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We investigate roles of the tensor force (TF) on the pairing correlations in the ground-state structure of 12C,
16O, 20Ne, and 32S nuclei within a deformed BCS model. For pairing matrix elements, we exploit the Brueckner
G matrix derived from the charge-dependent Bonn potential. In particular, the isoscalar (IS) neutron-proton (np)
pairing is studied in detail in relation to spin-triplet even TF in the nucleon-nucleon interaction. Detailed analyses
of the np pairing and possible enhancement of the IS channel are performed by focusing on roles of attractive
spin-triplet even and repulsive spin-triplet odd channels in the TF for the ground states of the nuclei with some
deformation. It is also shown that the TF may play a crucial role of properly interpreting the experimental data
of a two-nucleon knockout reaction from 12C.
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I. INTRODUCTION

Pairing interactions in nuclei are one of the important resid-
ual interactions in the mean-field approach for understanding
nuclear structure [1]. They have been introduced for studying
not only the nuclear collective motion [2] but also the nuclear
superfluidity in finite nuclei, and they have been intensively
discussed in many reports [3,4]. The correlations by the pair-
ing interactions are also pointed out to play an important
role of explaining high-momentum distribution of nucleons
beyond Fermi momentum. However most of the distributions
are claimed to be closely associated with the short-range
correlations [5,6], which are thought to result from the Pauli
exclusion principle of two nucleons inside nuclei beyond the
mean-field approach [7].

In the present work, we discuss the pairing correlations
originated from the nucleon-nucleon (N-N) force, by which
the Bardeen-Cooper-Schrieffer (BCS) pairing as well as the
Bose-Einstein condensation (BEC) pairing may occur inside
nuclei. In practice, the difference between the BEC pairing
and the BCS pairing may be studied by the relative distance
between the two nucleons in a coordinate space. The coupling
strength between them might be the order parameter, which
may depend on the density and/or the chemical potential.
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In the halo nuclei which have a long low-density tail, as
argued by Hagino et al. [8] through the calculation of the two-
(valence)neutron wave function in 11Li, the BCS-type pairing
shows up in the inner side of the nucleus, while the BEC-type
pairing may appear near the surface of the halo nucleus. The
different phases are thought to stem from the long tail of the
density peculiar to the halo nuclei. It infers that the strong
pairing interaction at lower density may give rise to the BEC
phase or the crossover between the BCS and BEC phases.

We also study the feasibility of the BEC phase by effec-
tively enlarging the isoscalar (IS) pairing strength. But the
results do not show any significant indication of the BEC
feature, which is expected to come from the fact that den-
sity distributions of the N = Z nuclei do not have such a
long tail as the halo nuclei. The BEC and BCS phases by
neutron-proton interactions have been claimed to be able to
manifest themselves in the heavy ion collision (HIC) because
of the high temperature and high density expected in the HIC
environment [9].

Hereafter, we focus on the BCS-type pairing induced by
the tensor force (TF) considering some nuclear deformation.
One expects two types of the pairing interactions, like-pairing
from neutron-neutron (nn) interaction and proton-proton (pp)
interaction and unlike-pairing from neutron-proton (np) in-
teraction. The like-pairing has only an isovector (T = 1)
channel, while the unlike-pairing has both isovector (IV) and
isoscalar (IS) modes. Most study of the pairing correlations
have presumed the IV spin-singlet (S = 0) state by spin an-
tialigned coupling (αᾱ) like the Cooper pair, where ᾱ is the
time conjugate state to a particle state α.
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TABLE I. IV and IS pairing scheme by spin-antialigned (αᾱ)
and spin-aligned (αα) and (ᾱᾱ) pairs for like- and unlike-pairing
interactions in the (S, L, J, T ) scheme. The deuteron ground state
(Jπ = 1+, T = 0) is composed of (S, L, J, T ) = (1, 0, 1, 0) = 3S1

and (1, 2, 1, 0) = 3D1 configurations in the last row. The projec-
tion K of the total angular momentum on the intrinsic symmetry
axis is fixed as K = 0 for the pairing matrix elements used in this
work.

Types T S L J (K = 0)

Like T = 1 (αᾱ) S = 0 L = 0, 2, 4 . . . (E) J = Even
(αᾱ)(αα)(ᾱᾱ) S = 1 L = 1, 3, 5 . . . (O) J = Even

Unlike T = 1 (αᾱ) S = 0 L = 0, 2, 4 . . . (E) J = Even
(αᾱ)(αα)(ᾱᾱ) S = 1 L = 1, 3, 5 . . . (O) J = Even

T = 0 (αᾱ) S = 0 L = 1, 3, 5 . . . (O) J = Odd
(αᾱ)(αα)(ᾱᾱ) S = 1 L = 0, 2, 4 . . . (E) J = Odd

In fact, main contributions of the pairing are believed to
come from the IV spin-singlet (T = 1, S = 0, J = even) state
and the IS spin-singlet (T = 0, S = 0, J = odd) state in the
(αᾱ) coupling scheme, whose main contributions come from
J = 0 and J = 1 coupling, respectively [10,11]. In particu-
lar, because the J = 0 coupling is stronger than the J = 1
coupling in the (αᾱ) scheme, in the ground states of N � Z
nuclei, the IS spin-singlet np pairing has been thought to be
weaker than the IV spin-singlet pairing.

However, if we allow spin-aligned coupling, (αα) and
(ᾱᾱ), the IS np pairing may have a spin-triplet state as recapit-
ulated in Table I. The like-pairing with the spin-aligned pairs
with J = odd configurations is also plausible, but it is not al-
lowed by the Pauli principle of fermions. Likewise, the unlike
IV pairing with the spin-aligned coupling (T = 1, S = 1) is
possible, but no empirical evidence is found in N = Z nuclei.
As a matter of fact, for N = Z nuclei (even for odd-odd N = Z
nuclei), the ground state has mostly S = 0 states apart from
some exceptional cases in f7/2 shell nuclei and 34Cl [12].
Therefore, in the present work for 12C, 16O, 20Ne, and 32S
nuclei, we focus on the unlike IS spin-triplet (T = 0, S = 1)
mode, which is closely related to the TF through the spin-
triplet L = even coupling.

The TF in the nucleon-nucleon (N-N) interaction is an
inevitable ingredient for understanding various nuclear cor-
relations in finite nuclei and also nuclear matter. For example,
deuteron (Jπ = 1+, T = 0) might never be bound without the
TF. Lots of phase shift analyses of the N-N scattering data
show that the spin-triplet even TF for the 3S1 state is strongly
attractive, while it is repulsive for the 3D1 state. This feature
was also confirmed from the TF potential by the lattice QCD
[13]. Effects of the TF inside nuclei have been extensively
studied by many theoretical nuclear models and experimental
data during the past 20 years [14–16].

Recently many studies concerning the roles of the TF
inside nuclei demonstrated that the tensor interaction is at-
tractive for the particles located in j< = l − 1/2 and j> =
l + 1/2 states, while it is repulsive for those in j>(<) and
j>(<) states [17,18]. On the other hand, in deformed nuclei,
because the total angular momentum j = l + s is not a good
quantum number due to the rotational symmetry breaking, the

single-particle state is prescribed by the quantum numbers in
the intrinsic frame; the projections of the orbital angular mo-
mentum �, spin �, and total angular momentum � = � + �.
These quantum numbers specify the orbits in the Nilsson
model. Within this scheme, we discuss how the deformation
of nuclei may influence the pairing properties induced by the
TF inside nuclei and vice versa [19].

Along this line, many important experiments for di-
rectly searching the TF effect in nuclei have recently been
performed, which disclosed quite intriguing results for under-
standing the pairing correlations inside nuclei. For example,
Ref. [20] exhibited that the TF can manifest itself by the
deuteron detection in the (p, p′d ) reaction at 392 MeV on
an 16O target through the neutron pickup process from the
deuteron structure inside nuclei. They found a strong popu-
lation of the J = 1, T = 0, S = 1 state at 3.95 MeV by the TF
and a very weak population of the J = 0, T = 1, S = 0 state at
2.31 MeV. These states are observed by the cross sections for
the excitations of 14N, whose Jπ = 1+ ground state has two
transitions with the multiplicities L = 2 and 0. This implies
the presence of the IS spin-triplet unlike-pairing correlations.
Consequently it may infer that the deuteron structure may
exist with a certain probability inside the nucleus and its
existence can be studied through the neutron pickup reac-
tion by the incident energetic proton. Not only proton beams
but also electron beams are also feasible for looking for the
deuteron ejection related to the TF inside nuclei as suggested
in Refs. [5,6,21]. However, the high-momentum density by
the short-range correlations is about four times smaller than
the main peak of the momentum density distribution, which
makes it difficult to detect the deuteron itself by the high
energetic electron or proton [18].

For the past decade, a lot of effort has also been paid to
finding some evidence of the unlike-pairing correlations in
N = Z nuclei because one expects a strong overlap of neutron
and proton wave functions in N ∼ Z nuclei. For example, in
Ref. [22] it is argued that some heavy N = Z nuclei around
the 60 < N < 70 and 57 < Z < 64 region may have IS pair-
ing dominance or coexistence with IV pairs. Our previous
papers [23,24] have discussed that some sd- and p f -shell
N ∼ Z nuclei may have such IS dominance for some specific
deformation cases and have demonstrated that enhanced IS
pairing may induce the IS condensation in some deformed
N = Z nuclei. Furthermore, recent data of the spin-M1 exci-
tation [25] has shown that the IV contribution may be strongly
quenched, and consequently the IS pairing correlations could
be enhanced in sd-shell N = Z nuclei. However, the relation-
ship between the IS pairing interactions induced by the TF
and the deformation seems to be not discussed enough. In the
present work, we study the competition of IS and IV pairing
interactions induced by the TF and also the deformation effect
on the pairing correlations in detail.

This paper is organized as follows. Section II is devoted
to the basic formalism of the deformed BCS theory including
both IS and IV pairing interactions. Results of the TF effects
in 12C, 16O, 20Ne, and 32S nuclei are discussed in Sec. III.
The TE effect in the two-nucleon knockout reaction from
12C is calculated in Sec. IV and compared with the available
experimental data. A summary and conclusions are given in
Sec. V.
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II. BASIC FORMULA

In this work, we take the Goswami and Kisslinger formal-
ism for the pairing interaction in a deformed BCS approach
(DBCS) [26] and focus on the unlike-pairing correlations
retaining high angular momentum. Because the theoretical
framework for the DBCS approach has already been detailed
in our previous papers [23,24], we present only the basic
formula. We start from the following DBCS transformation
between a quasiparticle and a real particle in an α state:⎛

⎜⎜⎜⎝
a†

1

a†
2

a1̄

a2̄

⎞
⎟⎟⎟⎠

α

=

⎛
⎜⎜⎜⎝

u1p u1n v1p v1n

u2p u2n v2p v2n

−v1p −v1n u1p u1n

−v2p −v2n u2p u2n

⎞
⎟⎟⎟⎠

α

⎛
⎜⎜⎜⎝

c†
p

c†
n

cp̄

cn̄

⎞
⎟⎟⎟⎠

α

, (1)

where u and v coefficients are calculated by the following 4×4
DBCS equation:⎛

⎜⎝
εp − λp 0 	pp̄ 	pn̄

0 εn − λn 	np̄ 	nn̄

	pp̄ 	pn̄ −εp + λp 0
	np̄ 	nn̄ 0 −εn + λn

⎞
⎟⎠

α

⎛
⎜⎝

uα′′ p
uα′′n
vα′′ p
vα′′n

⎞
⎟⎠

α

= Eαα′′

⎛
⎜⎝

uα′′ p
uα′′n
vα′′ p
vα′′n

⎞
⎟⎠

α

. (2)

Here Eαα′′ is an energy of the quasiparticle α′′(=1, 2) in the
α state. We include np̄ and n̄p pairings in addition to the like-
pairing (pp̄ and nn̄) correlations. The pairing potentials 	 in
Eq. (2) are permitted between the nucleons in a time-reversed
state (αᾱ) [27]. The unlike-pairing may have (αα) pairing as
well as (ᾱᾱ) pairing [28], which are effectively included in the
present framework as discussed later on. For the mean field we
take a deformed Woods-Saxon potential [29] for its simplicity.
The self-consistent mean field by the deformed Hartree-Fock-
Bogoliubov approach is in progress.

In the DBCS approach, the conventional quasiparticle is
mixed with a particle state and its hole state. In the present
framework, the quasiparticle is also mixed with additional
couplings of proton and neutron by the np pairing. Fur-
thermore the quasiparticle state is additionally mixed with
different single-particle states because each deformed state is
represented by a linear combination of the spherical states (see
Ref. [19] and Fig. 1 at Ref. [30]) up to higher j single-particle
states with the fixed projected value � = 0 on the symmetry
axis. This feature is one of extra features due to the inclusion
of deformation in the DBCS approach.

The pairing potentials in Eq. (2) are calculated in the de-
formed basis by using the Brueckner G matrix derived from
the realistic charge-dependent (CD) Bonn potential, which
explicitly employed the TF through the pion and ρ-meson
exchange in the one-boson-exchange potential (OBEP) for the
N-N interaction, in the following way:

	pp̄α
= 	αpᾱp = −

∑
γ

[∑
J,a,c

gpF J0
αaᾱaF J0

γ cγ̄ cG(aacc, J, T =1)

]

× (
u∗

1pγ
v1pγ

+ u∗
2pγ

v2pγ

)
, (3)

	pn̄α
= 	αpᾱn

= −
∑

γ

{[∑
J,a,c

gT =1
np F J0

αaᾱaF J0
γ cγ̄ cG(aacc, J, T = 1)

]

× Re
(
u∗

1nγ
v1pγ

+ u∗
2nγ

v2pγ

)
+

[∑
J,a,c

gT =0
np F J0

αaᾱaF J0
γ cγ̄ ciG(aacc, J, T = 0)

]

× Im
(
u∗

1nγ
v1pγ

+ u∗
2nγ

v2pγ

)}
, (4)

where F JK
αaᾱa = Bα

a Bᾱ
aCJK

ja�α ja−�α
(K = �α − �ᾱ ) was intro-

duced to take into account the deformation in the G matrix
with an expansion coefficient Bα [30] from the deformed
single-particle state (SPS):

Bα
a =

∑
Nnz�

C j�α

l� 1
2 �

AN0l
Nnz�

bNnz�, AN0l
Nnz�

= 〈N0l�|Nnz�〉. (5)

Detailed formulas used for the coefficient Bα
a and the overlap

integral AN0l
Nnz�

of the deformed and spherical state are pre-
sented in Ref. [19]. The T = 0 pairing contribution is included
as an imaginary term in the np pairing potential in Eq. (4).
K is a projection number of a total angular momentum J
onto the intrinsic symmetry axis and selected as K = 0. The
Brueckner G(aacc JT ) matrix represents the state-dependent
pairing matrix elements (PMEs) calculated in the spherical
basis. We sum up all possible J values in the coupling for
a two-particle state assigned by (aa) or (cc) in the spherical
basis, which has the K = 0 projection state. This sum of the
J value is due to the expansion of the deformed state by the
spherical states (aa) or (cc). 	αnᾱn is obtained from Eq. (3)
by replacing p by n.

Here, we note that higher angular momentum components
of the pairing correlations are included in the present scheme.
For example, for the like-pairing, the IV state may have only
S = 0, L = even components by the antisymmetric property
of fermions. The unlike-pairing gaps have both IS and IV
components and each component may have S = 0 as well as
S = 1 components, which are coupled to the angular momen-
tum L with the antisymmetric condition.

As for the IS np pairing, we have two modes, spin-singlet
(S = 0) and spin-triplet (S = 1). In particular, the S = 1 state
comes from the (αα) and (ᾱᾱ) pairings. In fact, we need the
extended pairing scheme due to the (αα) and (ᾱᾱ) compo-
nents, which requires an 8×8 transformation matrix instead
of Eq. (2) [31]. Within the present 4×4 scheme, in which we
included only np̄ and p̄n pairing correlations, we effectively
take into account the T = 0 channel by the (αα) and (ᾱᾱ) cou-
pling to the T = 0 pairing matrices in the (αᾱ) configuration
in the following way. By adopting the procedure in Ref. [31],
for np and n̄ p̄ pairings, we assume

〈αnαp, T = 0|Vpair|βnβp, T = 0〉
= 〈αnαp, T = 0|Vpair|β̄nβ̄p, T = 0〉. (6)
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TABLE II. Deformation parameters βE2
2 from the experimental E2 transition data [32] are given as their absolute values. The theoretical

β2 by relativistic mean-field (RMF) theory [33] and finite-range droplet model (FRDM) model [34] and Qexp. from experimental data [35] are
also tabulated for 12C, 16O, 20Ne, and 32S nuclei. Empirical pairing gaps deduced from the five-point mass formula [36] are also shown. The
deformation of 12C was predicted as oblate in Ref. [37], but the experimental 12C + 12C scattering data showed both deformation possibilities
[38].

Nucleus βE2
2 [32] βRMF

2 [33] βFRDM
2 [34] Qexp. (barn) [35] 	emp

p 	emp
n 	emp

np

12C |0.582| − − +0.06(3) 4.430 4.547 2.489
16O |0.364| − −0.01 − 3.538 3.672 1.761
20Ne |0.562| 0.186 0.364 −0.23(3) 3.592 3.630 2.585
32S |0.312| 0.186 0.221 −0.12(5) to −0.18(4) 2.141 2.207 1.047

Then the 	T =0
αnαp pairing potential is given as Im 	T =0

αnαp = 0 and
Re 	T =0

αnαp = Im	T =0
αnᾱp by Eqs. (5)–(7) in Ref. [31]. It leads to

	2 (T =0)
np = 2

∣∣	T =0
αpᾱn

∣∣2 + 2
∣∣	T =0

αpαn

∣∣2 = 4
∣∣	T =0

αpᾱn

∣∣2
, (7)

where a factor 2 is due to ᾱpαn and ᾱpᾱn pairings, respec-
tively. Consequently, we multiply by a factor 2 on the T = 0
PMEs in Eq. (4).

The strength parameters (gp, gn, gT =1
np ) in Eqs. (3) and (4),

which are a kind of the renormalization constant due to the
finite Hilbert particle model space, are fitted to reproduce
the empirical pairing gaps in Table II evaluated by the odd-
even mass difference. For the IS (T = 0) enhancement, we
introduce the strength parameter geff

np = 1.0–1.3, which is mul-
tiplied as gT =0

np = gT =1
np ×2×geff

np. Here the factor 2 comes from
Eq. (7).

III. RESULTS

In the following, we discuss the IV and IS np pairings
in 12C, 16O, 20Ne, and 32S. Specifically, we investigate the
contribution of the TF to the np pairing, which results mainly
from the IS spin-triplet np coupling. First, we estimate the
ratio of the IV (IS) contribution to the total np pairing gap for
12C in terms of the deformation parameter β2, which is given
as a complex number as shown in Eq. (4),

	total = 	IV + i	IS, (8)

and calculated by subtracting the total energy of the system
without np pairing from that with np pairing using an iteration
method for the DBCS Eq. (2) to fit the empirical pairing gaps
in Table II [30].

The results for the IV pairing are calculated by summing
J = even states with the projection K = �α − �α′ = 0. For
the IS spin-singlet and spin-triplet we take a summation for
the J = odd state. The TF is explicitly included in the IS spin-
triplet as argued below.

Before showing numerical results for the IS pairing, we
briefly explain how to separate the TF effect in the G matrix
calculated from the CD Bonn potential. The TF stems from
the pion and ρ-meson exchange potentials, whose detailed
discussions can be found in Refs. [39,40]. Because the TF
is not accommodable well in the j- j coupling scheme [41],
we exploit the N-N potential represented by the L-S cou-
pling scheme, |LSJM〉 basis [39], which further makes it
easy to apply the G matrix to the PMEs. The N-N potential
comprising each meson-exchange potential is decomposed by

spin-singlet, uncoupled spin-triplet and coupled spin-triplet
channels, where the last one corresponds to the TF comprising
	L = 2 and 	L = 0 components [40]. One can easily show
that the coupled spin-triplet L = even potential is fully associ-
ated with the deuteron wave function. Inside nuclei, not only
J = 1 but also other J coupling TFs play significant roles.
Other mesons besides pion and ρ meson do not contribute to
the spin-triplet potential, which can be confirmed in the Bonn
potential code [40].

In Fig. 1, we present the TF effect on the pairing gaps
by switching on and off its contribution to the PMEs. The
black open squares and the red open circles in Fig. 1(a) are
calculated without the TF and illustrate that the IV pairing
could dominate the np pairing correlations without the TF.
The TF presented by the black squares and the red circles
breaks more or less the IV dominance over the IS pairing with
the increase of the prolate deformation. We can confirm in
Fig. 1(a) that the TF effect directly increases the IS np pairing,
although the IV contribution is still larger than the IS one.
Because the total gaps, 	total, are fitted to empirical data at
each deformation, the IV pairing gaps are changed together
with the change of IS values when the TF is switched on.

In a nutshell, with the increase of the deformation, the IS
spin-triplet tensor contribution to the np pairing increases. In
particular, beyond β2 > 0.3 the IS contribution amounts to
20% of the IV in 12C. It implies that the TF contribution in
the IS channel is sensitive to the evolution of the SPS by the
deformation. In the oblate-deformed region, the TF effect does
not change the ratio of the IV to the IS pairing gap much;
therefore, we do not show the results.

Numbers of nn, pp, and np pairs are presented for the
case including and excluding the TF, respectively, in Fig. 1(b).
They are calculated by the expectation value of the following
number operators of the pairs [42],

Npp = �
s,s′

ST =1†
spp ST =1

s′ pp , Nnn = �
s,s′

ST =1†
snn ST =1

s′nn ,

Nnp = �
s,s′

(
ST =1†

snp ST =1
s′np + ST =0†

snp ST =0
s′np

)
, (9)

with

ST =1†
sρρ = �

σ
c†
ρsσ c†

ρsσ̃ ,

§T =1(0)†
sρρ ′ = �

σ

1√
2

(c†
ρsσ c†

ρ ′sσ̃ + (−)c†
ρ ′sσ c†

ρsσ̃ ), (10)

where c+
ρσ s is the real particle creation operator in the axially

symmetric harmonic oscillator potential. The single-particle
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FIG. 1. (a) Ratio of IV and IS pairing gap to the total np pairing gap by Eq. (4) for 12C. Black (open) squares and red (open) circles
are IV and IS ratios to the toal np pairing gap, respectively, with (without) the TF, which are denoted as with TF (w/o TF). Here 	total =√

|	IV|2 + |	IS|2. (b) Number of pairs by Eq. (9). Like pairings for p-p and n-n and unlike pairing for the n-p pair are denoted as the
black (open) squares, green (open) diamonds, and blue (open) triangles with (without) TF. Both like pairings are almost degenerate and
indistinguishable. The total number of pairs are presented as red circles in a similar fashion.

states (SPSs) are completely determined by a principal set
of quantum numbers: s = [N, nz,�,�]. The σ is a sign of
the angular momentum projection �(σ = ±1). The ρ and ρ ′
specify the isospin quantum number for the SPSs specified by
a set of quantum numbers s.

The numbers of nn and pp pairs in Fig. 1(b) are rarely
affected by the TF, while the number of np pairs changes
at a certain nuclear deformation. This feature stems from the
shell evolution with the deformation and the intrinsic nature
of the TF. There are big changes in the number of np pairs
at β2 = 0.3 and 0.5. At β2 = 0.3, the np pair is entirely due
to the IV pair because there is no IS pairing gap in Fig. 1(a).
On the other hand, at β2 = 0.5, we see that both IS and IV
np pairs coexist because the IS pairing gap is raised Fig. 1(a).
That is, the TF affects the pairing correlations and the numbers
of pairs in a different way in each IS and IV channel. In
general, the spin-triplet even TF has a strong attractive nature
for the T = 0 state (3S1, 3D2, and 3D3), while the spin-triplet

odd TF is repulsive in T = 1 channels like 3P1. These different
behaviors of the IV and IS channels of the TF give rise to
various changes in the pairing gaps and the number of pairs in
the nuclei discussed below.

In brief, for 12C, the TF increases (decreases) the PMEs
of the T = 0 np channel by its attractive (repulsive) property
around the β2 ≈ 0.5(0.3) region. The nn and pp pairs may
be affected by the TF. The effect, however, is very small as
shown in black square and green diamond symbols, which
are almost degenerate. Detailed TF effects in the PMEs are
explained further in Fig. 4.

Figure 2 shows the results for 16O, which is a double closed
shell nucleus. Because 16O was used for the 16O(p, p′d )14N
reaction experiment [25], we make detailed analyses to figure
out the TF effect in the np pairing correlations in the same way
as 12C. One interesting point is that the TF effect in the ratio
rarely appears contrary to that of 12C even in the β2 � 0.3 re-
gion as shown in Fig. 2(a). However, the TF effect in Fig. 2(b)
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FIG. 2. Same as Fig. 1, but for 16O.

034306-5



HA, KIM, CHEOUN, AND SAGAWA PHYSICAL REVIEW C 104, 034306 (2021)

0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
at
io
of
IV
an
d
IS

�2

(a) 20Ne

w/o TF, with TF : �IV /�total
w/o TF, with TF : �IS /�total

0.2 0.3 0.4 0.5 0.6

0

2

4

6

8

N
um
be
ro
fp
ai
rs

�2

p-p n-n n-p total
w/o TF , , ,
with TF , , ,

(b) 20Ne

FIG. 3. Same as Fig. 1, but for 20Ne.

appears significantly at the β2 = 0.1 and 0.2 deformations,
changing the number of the np pairs. Similarly to the 12C
case, the change of the number of the np pairs is sensitive
to both the TF and the deformation. It means that the TF
effect increases (reduces) the np pair number by its attractive
(repulsive) property in the β2 ≈ 0.1 (≈0.2) region in Fig. 2(b).
Namely, the effect of TF would manifest itself in the number
of np pairs if 16O were slightly deformed, about β2 ≈ 0.1
and 0.2, according to the present calculation. We note that the
large quadrupole deformation parameter βE2

2 of 16O in Table II
does not necessarily mean the shape deformation.

Figure 3 presents the results for 20Ne, where the IS pairing
contribution becomes comparable to that of the IV pairing
contribution above the β2 � 0.4 region by the attractive TF.
This may imply that the IS np pairs can be significantly
condensed in 20Ne, if the IS enhancement, likewise 24Mg in
the spin-M1 excitation data [25,43], takes place in 20Ne. Also
as shown in Fig. 3(b), the number of np pairs in 20Ne becomes
larger than the numbers of nn and pp pairs by the TF at β2 =
0.5. To understand the peculiar property around β2 = 0.5, we
note that the 0p3/2, 0p1/2, and 0d5/2 states are more or less
smeared with the deformation in the deformed Woods-Saxon
potential. Because the 0p3/2 and 0d5/2 states are j> = l + 1/2
and the 0p1/2 state is j< = l − 1/2, respectively, the attrac-
tive TF may work to create a dense level density around the
Fermi surface. For this reason, these single-particle states are
smeared further by the pairing interaction, which induces a
larger number of np pairs. This TF property gives rise to the
T = 0 np pair dominance around the Fermi surface.

In Fig. 4, we present the TF effect on the PME; the
figure shows a clear TF effect on the j> and j< states.
For instance, the interactions between the d(5/2)[�π = ( 5

2 )+1 ]
state and the d(3/2)[�π = ( 3

2 )+2 ] state show a large differ-
ence due to the TF, where the upper (lower) direction of
the arrows in the leftmost circles and the rightmost triangles
implies the repulsive (attractive) interaction. Here we also
note that the spherical single-particle states no longer have
the good quantum numbers l and j, but they are main contri-
butions to the corresponding Nilsson basis used in the present
calculation.

In Fig. 5 for the case of 32S, the TF effects become apparent
with the increase of the prolate deformation. After the critical
deformation β2 > 0.4, the IS contribution to the np pairing
gap becomes comparable to the IV contribution. The variation
of the number of np pairs complies with the IV and IS ratios.
This means that the np pair in 32S is almost the IS np pair due
to the TF. Around the β2 ≈ 0.0 region, the TF plays a role in
the ratio, but the number of np pairs is only slightly decreased,
which may come from a weak repulsive TF or the competition
of the repulsive and the attractive TF properties.

Hereafter we discuss the effect of the plausible IS pairing
enhancement in N = Z nuclei [25,44,45]. It would be inter-
esting if we could expect the BEC feature inside nuclei from
the increase of the IS coupling constant. We increase gT =0

np
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FIG. 4. The TF effects on pairing matrix elements (PMEs) by
the G matrix, G(aacc, J = 1, T = 0) in Eq. (4), as a function of the
single-particle state (SPS) in the Nilsson basis with and without the
TF for 32S at β2 = 0.5. The solid (empty) symbols denote the results
with (without) the TF. The configurations written below the abscissa
correspond to a, while those in the small box are c configurations in
the G matrix.
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FIG. 5. Same as Fig. 1, but for 32S.

in Eq. (4), by multiplying a factor, geff
np, from 1.0 up to 1.3, to

gT =1
np . Here we note that the geff

np is a kind of theoretical assump-
tion for the test of the crossover phase transition from the BCS
phase to the BEC phase. In Fig. 6, we present the number of

pairs in 20Ne for a given deformation β2 as a function of geff
np.

The TF significantly affects the numbers of total and np pairs
at β2 = 0.5 as shown in Fig. 6(c) by the solid red circles and
blue triangles. However, they are not changed so much with
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np. Notations are the same as those in Fig. 1(b).
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TABLE III. Ratios of the np knockout to nn and pp knockout cross sections for 12C + 12C reactions. Calculated results are given in the last
four columns in different deformations with and without the TF (denoted as with TF and without TF) by using the number of pairs in Fig. 1(b)
calculated by Eq. (11). Experimental data are taken from Ref. [47].

Without TF With TF Without TF With TF
Ratio Energy Exp. data β2 = 0.3 β2 = 0.3 β2 = 0.5 β2 = 0.5

σ−np/σ−nn 250 MeV 47.50/5.33 = 8.91
1.05 GeV 27.90/4.44 = 6.28 7.8 4.5 4.0 9.7
2.1 GeV 35.10/4.11 = 8.54

σ−np/σ−pp 250 MeV 47.50/5.88 = 8.09
1.05 GeV 27.90/5.30 = 5.26 7.8 4.5 4.0 9.7
2.10 GeV 35.10/5.81 = 6.04

the increase of the IS pairing strength regardless of the TF
inclusion. The numbers of pairs are almost saturated even for
the larger geff

np cases. This means that the BEC phase might not
occur in 20Ne, at least according to the present calculation.

Another remarkable point in Fig. 6(c) is the small change
of the nn and pp pairs by the TF. It is originated by the repul-
sive TF for the isospin-triplet odd channel for the (J = 0 and
T = 1) nn and pp pairs. The present theoretical framework
is based on the Nilsson basis, which makes it possible to
couple the pair in different single-particle states, by which the
isospin-triplet odd TF may contribute.

IV. COMPARISON WITH THE EXPERIMENTAL DATA

Here we discuss whether the TF effects on the numbers of
nn, pp, and np pairs can be detected by two-nucleon knockout
and/or two-nucleon transfer reaction experiments. In particu-
lar, the two-nucleon knockout reactions might be promising
experimental probes to observe the feasibility of the BCS
and BEC phases in the ground state. The cross section of the
two-nucleon knockout reaction is expressed by the following
formula [46],

σρρ ′ = σunit|Nρρ ′ |2, (11)

where σunit is a unit cross section determined by the kinematic
conditions of two-nucleon knockout reactions, and the num-
ber of pairs Nρρ ′ is defined in Eq. (9) with ρρ ′ = pp, nn, or
np pair channels. In the np transfer channel, both T = 1 and
T = 0 couplings are possible, while the pp and nn channels
allow only T = 1.

Two-nucleon knockout reactions at three different energies
of the 12C projectile were performed as 12C + 12C → X + Y ,
where X stands for 10Be, 10C, and 10B for Y = pp, nn, and
np pairs, respectively [47]. The measured cross sections of
σ−pp, σ−nn, and σ−np are tabulated in Table III. The data were
analyzed by using shell-model wave functions presented in
Refs. [48,49]. In Ref. [48], a phenomenological interaction is
adopted in a large shell-model space, while in Ref. [49] the
no-core shell model (NCSM) calculation was performed in-
cluding three-body interactions. Both calculations reproduced
well the σ−pp and σ−nn cross sections, but underestimated the
σ−np cross section by about a factor of 2.

We evaluate the ratios of σ−np to σ−pp, and of σ−np to σ−nn

by adopting the calculated numbers of pairs in Eqs. (9) to (11).
The results are given in Table III with the available experi-

mental data [47]. For the β2 = 0.5 (0.3) case, the TF increases
(decreases) the ratio, as also shown by the number of pairs in
Fig. 1(b). The calculated ratios σ−np/σ−pp and σ−np/σ−nn are
very sensitive to both the deformation and the TF contribution
to the (T = 0, J = 1) pairing matrix elements. For a large
deformation β2 = 0.5, the result with the TF contribution
gives a large ratio of 9.7, which is slightly larger than the
experimental ratio, but quite acceptable considering the 10–
20% experimental uncertainty [47]. The results for the smaller
deformation β2 = 0.3 case are changed from 7.8 to 4.5 by the
TF contribution. These results imply the importance of the TF
for understanding the np knockout data. Here we note that
the experimental data reveal explicitly energy dependence,
specifically, in the σ−np case. In the present work we presumed
that the kinematical factor is fully factorized into the σunit

in Eq. (11). More detailed calculations of the two-nucleon
knockout reactions beyond Eq. (11) are necessary for more
quantitative understanding of the TF effects in the experimen-
tal data.

For the T = 0 np pair condensation, the np pair transfer
reactions (p, 3He) and (3He, p) are also plausible reactions
for this study, which have been recently carried out at the
Research Center for Nuclear Physics for N = Z nuclei such
as 24Mg, 28Si, 32S, and 40Ca [50]. Ayyad et al. [50] com-
pared the ratio of 0+ and 1+ cross sections in the residual
odd-odd nuclei caused by T = 1 and T = 0 np pairing
excitations, respectively, by taking the forward angular dis-
tribution data. They found that, for the cross section to the 1+
state, T = 0 dominates over the ground state of both 24Mg
and 40Ca. Also by analyzing the differential cross-section
data for 24Mg(p, 3He) 22Na, they argued the importance of
the T = 0 component in the interaction between d5/2 and
d3/2 states, which is closely related to the TF by the spin-
aligned triplet state excluded in the typical Cooper pair.
To interpret the cross-section ratio of σ (0+)/σ (1+) for the
22Na excitation, where σ (0+) and σ (1+) are presumed to
be caused by T = 1, J = 0 and T = 0, J = 1 np coupling
schemes, respectively, we need to do the distorted wave Born
approximation (DWBA) calculation including the study of
the TF effects in the excitation; we leave that to a future
work.

The validity of the BCS model has been scrutinized by
Sandulescu and Bertsch [51], who argued clearly the limits of
the BCS model by comparing the BCS and number-projected
BCS (PBCS) models. The comparisons were done by the
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Hartree-Fock calculations in a solvable model, and it was
concluded that the BCS is insufficient for properly describing
the pairing correlations in light nuclei because of the particle
number fluctuation, although the whole results depend on
the choice of coupling constant. In the present approach, we
exploit a fixing procedure of relevant coupling constants to
the empirical pairing gaps by odd-even mass difference to par-
tially cure the problem in the BCS pairing gap. This procedure
has been adopted commonly in the study of nuclear structure
calculations. However, it has been pointed out that the method
does not guarantee the validity of the BCS approximation
[51]. A more refined approach like the PBCS approach is
preferred to conclude in a quantitative level the number of
pairs discussed in the present work. We should consider the
present results in a semiquantitative level, but the effect of the
TF on the number of pairs could be common in both BCS and
PBCS approaches.

We note that ab initio calculations for light nuclei as was
done in Ref. [52] are more fundamental and successful for
describing static nuclear properties. Our previous calculations
for the static properties [23,24] using the present Woods-
Saxon mean-field approach were not sufficient enough for
properly explaining such properties. This problem should also
be discussed in future work by using more advanced nuclear
models. However, to our knowledge, the relation of the TF
and the deformation has not been studied in detail using these
ab initio calculations. We hope that more extensive study of
the nuclear structure will be done in the near future including
those effects by the NCSM.

V. SUMMARY AND CONCLUSIONS

In summary, we investigated the TF effect on the np pairing
correlations for the ground state of 12C, 16O, 20Ne, and 32S by
using a deformed BCS model. The noncentral TF effect turns
out to be sensitive to the deformation and breaks the IV dom-
inance of the np pairing. The number of np pairs is increased
by the attractive spin-triplet even TF, but the repulsive TF in
the spin-triplet odd channel sometimes reduces the number of
pairs as shown in Figs. 1, 3, and 5. For the 16O case in Fig. 2,
the IV dominance is rarely changed by the TF while the num-
ber of np pairs suddenly increases around the β2 ≈ 0.1 region
by the TF. THis means that the attractive spin-triplet even TF
may increase the IV np pairing. Sometimes the repulsive TF
from the isospin-triplet odd channel for the like pairing shows

up in the number of nn and pp pairs due to the j-orbit mixing
in the Nilsson orbit, although it is rather small compared with
the attractive spin-triplet even TF in the np pairing.

For the possible BEC condensation of the np pairing
condensation, we also studied the effect of the IS pairing en-
hancement by increasing the effective IS np coupling constant
for 20Ne in Fig. 6. But the BEC feature was not discovered by
the increase of the effective IS np coupling constant. Even the
IS dominance on the np pairing and the increase of the number
of np pairs, which appeared at β2 = 0.5, was unaffected by
the IS coupling enhancement. The TF effects are also shown
to be inevitable to explain the two-nucleon knockout data,
σ−nn, σ−pp, and σ−np from the 12C + 12C reaction experiment
as tabulated in Table III.

In conclusion, the TF due to the spin-triplet channel is
shown to play important roles in the np pairing correlations
in some light N = Z nuclei, such as 12C, 16O, 20Ne, and 32S.
The nuclear deformation turns out to be another key factor
to determine the number of IS pairs reflecting the TF prop-
erty. This implies that the number of pairs is sensitive to the
TF as well as the deformation, and consequently the choice
of feasible targets and reactions for the deuteron extraction
should be carefully selected. It is beyond the present work
to discuss how the microscopic TF in the nucleon-nucleon
interaction inside nuclei affects the macroscopic deformation
of the nuclei and vice versa. Nevertheless, the TF in the
pairing interactions turns out to enable us to properly explain
the two-nucleon knockout data.

Finally we note that the present mean-field approach based
on the Woods-Saxon potential is not enough to properly ex-
plain static nuclear properties. More developed calculations
such as ab initio shell-model approaches are necessary for
further quantitative analysis of the TF effect on the pairing
correlations. Energy dependence of the two-nucleon knockout
reaction from 12C also deserves to be studied in the modern
nuclear reaction theory for further comprehensive discussion
of the TF effect.
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