional contributions resulting from Eq. (1) of
Ref. [35].

Our results, displayed in Fig. 3, are in excellent agreement
with the calculations of Ref. [31]. This is an important point,
because the methods of applying the 3NFs in NM calcula-
tions are different in Ref. [31] as compared to our method. It
is worth noting, though, that the two-pion-exchange-contact
term is extremely sensitive to the chosen 2NF, through CS and
CT , as demonstrated in Ref. [31]. For this case, we show our
current predictions (blue curve) and those we obtain using
EM500 [21] (cyan curve). Values obtained with the EGM
450/700 [38] are of very similar size as those represented by
the cyan curve in Fig. 3 but opposite in sign [31]. We were also
able to reproduce closely all the subleading 3NF contributions
(at the Born level) shown in Ref. [33]. Furthermore, we point
out Ref. [39], where (partially) analytical expressions for the
energy per particle in SNM and NM in the Born approxi-
mation are provided—a very useful resource for additional
verification, for instance in the case of discrepancies with
other predictions in the literature.

Overall, Fig. 3 indicates that the net impact of the sublead-
ing 3NF is small and attractive, due to cancellations between
the more sizable contributions.

C. The symmetry energy

The EoS of isospin asymmetric matter, e(ρ, α), is typically
expressed as a series expansion with respect to the isospin
asymmetry parameter, α = ρn−ρp

ρn+ρp
, where ρn and ρp are the

neutron and proton densities, respectively:

e(ρ, α) = e(ρ, α = 0) + 1

2

(
∂2e(ρ, α)

∂α2

)
(α=0)

α2 + O(α4).

(7)

Neglecting terms of order O(α4), Eq. (7) takes the parabolic
form:

e(ρ, α) ≈ e0 + esym α2, (8)

where esym = 1
2 ( ∂2e(ρ,α)

∂α2 )α=0. If α = 1, the symmetry energy
(in the parabolic approximation) becomes the difference be-

TABLE I. Values of the LECs used in this work. The LECs c1,3,4 are given in units of GeV−1, and CS and CT are in units of GeV−2. n refers
to the exponent of the regulator function, Eq. (5) (� = 450 MeV).

Order n c1 c3 c4 CS CT

N2LO 2 –0.74 –3.61 2.44
N3LO 2 –1.07 –5.32 3.56 –118.13 –0.25
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FIG. 3. Various contributions to the 3NF at N3LO in Born approximation. In each case, the topology is indicated inside the frame. For the
two-pion-exchange-contact term, which depends sensitively on the chosen 2NF, we show our current predictions (blue) and those we obtain
using EM500 [21] (cyan) instead of the N3LO potential from Ref. [20].

tween the energy per particle in NM and the one in SNM:

esym(ρ) = e1(ρ) − e0(ρ). (9)

It is important to be aware of Ref. [40]—see also
Refs. [41,42]—where terms of order α4 and higher have been
extracted in perturbative calculations with chiral potentials.
These effects may be relevant in calculations of beta-stable
matter at large density, where they impact the proton fraction
at subleading level.

The expansion of the symmetry energy with respect to
density about the saturation point helps identify useful param-
eters:

esym(ρ) ≈ esym(ρo) + L
ρ − ρo

3ρo
+ Ksym

2

(ρ − ρo)2

(3ρo)2
. (10)

L is referred to as the slope parameter, and is a measure of the
slope of the symmetry energy at saturation:

L = 3ρo

(∂esym(ρ)

∂ρ

)
ρo

. (11)

Furthermore, it is obvious from Eqs. (9) and (11) that L is a
measure of the slope of the NM EoS at saturation density since
the SNM EoS has a vanishing slope at that point, by definition
of saturation. From a variety of phenomenological models, a
typical range for L can be stated as (70 ± 20) MeV [43–47].

The parameter Ksym characterizes the curvature of the sym-
metry energy at saturation density:

Ksym = 9 ρ2
o

(∂2esym(ρ)

∂ρ2

)
ρo

. (12)

In what follows, we will also address the pressure, which
is defined as

P = ρ2
o

(∂esym(ρ)

∂ρ

)
. (13)

For the EoS of SNM at any order, we use an empirical
parametrization as in Ref. [48], where the energy per nucleon
is −16.0 MeV at the saturation density ρo = 0.155 fm−3.
This is to single out the behavior of the energy and pressure
in neutron matter and their impact on the symmetry energy
while the isoscalar properties remain unchanged—varying
simultaneously isoscalar properties would obscure what we
wish to highlight. Semiempirical constraints for the symme-
try energy are typically obtained by constructing families of
parametrized model EoS which differ in their predictions for
L—under these circumstances, one best observes the linear
relation between L and the neutron skin thickness. There-
fore, the comparisons we are making in this study are more
meaningful if we avoid additional uncertainties arising, for
instance, from the sensitivity of the SNM EoS to the cD,
cE LECs. Even small variations in ρ0—which, in empirical
studies, is constrained by nuclear properties—can have con-
siderable impact on the slope and curvature parameters. A
forthcoming work will specifically address SNM.
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FIG. 4. Energy per neutron in NM as a function of density, from
leading order (black dash) to fourth order (solid red).

III. RESULTS AND DISCUSSION

A. The energy per neutron

In our previous calculations [49], we either included only
the leading 3NF, or, in addition, we accounted only for the
subleading 2PE 3NF. With the inclusion of all the subleading
3NF contributions we are now in the position to conduct
complete calculations at N3LO and draw robust conclusions.

As pointed out in Sec. II A, errors in the πN LECs are no
longer an issue with regard to uncertainty quantification. On
the other hand, central to chiral EFT is the truncation error,
which we will now address. If observable X is known at order
n and at order n + 1, a reasonable estimate of the truncation
error at order n can be expressed as the difference between the
value at order n and the one at the next order:

�Xn = |Xn+1 − Xn|, (14)

since this is a measure for what has been neglected at order n.
To estimate the uncertainty at the highest order that we

consider, we follow the prescription of Ref. [50]. For an
observable X that depends on the typical momentum of the
system under consideration, p, one defines Q as the largest
between p

�b
and mπ

�b
, where �b is the breakdown scale of

the chiral EFT, for which we assume 600 MeV [50]. The
uncertainty of the value of X at N3LO is then given by

�X = max{Q5|XLO|, Q3|XLO − XNLO|, Q2|XNLO

− XN2LO|, Q|XN2LO − XN3LO|}. (15)

We identify p with the neutron Fermi momentum at the den-
sity under consideration. For the cutoff � of the regulator,
Eq. (5), we use 450 MeV.

In Fig. 4, we show our results for the energy per neutron
in NM as a function of density over four orders, from LO to
N3LO. We see large variations from leading order to the next,
as to be expected at the lowest orders. It is interesting to notice
the very large differences between NLO and N2LO, mostly
due to the first appearance of 3NFs. The predictions at N3LO
are slightly more attractive than those at N2LO, in agreement
with other calculations [32].

Figure 5 shows the impact of the subleading 3NF contri-
bution only, comparing the result of the complete calculation
at N3LO with the one obtained with the 2NF at N3LO and
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FIG. 5. Energy per neutron in NM as a function of density. The
solid (red) curve is the same as in Fig. 4, while in the dashed green
line (denoted by N2LO′), the N3LO 3NF contribution has been left
out.

the leading 3NF only, model (N2LO′). The effect is mildly
attractive, about 2 MeV at the highest density, mostly due to
the subleading 2PE 3NF.

The first four-nucleon forces (4NFs) appear at N3LO, but
were found to be negligible [31,51,52]. Therefore, we omit
4NFs.

Our highest-order results for the energy per neutron at
different densities are shown in the second column of Table II
with their chiral uncertainty calculated as in Eq. (15). The
choice of these densities is motivated in the next section.

Our NM EoS is rather soft within the large spectrum of
theoretical predictions in the literature, which is generally true
for predictions based on chiral EFT. The degree of softness
is best discussed in the context of density dependence of the
symmetry energy; see the next subsection.

B. The symmetry energy: Microscopic predictions
and empirical constraints

Our order-by-order predictions for the symmetry energy
are displayed in Fig. 6, and our results at N3LO together
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FIG. 6. The symmetry energy as a function of density, from
leading order (black dash) to fourth order (solid red).

034308-5



FRANCESCA SAMMARRUCA AND RANDY MILLERSON PHYSICAL REVIEW C 104, 034308 (2021)

TABLE II. The energy per neutron, the symmetry energy, the slope parameter, and the pressure at N3LO at various densities, ρ, in units of
ρo = 0.155 fm−3. L is defined as in Eq. (11) at the specified density. The values in parentheses are taken from Ref. [18]. The constraint for L
in the third row (ρ = 0.67ρo) is given for ρ = 0.1 fm−3. The constraint at ρ = 0.31ρo is from Ref. [83].

ρ (ρo) E
N (ρ ) (MeV) esym(ρ ) (MeV) L(ρ )(MeV) PNM(ρ ) (MeV/fm3)

1 15.67 ± 1.13 31.67 ± 1.64 (33.3 ± 1.3) 49.84 ± 8.71 (59.6 ± 22.1) 2.52 ± 0.45 (3.2 ± 1.2)
0.72 (0.72 ± 0.01) 11.55 ± 0.41 26.45 ± 0.82 (25.4 ± 1.1) 45.59 ± 3.49 1.05 ± 0.13
0.67 (0.66 ± 0.04) 10.87 ± 0.35 25.30 ± 0.69 (25.5 ± 1.1) 44.41 ± 2.67 (53.1 ± 6.1) 0.86 ± 0.09
0.63 (0.63 ± 0.03) 10.42 ± 0.32 24.47 ± 0.61 (24.7 ± 0.8) 43.79 ± 2.28 0.75 ± 0.07
0.31 (0.31 ± 0.03) 6.72 ± 0.08 15.43 ± 0.12 (15.9 ± 1.0) 32.44 ± 0.51 0.18 ± 0.01
0.21 (0.22 ± 0.07) 5.44 ± 0.04 11.63 ± 0.04 (10.1 ± 1.0) 26.09 ± 0.11 0.096 ± 0.001

with their truncation errors are given in Table II. To un-
derstand the full implications of our predictions, several
comments are in order. Correlations between physical observ-
ables and the symmetry energy or its first derivative have been
explored extensively, mostly using families of phenomeno-
logical models. Popular examples are the Skyrme forces [53]
or relativistic mean-field models (RMF) [54]. These models
are parametrized so as to ensure that the empirical saturation
properties are well described, while the models can differ
considerably in the isovector properties. Earlier investigations
with a family of Skyrme interactions concluded that there is a
linear correlation between the slope parameter and the neutron
skin thickness of 208Pb [53]. This inherent connection between
the symmetry energy density derivative and the neutron skin
of neutron-rich nuclei is of great interest, because accurate
measurements of the skin should then allow us to set stringent
constraints on the density dependence of the symmetry energy
around saturation.

Relativistic mean-field models predict a very wide range
of L values, for example IU-FSU [55] gives 47.2 MeV for
L, while NL3 [56] yields a value of 118.2 MeV. Naturally,
these models also produce a large range of neutron skin val-
ues. For neutron skin predictions and RMF models, see also
Ref. [57], where the authors utilize a large set of RMF models
constrained by accurate fits of the nuclear binding energies
and charge radii.

Additional studies that have explored these correlations,
using a variety of phenomenological and theoretical models,
are provided in Refs. [58–63]. Constraints on L vary consider-
ably depending on the methods employed [45,64,65]. Further
analyses that employ laboratory data to extract constraints
on the density dependence of the symmetry energy can be
found in Refs. [66–75]. As for the symmetry energy curvature,
Table III, constraints on Ksym have large uncertainty [76–78].

In addition to the energy per neutron at saturation density,
we show in Table II the symmetry energy at saturation, the

TABLE III. Predictions at N3LO and constraints for the parame-
ter Ksym at two densities.

Ksym(ρ ) (MeV)
ρ(ρo) Ksym(ρ ) (MeV) from Ref. [18]

1 −120 ± 19 −180 ± 96
2
3 −93 ± 12 −79.2 ± 37.6

slope parameter as defined in Eq. (11), and the pressure in
neutron matter. As mentioned earlier, a softer nature is typical
of chiral predictions; see, for instance, Ref. [79], where SRG-
evolved interactions based on the potentials from Ref. [21]
and the leading 3NF are employed. A comparison with phe-
nomenological interactions of the past, such as Argonne V18
and the UIX 3NF [80], is given in Ref. [79]. For a more
recent analysis, see Ref. [81], where the reported values for
esym(ρo) and L are (31.7 ± 1.1) MeV and (59.8 ± 4.1) MeV,
respectively.

On the other hand, values such as those shown in the
first row of Table II—approximately L = (50 ± 10) MeV, and
pressure at ρo between 2 and 3 MeV/fm3—are nowhere near
those extracted from the PREX-II experiment [17], which are
(38.29 ± 4.66) MeV and (109.56 ± 36.41) MeV, for esym and
L, respectively. The corresponding value of the pressure at
ρo is then, approximately, between 3.66 and 7.30 MeV/fm3.
Furthermore, such stiff symmetry energy would allow rapid
cooling through direct Urca processes to proceed at unusually
low values of the neutron star mass and central density [17],
which seems unlikely [82]. The various particle fractions in
β-stable matter we obtain with our N3LO predictions are
shown in Fig. 7. The proton fraction is close to 6% at ρ ≈ 0.2
fm−3, still far from the direct Urca threshold of approximately
11%.
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FIG. 7. Particle fractions as a function of density in β-
equilibrated matter with neutrons, protons, electrons, and muons.
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Back to Table II, we also show the predictions at some
specific densities below ρo. These are the densities identified
in Ref. [18] as “sensitive” densities from the slope of the
correlation in the plane of esym(ρo) vs L obtained from the
measurements of a specific observable. In fact, a particular
slope reflects a specific density at which that observable is
especially sensitive to the symmetry energy. Our ab initio pre-
dictions and the values taken from Ref. [18] shown in Table II
compare favorably within uncertainties. We recall that, at ρ =
(2/3)ρo ≈ 0.1 fm−3 (an average between central and surface
densities in nuclei), the symmetry energy is well constrained
by the binding energy of heavy, neutron-rich nuclei [17]—
hence, the relevance of this density region for the purpose of
correlations between L and the neutron skin of 208Pb.

Finally, in Table III we show our predictions for Ksym as
defined in Eq. (12) in comparison with recent constraints
[18]. Given the strong sensitivity of Ksym to the details of
the symmetry energy curvature, this parameter is very model
dependent and difficult to constrain, with reported values
ranging from large and negative to large and positive. As seen
from Table III, our predictions are in reasonable agreement
with the constraints discussed in Ref. [18].

It is our understanding that, focusing on the sensitive
density for a given observable, consistency among different
analyses can be found [18]. Perhaps these considerations may
help with the interpretation of the large values from PREX-
II. When the current constraint from PREX-II is included
in the fits, its impact is weak due to the large experimental
uncertainty [18]. For the slope of the symmetry energy at ρ =
(2/3)ρo ≈ 0.1 fm−3, the value obtained from PREX-II data
[17] is L = (73.69 ± 22.28) MeV.

IV. CONCLUSIONS AND OUTLOOK

We presented results of the energy per neutron in NM
based on recent high-quality chiral potentials and 3NFs up to
N3LO. Subleading 3NFs do not bring in new free parameters,
but some short-range contributions and relativistic corrections
do depend on the choice of the NN potential through the LECs
of the 2NF. Our order-by-order calculations show systematic

improvements of the predictions and allow for estimating the
chiral uncertainty.

Although results are well converged at N3LO, specific con-
tributions of the 3NF at N4LO may play a role—note that the
contact terms of the 3NF at N4LO seem promising towards
the solution of some long-standing problems in low-energy
few-body reactions [84]. However, complete calculations at
N4LO are necessary for reliable conclusions concerning the
fifth order, and, realistically, those will not be available in the
near future.

Our NM EoS is rather soft on the scale of theoretical
predictions available in the literature. We analyzed this as-
pect through the density dependence of the symmetry energy.
We compared our current predictions with recent constraints,
extracted with methods that are different than those typically
used to narrow down the symmetry energy and its slope at
saturation [18]. We found good agreement with the provided
values of the symmetry energy at and below saturation, as
well as the slope and the curvature of the symmetry energy
at saturation. On the other hand, we noted that the generally
soft predictions based on chiral EFT are far from the values of
esym and L obtained from PREX-II [17].

Exploiting the sensitivity of selected observables to the
isovector part of the EoS at some densities, the symmetry
energy can be constrained through the measurement of such
observables. In the past, we have expressed concerns (see, for
instance, Ref. [85]), about some aspects of the methodologies
utilized to extract symmetry energy constraints around satu-
ration density from measured observables, in particular about
the degree of model dependence of the constraints, which do
not provide a functional relation between density and symme-
try energy. Hopefully, a different approach to the analyses will
reduce the model dependence and the discrepancies among
the constraints given at saturation density.
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