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A characteristic feature of collective and particle-hole excitations in neutron-rich nuclei is that many of them
couple to an unbound neutron in continuum single-particle orbits. The continuum random-phase approximation
(cRPA) is a powerful many-body method that describes such excitations, and it provides a scheme to evaluate
transition strengths from the ground state. In an attempt to apply cRPA to the radiative neutron-capture reaction,
we formulate in the present study an extended scheme of cRPA that describes γ transitions from the excited
states under consideration, which decay to low-lying excited states as well as the ground state. This is achieved
by introducing a nonlocal one-body operator which causes transitions to a low-lying excited state, and describing
a density-matrix response against this operator. As a demonstration of this new scheme, we perform numerical
calculation for dipole, quadrupole, and octupole excitations in 140Sn, and discuss E1 and E2 transitions decaying
to low-lying 2+

1,2 and 3−
1 states. The results point to cases where the branching ratio to the low-lying states is larger

than or comparable with that to the ground state. We discuss key roles of collectivity and continuum orbits in
both initial and final states.
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I. INTRODUCTION

Theoretical and experimental studies of neutron-rich nuclei
have been performed extensively in recent years, and they re-
vealed peculiar features which are related to the small neutron
separation energy or the weak binding of the last neutrons. Ex-
amples include the pygmy dipole resonance or the soft dipole
excitation, which are considered as a new type of collective
excitation or a continuum particle-hole excitation where a
neutron is brought into an unbound scattering state [1–4].
In laboratory experiments, such exotic modes of excitation
are observed in excitation reactions such as photoabsorption
and the Coulomb or nuclear dissociation processes [5–7]. In
nature, neutron-rich nuclei play important role in r-process
nucleosynthesis, and it has been pointed out that the pygmy
or the soft dipole excitations might influence the radiative
neutron-capture reaction and resultant abundance of r-process
nuclei [8,9].

The radiative neutron-capture reactions are usually con-
sidered in terms of two different mechanisms: the statistical
or compound nuclear (CN) process and the direct capture
(DC) process [9]. The CN process is dominant in nuclei
with relatively large neutron separation energy and high level
density while the DC process becomes dominant in nuclei
close to the neutron-drip line [9–11]. For the CN process,
the Hauser-Feshbach statistical model is assumed and the role
of the exotic excitation modes is usually taken into account
via the γ -decay strength function [9]. For the DC process,

however, the exotic modes need to be described explicitly as
a doorway state of the neutron capture, and it is the same for
γ decays from the populated excited state. Such theoretical
descriptions of the DC process, applicable to medium and
heavy neutron-rich nuclei (relevant to the r process), have not
been formulated, to our knowledge, except in our preceding
study [12]. The DC models applied so far to medium and
heavy nuclei adopt the independent particle model [13–18], in
which the collective effect is neglected. The semidirect model
[19,20] taking into account the effect of the giant resonance
was proposed, but it is essentially the same as the independent
particle model as far as the r-process neutron capture at very
low neutron energy is concerned.

In the previous publication [12], we adopted the continuum
quasiparticle random-phase approximation (cQRPA) based
on the density functional theory to describe the DC process
via the exotic excitation modes. We describe the Coulomb
excitation or photoabsorption of an even-even neutron-rich
nucleus A, leading to an excited state A∗ → (A − 1) + n
which may emit a neutron if the excitation energy exceeds
the neutron threshold. Collective correlations are taken into
account in the linear response framework to calculate the
strength function, and the Green’s function method [21–23]
enables us to include the unbound single-neutron state with
a scattering wave. By decomposing the strength function
into different channels of (A − 1) + n with a method of
Zangwill and Soven [24] and using the reciprocity theorem,
we obtain the cross section of the radiative direct neutron
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capture (A − 1) + n → A∗ → A + γ . We remark, however,
that further improvement is needed in this approach since
the γ transitions A∗ → A∗∗ + γ decaying to low-lying excited
states A∗∗ also occur in reality.

In the present study and in subsequent papers, we
intend to extend the approach of Ref. [12] in order
to describe the radiative direct neutron-capture process
(A − 1) + n → A∗ → A∗∗ + γ taking place via collective and
noncollective states A∗ decaying to low-lying excited states
A∗∗ of the synthesized nucleus. We shall proceed in two steps.
As the first step, given in the present publication, we formulate
a new method to calculate the transition matrix elements of the
γ transitions between two excited states A∗ and A∗∗. Calcula-
tion of the transition matrix elements between excited states
are straightforward if both states are discrete bound states and
their wave functions are explicitly given on discrete basis. A
novel feature of the formulation proposed here is that we use
the linear response theory which is able to describe continuum
excited state A∗ located above the neutron separation energy.
This is an essential requirement in applying to the neutron-rich
nuclei near the drip-line. The second step, an application to
the radiative direct neutron-capture reaction, will be given in
a forthcoming paper.

In Sec. II, we formulate a linear response theory extended
to calculate transition matrix elements between excited states.
For this purpose we define a nonlocal one-body operator in-
troduced to evaluate the matrix elements. Applying the linear
response formalism to this nonlocal operator, we obtain a new
type of strength function which describes excitation modes
in the continuum and transition matrix elements with respect
to a low-lying excited state. This extended linear response
formalism enables us to evaluate the branching ratios for γ

decays from the continuum excited states to different low-
lying excited states as well as the ground states. In Sec. III, we
demonstrate applicability of the present approach by perform-
ing a numerical calculation for a neutron-rich nucleus 140Sn,
and discuss the dipole, quadrupole, and octupole excitations
including the continuum particle-hole modes and the giant
resonances, and the transitions from/to low-lying 2+ and 3−
states. We draw conclusions in Sec. IV.

II. THEORY

In the first three subsections we introduce the extended for-
malism of the continuum random-phase approximation which
describes the transitions between RPA excited states. We then
provide, in the following subsections, a detailed formulation
for an application to a spherical nucleus with a j-shell closed
configuration.

A. Strength function for transitions between RPA excited states

We shall describe excited states {|k〉} by means of the
random-phase approximation (RPA) to oscillations around
the ground state |0〉. The standard RPA formalism pro-
vides a scheme to calculate the transition matrix el-
ements 〈k| M̂ |0〉 and the strength function S(M̂; h̄ω) ≡∑

k | 〈k| M̂ |0〉 |2δ(h̄ω − (Ek − E0)) for a one-body operator
M̂, e.g., an electromagnetic multipole operator [25].

In the present paper, we consider another RPA excited state
|i〉, for instance, the low-lying collective state with a character
of surface vibration, and we intend to describe the transition
matrix elements 〈k| M̂ |i〉 between the low-lying state |i〉 and
the RPA excited states {|k〉} under consideration. Since we
consider neutron-rich (or proton-rich) nuclei and the situation
where the RPA excited states {|k〉} are populated via the
direct neutron (proton) capture reaction, we shall treat the
RPA excited states {|k〉} as those embedded in the continuum
spectrum above the neutron (proton) separation energy. It is
then appropriate to describe {|k〉} by means of the continuum
RPA, i.e., the linear response theory using the Green’s func-
tion technique [21,22].

We introduce a strength function for transitions between
RPA excited states |i〉 and {|k〉}:

S(M̂; i; �E ) =
∑

k

| 〈k| M̂ |i〉 |2δ(�E − (Ek − Ei )). (1)

Here |i〉 is fixed and |k〉 runs over all excited states described
by the continuum RPA. The RPA excited states are generally
described in terms of the mode creation operator Ô†, a linear
combination of the particle-hole and hole-particle excitations,
which is written as

Ô†
i =

∑
ph

{
X i

pha†
pah − Y i

pha†
hap

}
, (2)

e.g., for the state |i〉 = Ô†
i |0〉. Using the mode creation oper-

ator, the strength function (1) can be rewritten as

S(M̂; i; h̄ω) ≡
∑

k

| 〈k| M̂ |i〉 |2δ(h̄ω − (Ek − E0))

=
∑

k

| 〈k| [M̂, Ô†
i ] |0〉 |2δ(h̄ω − (Ek − E0))

= S(F̂ ; h̄ω). (3)

Note that the second expression can be regarded as a strength
function for transitions from the ground state |0〉 caused by
a newly defined operator F̂ ≡ [M̂, Ô†

i ]. The replacement by
the commutator is valid under the quasiboson approximation
[25], [Ô†

i , Ôk] = δik and Ôi |0〉 = 0, which is one of the mi-
croscopic derivations of the RPA. Note also it is equivalent to
keeping the leading orders of the boson expansion of M̂, Ô,
and Ô†. For simplicity the excitation energy h̄ω = Ek − E0 is
used in Eq. (3) in place of the transition energy �E = Ek − Ei

in Eq. (1).
We remark here that the commutator F̂ = [M̂, Ô†

i ] is a one-
body but nonlocal operator. In fact, for the multipole moment

M̂ =
∫

dx f (x)ρ̂(x), f (x) ≡ rL
x YLM (�x ), (4)

the operator F̂ is

F̂ =
∫∫

dx dyF (x, y)ψ†(x)ψ (y), (5)

F (x, y) ≡ { f (x) − f (y)}
∑

ph

{
X i

phφp(x)φ∗
h (y)

−Y i
phφh(x)φ∗

p(y)
}
. (6)
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Here ψ†(x), ψ (x), and ρ̂(x) = ψ†(x)ψ (x) are the creation,
annihilation, and density operators of the nucleon with a
shorthand notation of the coordinate and the spin variables
x ≡ (rx, σx ) while φp(x) and φh(x) are single-particle wave
functions of the particle and hole orbits, respectively. The
isospin variable is omitted for simplicity. The integral

∫
dx

represents
∫

dx ≡ ∑
σx

∫
drx.

The expression (3) allows us to formulate the linear re-
sponse of the system against an external perturbation provided
by the nonlocal one-body operator F̂ = [M̂, Ô†

i ]. A new
feature is that we need to consider a response of the nonlo-
cal density, i.e., the density matrix ρ(x, y) = 〈ρ̂(x, y)〉 with
ρ̂(x, y) = ψ†(y)ψ (x). The response in the frequency domain
is given by

δρ(x, y, ω) =
∫∫

dx′dy′ R(x, y; y′, x′; ω)F (x′, y′) (7)

with a response function generalized to the density matrix,
which is formally expressed as

R(x, y; y′, x′; ω) ≡
∑

k

{
〈0| ρ̂(x, y) |k〉 〈k| ρ̂(y′, x′) |0〉

h̄ω − h̄ωk + iη

− 〈0| ρ̂(y′, x′) |k〉 〈k| ρ̂(x, y) |0〉
h̄ω + h̄ωk + iη

}
. (8)

Here η is a positive infinitesimal constant and h̄ωk = Ek − E0

is the excitation energy of the RPA excited states {|k〉}. The
strength function S(F̂ ; h̄ω) in Eq. (3) is given by

S(F̂ ; h̄ω) = − 1

π
Im

∫∫
dx dy F ∗(x, y)δρ(x, y, ω), (9)

using the density-matrix response δρ(x, y, ω).
Note that the strength function can be expressed also as

S(F̂ ; h̄ω) = − 1

π
Im

∫
dx f ∗(x)

{∫
dyρ̄ (tr)∗

i (x, y)δρ(x, y, ω)

−
∫

dyρ̄ (tr)∗
i (y, x)δρ(y, x, ω)

}
, (10)

obtained by inserting Eq. (6) into Eq. (9). Here we introduced
a quantity

ρ̄
(tr)
i (x, y) ≡

∑
ph

{
X i

phφp(x)φ∗
h (y) − Y i

phφh(x)φ∗
p(y)

}
(11)

to represent the second factor in Eq. (6) associated with the
RPA state |i〉. We call it the pseudo transition density matrix
of |i〉 since it has the same structure as the transition density
matrix

ρ
(tr)
i (x, y) ≡ 〈0| ρ̂(x, y) |i〉 = 〈0| [ρ̂(x, y), Ô†

i ] |0〉
=

∑
ph

{
X i

phφp(x)φ∗
h (y) + Y i

phφh(x)φ∗
p(y)

}
(12)

except for the sign of the second term related to the backward
amplitudes Y i

ph.

B. Extended linear response equation

Since the operator F̂ is a one-body, though nonlocal,
operator, it is possible to formulate the linear response on
the basis of the time-dependent Kohn-Sham theory, or the
time-dependent Hartree-Fock theory. Separating the time-
dependent self-consistent field U [ρ] = U0 + Uind into the
stationary part U0 associated with the ground state and the
induced field Uind = ( δU

δρ
)δρ, the density-matrix response is

given by

δρ(x, y, ω) =
∫∫

dx′dy′R0(x, y; y′, x′; ω)

× [vind(x′, y′, ω) + F (x′, y′)] (13)

in terms of the unperturbed response function

R0(x, y; y′, x′; ω) ≡
∑

ph

{
〈0| ρ̂(x, y) |ph〉 〈ph| ρ̂(y′, x′) |0〉

h̄ω − (εp − εh) + iη

− 〈0| ρ̂(y′, x′) |ph〉 〈ph| ρ̂(x, y) |0〉
h̄ω + (εp − εh) + iη

}
,

(14)

for uncorrelated particle-hole states |ph〉 = a†
pah |0〉. The un-

perturbed response function is also given as

R0(x, y; y′, x′; ω) =
∑
εi<ε f

{φ∗
i (y)G0(x, x′, εi + h̄ω + iη)φi(y

′)

+ φ∗
i (x′)G0(y′, y, εi − h̄ω − iη)φi(x)},

(15)

using the single-particle Green’s function G0(x, x′, e) =
〈x| (e − ĥ0)−1 |x′〉 = ∑

i φ
∗
i (x)φi(x′)(e − εi )−1 for the mean-

field Hamiltonian ĥ0 = t̂ + U0. The Green’s function allows
one to describe the single-particle states in the continuum
and hence RPA excited states embedded in the continuum
spectrum above the particle separation energy.

In the following, we assume that the induced field is lo-
cal and spin-independent: vind(x′, y′, ω) = vind(rx′, ω)δ(x′ −
y′) = δU

δρ
(rx′ )δρ(rx′ , ω)δ(rx′ − ry′ )δσx′σy′ . In this case, the

density-matrix response δρ(y, x, ω) is given by

δρ(x, y, ω) =
∫

dx′ R0(x, y; x′, x′; ω)
δU

δρ
(rx′ )δρ(rx′ , ω)

+
∫∫

dx′dy′R0(x, y; y′, x′; ω)F (x′, y′). (16)

For the local density response δρ(rx, ω) = ∑
σx

δρ(x, ω) =∑
σx

δρ(x, y = x, ω) appearing in the right-hand side of
Eq.(16), we have an integral equation

δρ(rx, ω) =
∑
σx

∫
dx′R0(x, x; x′, x′; ω)

δU

δρ
(rx′ )δρ(rx′ , ω)

+
∑
σx

∫∫
dx′dy′R0(x, x; y′, x′; ω)F (x′, y′).

(17)

We can solve numerically the integral equation (17) by
treating it as a linear equation on the mesh points in the
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coordinate space. Inserting the density response δρ(rx, ω) into
Eq. (16), the density-matrix response δρ(x, y, ω) is obtained,
and finally we can calculate the strength function S(F̂ ; h̄ω)
using Eq. (10). Note that the pseudo transition density matrix
ρ̄

(tr)
i (x, y) of the state |i〉 can be calculated also within the

linear response formalism (the continuum RPA formalism), as
we discuss in Appendix A. Consequently all the calculations
are done within the consistent framework of the continuum
RPA.

C. Transition densities and diagrammatic interpretation

We first note that the transition densities for transitions
between the ground state and the RPA excited states are cal-
culated as

ρ
(tr)
k (x) ≡ 〈0| ρ̂(x) |k〉 = CImδρ(x, ωk ) (18)

for the local transition density, and similarly

ρ
(tr)
k (x, y) ≡ 〈0| ψ†(y)ψ (x) |k〉 = CImδρ(x, y, ωk ) (19)

for the transition density matrix. The density responses
δρ(x, ωk ) and δρ(x, y, ωk ) are solutions of Eqs. (16) and (17)
at the excitation energy Ek − E0 = h̄ωk of the state |k〉. Here C
is a normalization constant which is determined to reproduce
the transition strength evaluated from the strength function
(cf. Appendix A).

Now we shall consider the transition density for the transi-
tion between the RPA excited states, i.e., the one between |i〉
and |k〉:

ρ
(tr)
i,k (x) ≡ 〈i| ρ̂(x) |k〉 = 〈0| [Ôi, ρ̂(x)] |k〉 . (20)

Using the commutation relation

[Ôi, ρ̂(x)] =
∫

dy
{
ρ̄

(tr)∗
i (x, y)ψ†(y)ψ (x)

− ρ̄
(tr)∗
i (y, x)ψ†(x)ψ (y)

}
, (21)

the transition density is given as

ρ
(tr)
i,k (x) =

∫
dy

{
ρ̄

(tr)∗
i (x, y)ρ (tr)

k (x, y) − ρ̄
(tr)∗
i (y, x)ρ (tr)

k (y, x)
}

(22)

expressed as a convolution of the transition density matrix
ρ

(tr)
k (x, y) for the state |k〉 and the pseudo transition density

matrix ρ̄
(tr)
i (x, y) for the state |i〉.

The transition density is expressed also in terms of the
forward and backward amplitudes of the mode creation op-
erators:

ρ
(tr)
i,k (x) =

∑
pp′h

X i∗
phX k

p′hφ
∗
p(x)φp′ (x) −

∑
phh′

X i∗
phX k

ph′φh(x)φ∗
h′ (x)

+
∑
pp′h

Y i∗
phY k

p′hφ
∗
p(x)φp′ (x) −

∑
phh′

Y i∗
phY k

ph′φh(x)φ∗
h′ (x).

(23)

It is possible to interpret each term using a diagrammatic
representation as shown in Fig. 1. Figures 1(a) and 1(b), cor-
responding to the first and second terms of Eq. (23), represent
actions of the operator on particle and hole components of

the RPA states, respectively whereas Fig. 1(c) and 1(d) are
counterparts, the third and fourth terms, associated with the
backward amplitudes of the RPA states.

The transition matrix elements 〈i| M̂ |k〉 =∫
dx f (x)ρ (tr)

i,k (x) between the RPA excited states for a
one-body operator M̂ is also represented in terms of the same
diagrams.

D. Spherical system

In this section, we give explicit formulas which can be used
in actual numerical calculation. Here the spherical symmetry
of the ground state and the associated mean-field is assumed.

Suppose that the ground state |0〉, the RPA excited states
|k〉 , |i〉, and the transition operator M̂ have the angular
momentum quantum numbers 0+, LM, LiMi, and λμ, respec-
tively. The operator F̂ = [M̂, Ô†

i ] is given the explicit rank
LM:

F̂LM ≡
∑
μMi

〈λμLiMi|LM〉[M̂λμ, Ô†
iLiMi

]
(24)

with M̂λμ ≡ ∫
drx fλ(rx )Yλμ(�x )ρ̂(rx ), fλ(rx ) = rλ

x . Using
this operator we evaluate the strength function for the transi-
tions from the ground state |0+

g 〉 to excited RPA states |kLM〉:

S(F̂L; g, L; h̄ω) ≡
∑
kM

| 〈kLM| F̂LM |0+
g 〉 |2δ(h̄ω − (Ek − E0))

=
∑

k

| 〈kL| |F̂L| |0+
g 〉 |2δ(h̄ω − (Ek − E0)).

(25)

FIG. 1. The diagram representation of the transition density or
the matrix element of a one-body operator between RPA excited
states |i〉 and |k〉. See Eq. (23) and the text.
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It is identical to the strength function

S(M̂λ; iLi, L; h̄ω) ≡
∑

k

| 〈kL| |M̂λ| |iLi〉 |2δ(h̄ω − (Ek − E0))

= S(F̂L; g, L; h̄ω) (26)

which describes reduced matrix elements for transitions from
the RPA excited state |iLiMi〉 to a set of RPA excited states

{|kLM〉}. Note that the angular quantum numbers Li and L of
the excited states are explicitly indicated to label the strength
functions (25) and (26).

The density response and the density-matrix response
caused by F̂LM also have quantum numbers LM. These func-
tions and the matrix element of F̂LM are expanded by the
spherical harmonics and the spin spherical harmonics as

δρ(rx, ω) = YLM (r̂x )
1

r2
x

δρL(rx, ω), (27)

δρ(x, y, ω) =
∑

l jm,l ′ j′m′
Yl ′ j′m′ (x̂)

1√
2 j′ + 1

〈 jmLM| j′m′〉δρL,l ′ j′,l j (rx, ry, ω)

rxry
Y ∗

l jm(ŷ), (28)

FLM (x, y) =
∑

l jm,l ′ j′m′
Yl ′ j′m′ (x̂)

1√
2 j′ + 1

〈 jmLM| j′m′〉FL,l ′ j′,l j (rx, ry)

rxry
Y ∗

l jm(ŷ). (29)

Using these equations and similar expressions for the single-particle states, the Green’s function, and the response function (cf.
Appendix B) as well as the standard angular momentum algebra, the extended linear response equations for the radial functions
of the density responses are given as

δρL,l ′ j′,l j (rx, ry, ω) = 〈l ′ j′| |YL| |l j〉
∫

drx′R0,l ′ j′,l j (rx, ry; rx′, rx′ ; ω)
δU

δρ
(rx′ )

1

r2
x′

δρL(rx′, ω)

+
∫∫

drx′dry′R0,l ′ j′,l j (rx, ry; ry′ , rx′ ; ω)FL,l ′ j′,l j (rx′, ry′ ), (30)

δρL(rx, ω) =
∑
l j,l ′ j′

{ 〈l ′ j′| |YL| |l j〉2

2L + 1

∫
drx′R0,l ′ j′,l j (rx, rx; rx′ , rx′ ; ω)

δU

δρ
(rx′ )

1

r2
x′

δρL(rx′, ω)

+ 〈l ′ j′| |YL| |l j〉
2L + 1

∫∫
drx′dry′R0,l ′ j′,l j (rx, rx; ry′ , rx′ ; ω)FL,l ′ j′,l j (rx′, ry′ )

}
. (31)

The explicit form of radial unperturbed response function R0,l ′ j′,l j is given in Appendix B and can be calculated using the
exact single-particle Green’s function. Note also that there holds a relation

δρL(rx, ω) = 1

2L + 1

∑
l j,l ′ j′

〈l ′ j′| |YL| |l j〉 δρL,l ′ j′,l j (rx, rx, ω). (32)

The strength function S(F̂L; g, L; h̄ω) is given by

S(F̂L; g, L; h̄ω) = − 1

π
Im

∫∫
drxdry

∑
l j

l ′ j′

F ∗
L,l ′ j′,l j (rx, ry)δρL,l ′ j′,l j (rx, ry, ω)

= − 1

π
Im

∫
drx f ∗

λ (rx )
∑

l j,l ′ j′,l2 j2

√
2L + 1

[
(−)L+1(−) j− j′

{
λ Li L
j j′ j2

}
〈l ′ j′| |Yλ| |l2 j2〉

×
∫

dry ρ̄
(tr)∗
iLi,l2 j2,l j (rx, ry)δρL,l ′ j′,l j (rx, ry, ω)

+ (−)Li−λ(−) j′− j

{
λ Li L
j′ j j2

}
〈l2 j2| |Yλ| |l j〉

∫
dry ρ̄

(tr)∗
iLi,l ′ j′,l2 j2

(ry, rx )δρL,l ′ j′,l j (ry, rx, ω)

]
. (33)
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Here we used the expression for the matrix element of the operator F̂LM :

FL,l ′ j′,l j (rx, ry) =
∑
l2 j2

√
2L + 1

[
(−)L+1(−) j− j′

{
λ Li L
j j′ j2

}
〈l ′ j′| |Yλ| |l2 j2〉 fλ(rx )ρ̄ (tr)

iLi,l2 j2,l j (rx, ry)

+ (−)Li−λ(−) j′− j

{
λ Li L
j′ j j2

}
〈l2 j2| |Yλ| |l j〉 fλ(ry)ρ̄ (tr)

iLi,l ′ j′,l2 j2
(rx, ry)

]
, (34)

with the pseudo radial transition density matrix ρ̄
(tr)
iLi,l ′ j′,l j for

the low-lying discrete state |iLiMi〉.

E. Photoemission decays to low-lying states

One can apply the above formulation to describe photoe-
mission transitions from excited states in the continuum to a
low-lying excited state. We consider a transition of multipole
λ from the excited state |kLM〉 in the continuum at energy
Ek to the low-lying bound excited state |iLiMi〉 at Ei. The
transition probability [25], proportional to the reduced ma-
trix element B(Mλ, kL → iLi ) = 1

2L+1 | 〈iLi| |M̂λ| |kL〉 |2�E ,
is given by

TkL→iLi = 8π (λ + 1)

h̄λ((2λ + 1)!!)2

(Eγ

h̄c

)2λ+1 1

2L + 1

× S(M̂λ; iLi, L; Ek − E0)�E (35)

with Eγ = Ek − Ei using the strength function
S(F̂L; g, L; Ek − E0) = S(M̂λ; iLi, L; Ek − E0). The energy
interval �E is chosen arbitrarily small for the continuum
|k〉 whereas in the case of discrete |k〉 it should be treated
as an integral

∫ Ek+�E/2
Ek−�E/2 S(F̂L; g, L; E − E0)dE to cover the

associated peak structure of the strength function.

III. NUMERICAL EXAMPLE

A. Setting

We shall describe electromagnetic transitions in the
neutron-rich nucleus 140Sn in order to demonstrate the present
theory. The neutron separation energy in this nucleus is
predicted as small as Sn ≈ 3 MeV by the Hartree-Fock cal-
culations [26], and it may be one of the isotopes which play
roles in the r-process neutron capture. We notice also that the
pair correlation of neutrons is expected to be weak due to a
single- j closed configuration.

We focus on excited states with spin-parity 1−, 2+, and
3− where characteristic excited states are expected to emerge
both in low-lying and high-lying regions. Examples are the
soft dipole mode and the giant dipole resonance for 1−, the
low-lying quadrupole state and the isoscalar/isovector giant
quadrupole resonances for 2+, and the low-lying octupole
collective states for 3− as well as continuum particle-hole
excitations above the neutron separation energy. We shall
discuss electric multipole transitions (E1, E2, and E3) which
occur among these states and the ground state.

The numerical calculations is performed with the follow-
ing setting. We use a Woods-Saxon potential in place of the
Hartree-Fock mean field U0 and a Skyrme-type contact inter-

action as the residual two-body force vph = δU/δρ, given by

vph(r, r′) =
{

t0(1 + x0Pσ ) + t3
12

(1 + x3Pσ )ρ(r)
}
δ(r − r′),

(36)

where we adopt the same parameter as Ref. [22]: t0 = f ×
(−1100) fm3MeV, t3 = f × 16 000 fm6MeV, x0 = 0.5, x3 =
1, and Pσ is the spin-exchange operator. The Woods-Saxon
parameter is that of Ref. [22], and the Coulomb potential
for a uniform charge sphere is included for protons. Since
the Woods-Saxon potential is not the self-consistent poten-
tial derived from the interaction, we impose an approximate
self-consistency condition on this residual interaction by mul-
tiplying a renormalization factor f = 0.749 to vph so that the
spurious mode of the center-of-mass motion, appearing as a
RPA eigenmode with multipole 1−, has zero excitation energy.

We obtain the single-particle wave function and the single-
particle Green’s function G0 by solving the radial Schrödinger
equation with the Runge-Kutta method up to a maximal radius
Rmax = 20 fm (with interval �r = 0.2 fm). At r = Rmax the
single-particle wave function is connected to the asymptotic
wave, i.e, the Hankel function with an appropriate (com-
plex) wave number. All the single-particle partial waves are
included, i.e., up to the maximum orbital angular momen-
tum lmax = lh,max + max{Li, L} + 1, where lh,max is the largest
among the hole orbits. The small imaginary constant η in
the response equation is set to η = 0.1 MeV in most cases
although it is chosen much smaller in specific cases.

Figure 2 shows the strength functions for the
transitions from the ground state to the excited states
with spin-parity Lπ = 1−, 2+, and 3−: (a) the E1 strength
function S(DIV; g, 1−; E ) for 1− states, excited by
D̂IV = N

A

∑
i,proton(rY1μ)i − Z

A

∑
i,neutron(rY1μ)i; (b) the E2

and isoscalar quadrupole strength functions S(Qp; g, 2+; E )
and S(QIS; g, 2+; E ) for 2+ states with Q̂p = ∑

i,proton(r2Y2μ)i

and Q̂IS = Q̂p + Q̂n; (c) the E3 and isoscalar octupole
strength functions for 3− states with Ôp = ∑

i,proton(r3Y3μ)i

and ÔIS = Ôp + Ôn.
Table I shows the single-particle orbits. The energy

of the neutron 2 f7/2 orbit (the Fermi energy) is e2 f7/2 =
−2.59 MeV. As seen in Fig. 2(a), there exists low-energy
dipole strength which is distributed continuously above the
neutron threshold Sn = 2.59 MeV. This continuum strength
is brought mainly by the neutron particle-hole excitation from
the last occupied 2 f7/2 orbit to the continuum d5/2 orbit.
(We denote this configuration as “ν[(cont.d5/2)(2 f7/2)−1]1−”
in the following.) The large strength distributed around
E ≈ 11–15 MeV corresponds to the giant dipole resonance
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FIG. 2. (a) The E1 strength function S(DIV; g, 1−; E ) for excited
1− states in 140Sn, calculated with η = 0.1 MeV. The horizontal axis
is the excitation energy of the 1− states. (b) The E2 and isoscalar
quadrupole strength functions S(Qp; g, 2+; E ) and S(QIS; g, 2+; E )
for excited 2+ states, plotted with green solid and magenta dashed
curves, respectively. The inset shows the result with η = 0.001 MeV,
in which the 2+

1 and 2+
2 states are separately seen at excitation energy

E2+
1

= 0.888 MeV and E2+
2

= 1.093 MeV. (c) The E3 and isoscalar
octupole strength functions S(Op; g, 3−; E ) and S(OIS; g, 3−; E ) for
excited 3− states. The lowest energy peak is the 3−

1 state with E3−
1

=
1.768 MeV.

(GDR). From the strength functions of 2+ states, we focus
on the lowest two discrete states at E2+

1
= 0.888 MeV, E2+

2
=

1.093 MeV lying below the neutron threshold. The strength
distributions around E ≈ 12–13 MeV and E ≈ 21–25 MeV
are the isoscalar giant quadrupole resonance (ISGQR) and
the isovector one (IVGQR). Two peaks around E ≈ 5 and
≈6 MeV consists mainly of proton particle-hole excitations
π [(1g7/2)(1g9/2)−1]2+ and π [(2d5/2)(1g9/2)−1]2+ while the
enhanced isoscalar strengths of these peaks indicate contribu-

TABLE I. Single-particle energies of the adopted Woods-Saxon
potential for 140Sn. Several orbits around the Fermi energy (indicated
by lines ) are listed.

Neutron ε (MeV) Proton ε (MeV)

2 f5/2 −0.31 1h11/2 −11.40
3p1/2 −0.81 2d3/2 −11.61
3p3/2 −1.46 2d5/2 −14.06
1h9/2 −1.53 1g7/2 −15.08

2 f7/2 −2.59 1g9/2 −19.97
1h11/2 −6.64 2p1/2 −21.75
3s1/2 −8.65 2p3/2 −23.02
2d3/2 −8.65 1 f5/2 −24.81
2d5/2 −10.40
1g7/2 −10.96
1g9/2 −14.64

tions of neutron particle-hole components. For 3− states, we
notice a low-lying discrete state at E3−

1
= 1.768 MeV, which

has a character of the octupole surface vibration.
In the following discussion we pick up the three discrete

states, the first and second 2+ states and the first 3− states
as the low-lying excited state |iLi〉. We shall describe the ma-
trix element 〈iLi| |M̂λ| |kL〉 of multipole transitions between
these low-lying states and the RPA excited states |kL〉 lying
above the neutron threshold in the 1−, 2+, and 3− sectors. We
describe the E1, E2, and E3 transitions using the operators
M̂λ = D̂IV, Q̂p, and Ôp with the bare charge of nucleons.

The present theory takes into account the
collectivity/correlation in both the initial and final states
on top of the continuum effects. We shall demonstrate
this feature by comparing two calculations in which the
correlation/collectivity of the excited states either included
or neglected. We drop off the induced field vind = (δU/δρ)δρ
in the linear response equations when we neglect the
correlation. In this case the excited states become unperturbed
particle-hole excitations.

B. 1− states: Soft dipole excitation and GDRs

Let us first consider excited dipole states and discuss E1
and E2 transitions from the low-lying 2+

1,2 and 3−
1 states.

1. E1 transition 2+
1,2 → 1−

Figure 3(a) shows the strength function S(DIV; 2+
1,2, 1−; E )

for the E1 transitions from the low-lying 2+
1,2 states to excited

1− states. The strength function S(DIV; g, 1−; E ) for the E1
transitions from the ground state is also plotted in the lower
panel for comparison. It is seen that the strength distribution
for the transitions from 2+

1 and 2+
2 is very different from

that from the ground state. We note here that the strength
function S(DIV; 2+

1,2, 1−; E ) has little strength in the GDR
region (E ≈ 12–17 MeV) while there exists a rather sharp
peak around E ≈ 9 MeV. We note also continuous distribu-
tion of the strength for the 1− states in the region of the
soft dipole excitation S1n = 2.59 < E � 7 MeV. However the
shape of this continuum strength is different from that in the
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FIG. 3. (a) The E1 strength functions S(DIV; 2+
1,2, 1−; E ) for

transitions from 2+
1,2 to 1− states. (b) The E2 strength function

S(Qp; 3−
1 , 1−; E ) for transitions from 3−

1 to 1− states. (c) The E1
strength function S(DIV; g, 1−; E ) for transitions from the ground
state to 1− states. The horizontal axis is the excitation energy of the
1− states.

E1 strength function S(DIV; g, 1−; E ) for the transition from
the ground state.

The above behaviors can be explained with the following
picture. We first note that the correlation in the low-lying
2+

1,2 states is rather simple; their main structures are
mixtures of lowest-energy neutron particle-hole excitations
ν[(1h9/2)(2 f7/2)−1]2+ and ν[(3p3/2)(2 f7/2)−1]2+ (with
excitation energies E = 1.06 MeV and E = 1.13 MeV,
respectively) as indicated by the forward amplitudes shown
in Table II. (Note that other particle-hole configurations
have small amplitudes |Xph| < 0.1.) Given this feature,
main components which contribute to the E1 transitions
between 2+

1,2 and 1− particle-hole excitations are rather
limited, as is listed in Fig. 4. Figure 5 shows unperturbed E1

TABLE II. The RPA forward amplitudes Xph of the 2+
1 and 2+

1

states. Particle-hole configurations with large amplitude |Xph| > 0.1
are listed. The RPA backward and forward amplitudes Xph and Yph

are calculated using a method of Ref. [27].

Neutron config. X
2+

1
ph X

2+
2

ph

(1h9/2)(2 f7/2)−1 −0.601 0.791
(3p3/2)(2 f7/2)−1 0.789 0.600

transitions associated with these components, i.e., transitions
from the neutron particle-hole states ν[(1h9/2)(2 f7/2)−1]2+

and ν[(3p3/2)(2 f7/2)−1]2+ to uncorrelated 1− particle-hole
states. From comparison of the strength functions from 2+

1,2
[Fig. 3(a)] and the unperturbed strength from
ν[(3p3/2)(2 f7/2)−1]2+ (Fig. 5), we find that the continuum
strength in the soft dipole region S1n = 2.59 < E � 7 MeV
originates from the component ν[(3p3/2)(2 f7/2)−1]2+ →
ν[(cont.d5/2)(2 f7/2)−1]1− in which the E1 operator causes
a single-particle transition of a neutron in the 3p3/2 orbit
to the continuum d5/2 orbit. Absolute strengths are well
explained by the mixing amplitude of ν[(3p3/2)(2 f7/2)−1]2+ ,
and it reflects the uncorrelated particle-hole nature of the soft
dipole states. Note also that a large continuum strength in the
region S1n = 2.59 < E � 7 MeV is associated with neutron
single-particle transitions from the weakly bound 3p3/2 to
continuum d5/2. The narrow peak around E ≈ 9 MeV is
due to ν[(3p3/2)(2 f7/2)−1]2+ → ν[(3p3/2)(2d5/2)−1]1− with
E1 transition of a neutron hole (2 f7/2)−1 → (2d5/2)−1. In
this case, however, the strengths of this peak deviate from
simple estimation based on the the mixing amplitudes.
This is probably because the 1− states in this energy
region are not simple particle-hole excitations. Small peaks

FIG. 4. The diagrams representing dominant components of
transition between the exited 1− states and the low-lying 2+

1,2 in 140Sn.
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FIG. 5. The E1 strength functions S(DIV;ν[(1h9/2)(2 f7/2)−1]2+ ,

1−; E ) and S(DIV; ν[(3p3/2)(2 f7/2)−1]2+ , 1−; E ) for transitions from
the neutron 1p-1h states ν[(1h9/2)(2 f7/2)−1]2+ and ν[(3p3/2)
(2 f7/2)−1]2+ to unperturbed 1− states. The horizontal axis is
the excitation energy of the 1− states. The strength function
S(DIV; ν[(3p3/2)(2 f7/2)−1]2+ , 1−; E ) has a peak at E = 8.94 MeV
with the maximum value 3.67 fm2/MeV.

around E ≈ 13 MeV can be attributed to a contribution of
ν[(1h9/2)(2 f7/2)−1]2+ → ν[(1h9/2)(1g9/2)−1]1− [Fig. 4(c)].
The lack of the strength in the GDR region and higher is a
consequence of the small number of dominant particle-hole
configurations in the low-lying 2+

1,2 states.

2. E2 transition 3−
1 → 1−

The E2 transitions from the low-lying 3−
1 state to the dipole

states, shown in Fig. 3(b), exhibit behavior different from that
in Fig. 3(a). The low-lying 3−

1 state has the collective character
of the surface octupole vibration, including many particle-
hole configurations of not only neutrons but also protons, as
seen in the RPA amplitudes (Table III). Here, relevant to the
E2 transition, are proton particle-hole configurations in 3−

1
since we use the bare charge for the E2 operator. It is seen
in Fig. 3(b) that there is no visible strength in the region of

TABLE III. The RPA forward amplitudes Xph of the 3−
1 state.

Particle-hole configurations with large amplitude |Xph| > 0.1 are
listed. The neutron single-particle orbit 1i13/2 is a resonance in the
continuum.

Neutron config. X
3−

1
ph Proton config. X

3−
1

ph

(1i13/2)(2 f7/2)−1 0.831 (1h11/2)(1g9/2)−1 −0.285
(1i13/2)(1h11/2)−1 0.354 (1g7/2)(2p1/2)−1 0.203
(1h9/2)(2d3/2)−1 −0.299 (2d5/2)(2p1/2)−1 0.176
(1h9/2)(1g7/2)−1 −0.189 (2d5/2)(2p3/2)−1 0.135
(2 f5/2)(3s1/2)−1 0.134 (1 j15/2)(1g9/2)−1 0.129
(2g9/2)(2 f7/2)−1 0.133 (2 f7/2)(1g9/2)−1 −0.129
(2 f5/2)(2d3/2)−1 −0.126 (2d3/2)(2p3/2)−1 −0.120
(3p3/2)(2d3/2)−1 −0.112 (3p3/2)(1g9/2)−1 −0.103
(2 j15/2)(1g9/2)−1 0.108 (1g7/2)(1 f5/2)−1 0.102
(2 f5/2)(1g7/2)−1 −0.101

FIG. 6. The branching ratios of photoemission decays from the
excited 1− states to the ground state (green curve), the 2+

1 state (red
curve), and the 2+

2 state (blue curve) in 140Sn. The horizontal axis is
the excitation energy of the 1− states. The neutron separation energy
S1n = 2.59 MeV is indicated by the dashed line. The branching ratio
to the 3−

1 state is invisibly small.

the soft dipole transition (S1n < E � 7 MeV), and this is due
to the neutron character of the soft dipole excitation. It is
seen also that there exist several peaks in the energy region
8 � E � 17 MeV, in contrast to the E1 transitions from the
2+

1,2. This originates from the relatively large number of proton
particle-hole configurations mixed in the collective 3−

1 state.

3. Decay branching ratio from 1− states

Combining the above results, we shall discuss the branch-
ing ratio for the photoemission decays from excited 1− states
to the ground state, 2+

1,2, and 3−
1 states. The result is shown

in Fig. 6. It is seen that the soft dipole states in the energy
region S1n < E � 7 MeV decays not only to the ground state
but also to both 2+

1 and 2+
2 states with sizable branching

ratio 20–40% (summing 2+
1 and 2+

2 ). This reflects that the
neutron single-particle transition (cont.d5/2) → (3p3/2) rele-
vant to 1− ↔ 2+

1,2 is comparable to transition (cont.d5/2) →
(2 f7/2) relevant to 1− ↔ 0+

g . In the GDR region (E ≈ 10–17
MeV), in contrast, the decay to the ground state is dominant
because of the lack of the E1 transition strengths to the 2+

1
and 2+

2 . Note that the E2 decay probability to the 3−
1 state

is negligibly small (<0.01%) and not visible in the scale of
Fig. 6.

C. 2+ states: Low-lying states and GQRs

Here we discuss excited 2+ states with focus on the GQRs
and the low-lying 2+ states.

Figure 7(b) shows the strength function S(DIV; 3−
1 , 2+; E )

for the E1 transitions from 3−
1 to the excited 2+ states. A

peak around E ≈ 12 MeV corresponds to the transition from
the low-lying collective 3−

1 state to ISGQR. We also observe
another small peak at E ≈ 1 MeV. This is the transitions
between the low-lying 2+

1,2 states and the collective 3−
1 state.

(Note that the two 2+ states are not resolved due to the
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FIG. 7. (a) The E2 strength functions S(Qp; 2+
1,2, 2+; E ) for

transitions from 2+
1,2 to 2+ states. (b) The E1 strength function

S(DIV; 3−
1 , 2+; E ) for transitions from 3−

1 to 2+ states. (c) The E2
strength function S(Qp; g, 2+; E ) for transitions from the ground state
to 2+ states. The horizontal axis is the excitation energy of the 2+

states.

smoothing with η = 0.1 MeV.) These transitions can be de-
scribed only if the correlation and the collectivity are taken
into account in the theory. Several peaks at high energy region
E � 16 MeV and E ≈ 5 MeV correspond to particle-hole
configurations of both neutrons and protons, and existence
of these transitions can be understood in terms of the same
argument as that for the E2 transitions from 3−

1 to 1− states.
The roles of the correlation and the collectivity are also

seen in the E2 transitions between 2+
1,2 and higher-lying

2+ states, shown in the strength function S(Qp; 2+
1,2, 2+; E )

[Fig. 7(a)]. An example is the transition between 2+
1 and

ISGQR. This transition strength appears only if configura-
tion mixing of the proton particle-hole components is taken
into account in the 2+

1 state. Note, however, that the overall

FIG. 8. The branching ratios of photoemission decays from the
excited 2+ states to the low-lying 3−

1 state (yellow curve) and the
ground state (green curve) in 140Sn. The strengths associated with
the low-lying 2+ states below the neutron separation energy (dashed
line) are removed. The horizontal axis is the excitation energy of the
2+ states. The branching ratios to the 2+

1,2 states are invisibly small.

strengths in S(Qp; 2+
1,2, 2+; E ) between 2+

1,2 and higher-lying
2+ states [panel (a)] are significantly smaller than the E2 tran-
sition strengths from the ground state [S(Qp; g, 2+; E ), shown
panel (c)] due to the small admixture of proton configurations.
The 2+

2 state has even smaller admixture, as suggested by
the very small B(E2, gs → 2+

2 ) [see the inset of Fig. 2(b)],
resulting in much smaller strengths than that of 2+

1 .
Figure 8 shows the branching ratios of the photoemission

decays from the excited 2+ states to the ground state (E2) and
the 3−

1 state (E1). The branching ratios of the E2 decays to the
2+

1,2 states is not shown here since they are negligibly small.
A gross behavior is that the E1 decay probability to 3−

1 state
is larger than the E2 decays to the ground state in most of
the plotted energy range except in the isoscalar and isovector
GQR regions (E ≈ 12 MeV and E ≈ 22 − 25 MeV), In these
two energy regions, the collectivity of the GQRs enhances the
E2 transition probability to the ground state and hence the
branching ratio. The collectivity of the ISGQR causes also
enhancement the transition to the 3−

1 state, but to a smaller
extent than that to the ground state. At most excitation ener-
gies other than the GQR regions, the factor (Eγ /h̄c)2λ+1 in the
electric transition probability [25] favors E1 transition to 3−

1
rather than E2 to the ground state.

D. 3− states: Continuum, low-lying, and high-lying
collective states

Concerning the excited 3− states, we observe additional
new features as well as similar behaviors to those found in
the above examples.

Figure 9(a) shows the strength function S(DIV; 2+
1,2, 3−; E )

for the E1 transition from the low-lying 2+
1,2 to the 3−

states. A characteristic feature is continuum strength in the
region 2.59(= S1n) < E � 7 MeV, as is similarly seen in the
strength function for the E1 transition 2+

1,2 → 1− [Fig. 3(a)].
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FIG. 9. (a) The E1 strength functions S(DIV; 2+
1,2, 3−; E ) for

transitions from 2+
1,2 to 3− states. (b) The E2 strength function

S(Qp; 3−
1 , 3−; E ) for transitions from 3−

1 to 3− states. (c) The E3
strength function S(Op; g, 3−; E ) for transitions from the ground state
to 3− states. The horizontal axis is the excitation energy of the 3−

states.

Indeed this feature can be understood in terms of the same
argument using two dominant neutron particle-hole con-
figurations, ν[(1h9/2)(2 f7/2)−1]2+ and ν[(3p3/2)(2 f7/2)−1]2+

in the low-lying 2+
1,2 states. Comparing with the unper-

turbed transitions from these two configurations (Fig. 10),
we find that the continuum strength is associated with
continuum particle-hole states ν[(cont.s1/2)(2 f7/2)−1]3− and
ν[(cont.d5/2,3/2)(2 f7/2)−1]3− , which are excited from the con-
figuration ν[(3p3/2)(2 f7/2)−1]2+ by neutron single-particle
transitions from 3p3/2 to continuum s1/2 and d orbits [cf.
the diagram of Fig. 11(b)]. Other components shown in the
diagrams of Figs. 11(a), 11(c), and 11(d) bring three narrow
peaks appearing around E ≈ 9–13 MeV.

FIG. 10. The E1 strength functions S(DIV; ν[(1h9/2)(2 f7/2)−1]2+ ,

3−; E ) and S(DIV; ν[(3p3/2)(2 f7/2)−1]2+ , 3−; E ) for transitions
from the neutron 1p-1h states ν[(1h9/2)(2 f7/2)−1]2+ and
ν[(3p3/2)(2 f7/2)−1]2+ to unperturbed 3− states. The horizontal
axis is the excitation energy of the 3− states.

We emphasize that the E1 transition between the low-lying
2+

1,2 and the continuum octupole state is different from that
between 2+

1,2 and the continuum dipole state: The strength
of the former rises sharply at the threshold energy E = 2.59
MeV (= S1n). This originates from the transition 3p3/2 →
cont.s1/2, where the continuum s orbit causes a cusp be-
havior at the threshold. For 1−, however, the configuration
ν(cont.s1/2)(2 f7/2)−1 with the continuum s orbit is forbidden
by the angular momentum coupling.

Examples showing the collective effect are remarked also.
A small peak at E ≈ 1.8 MeV (below the neutron threshold
energy) corresponds to the E1 transition between the low-
lying octupole vibrational state 3−

1 at E = 1.77 MeV and the
low-lying 2+

1,2 states. Existence of the low-lying collective
state is a peculiar aspect of the 3− channel.

FIG. 11. The diagrams representing dominant components of
transition between the exited 3− states and the low-lying 2+

1,2 in 140Sn.
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FIG. 12. The branching ratios of photoemission decays from the
excited 3− states to the ground state (green curve), the 2+

1 state (red
curve), the 2+

2 state (blue curve), and the 3−
1 state (yellow curve) in

140Sn. Horizontal axis is the excitation energy of the 3− states. The
neutron separation energy is 2.59 MeV (dashed line).

Another example of the collective effect is seen in
Fig. 9(b), which shows the strength function S(Qp; 3−

1 , 3−; E )
of the E2 transitions between 3−

1 and all the RPA excited states
with 3−. A peak at E = 1.77 MeV, which corresponds to
the diagonal matrix element 〈3−

1 | |E2| |3−
1 〉 for the low-lying

collective state, is significantly enhanced in comparison with
the E2 matrix elements associated with other noncollective
3− states. The enhancement is caused by the collective and
surface vibrational character of the 3−

1 state.
Figure 12 shows the branching ratio of the photoemission

decays from 3− states to the ground state (E3 transition),
the 2+

1,2 states (E1), and the 3−
1 state (E2). The E1 tran-

sitions feeding to the low-lying 2+
1,2 states dominate over

the E3 transition to the ground states in all the energy
range from the continuum octupole states to the highest en-
ergy region E ≈ 20–25 MeV. Looking at more details, the
branching ratios to the ground state, 2+

1 , 2+
2 , and 3−

1 states
reflect various structures of the initial 3− states. For exam-
ple, the branching ratios for decays from continuum 3− state
around 2.59 < E � 7 MeV to the two low-lying 2+

1 and 2+
2

states are well accounted for by the mixing amplitudes of
the configuration ν[(2p3/2)(2 f7/2)−1]2+ in 2+

1 and 2+
2 (cf.

Table II). This indicates that the continuum 3− states in
this energy region are uncorrelated particle-hole excitations
ν[(cont.s1/2)(2 f7/2)−1]3− and ν[(cont.d3/2, 1/2)(2 f7/2)−1]3− .
The branching ratio for transitions from the vibrational col-
lective 3−

1 state to 2+
1 and 2+

2 (the crosses at E = 1.77 MeV)
are different from that of the continuum states, reflecting
significant configuration mixing in the 3−

1 state (Table III).
Around E ≈ 22 MeV, collectivity of the high-lying octupole
vibrational state enhances the branching to the ground state.

IV. CONCLUSION

The continuum random-phase approximation (cRPA), re-
ferred also to the linear response theory, describes both
collective and noncollective particle-hole excitations as well

as their coupling to unbound single-particle orbits, which play
key roles in exotic nuclei close to the proton and neutron drip
lines. On the basis of the nuclear density functional theory
or the self-consistent Hartree-Fock model, cRPA provides a
well-defined scheme to calculate the response function for
a one-body field, e.g., the electromagnetic matrix elements,
for transitions from the ground state to the excited states.
In the present study, we have extended the linear response
theory so that one can calculate transitions from a low-lying
excited state to the RPA excited states under consideration.
This extension enables us to calculate γ decays from the RPA
excited states to a set of the low-lying excited states, and hence
the branching ratio and the total decay probability including
different final states.

In order to demonstrate the applicability of the extended
cRPA we have described the 1−, 2+, and 3− excitations in a
neutron-rich nucleus 140Sn. Specifically we discuss the E1,
E2, and E3 transitions among low-lying vibrational states,
higher-lying giant resonances and the unbound particle-hole
states with continuum spectra. An important conclusion is that
there exist cases where the branching ratios to the low-lying
excited states are larger than or comparable with that to the
ground state. An example is the transitions from continuum
states just above the threshold decaying to the excited 2+

1,2
states which involve the weakly bound neutron 3p orbits.
Furthermore we have demonstrated that the extended cRPA
enables us to analyze microscopic mechanisms of how the
transitions between the excited states reflect the nature of the
correlations in both the initial and final states.

Let us remark future developments of the present study.
First, we plan to describe the radiative neutron-capture reac-
tion of neutron-rich nuclei by applying the extended cRPA. In
a preceding work [12] we formulated the theory of the direct
neutron-capture reaction in which the reaction proceeds via
the RPA correlated states, but we described only the limited
process where the final state of the γ decays from the RPA
states is the ground state of the synthesized nucleus. Applying
the extended cRPA, we can include decay channels populat-
ing the low-lying excited states, and hence provide a more
realistic description of the radiative neutron-capture reactions.
Second, we plan to take into account the pair correlation
which need to be included when the theory is applied to
open-shell nuclei. Following Ref. [23], this can be achieved
by replacing the RPA with the quasiparticle random-phase
approximation (QRPA).
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APPENDIX A: PSEUDO TRANSITION DENSITY MATRIX
IN THE LINEAR RESPONSE FORMALISM

The pseudo transition density matrix can be calculated as
follows. Suppose that we describe the low-lying excited state
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|i〉 using the linear response equation

δρ ′(rx, ω) =
∑
σx

∫
dx′R0(x, x; x′, x′; ω)

δU

δρ
(rx′ )δρ ′(rx′ , ω)

+
∑
σx

∫
dx′R0(x, x; x′, x′; ω) f ′(x′) (A1)

and an external perturbation M̂ ′ = ∫
dx f ′(x)ρ̂(x), which is

suitable to excite |i〉. [Equation (A1) is essentially the same
as Eq. (17) except for the difference in the external pertur-
bation. We put a prime ′ on the density response δρ ′(rx, ω)
in order to distinguish it from δρ(rx, ω) in Eq. (17).] We can
also consider the extended linear response equation for the
density-matrix response δρ ′(x, y, ω) in terms of an equation
similar to Eq. (16).

The low-lying RPA state |i〉 appears as a pole at ωi =
(Ei − E0)/h̄ in δρ ′(rx, ω) provided that |i〉 is a discrete bound
state. The transition density ρ

(tr)
i (rx ) ≡ ∑

σx
〈0| ρ̂(x) |i〉 corre-

sponds to the residue of δρ ′(rx, ω) at the pole, and thus can be
calculated with

ρ
(tr)
i (rx ) = C′Imδρ ′(rx, ωi ), (A2)

where C′ is a normalization constant. Similarly the transition
density matrix ρ

(tr)
i (x, y) is also given by

ρ
(tr)
i (x, y) = C′Imδρ ′(x, y, ωi )

= C′Im

{∫
dx′R0(x, y; x′, x′; ωi )

δU

δρ
(rx′ )δρ ′(rx′, ωi )

+
∫

dx′R0(x, y; x′, x′; ωi ) f ′(x′)

}
. (A3)

As we discussed for Eq. (11), the pseudo transition density
matrix ρ̄

(tr)
i (x, y) has the same structure as that of the transition

density matrix except for the sign of the backward amplitudes.
Thus it is calculated with

ρ̄
(tr)
i (x, y) = C′Im

{∫
dx′R̄0(x, y; x′, x′; ωi )

δU

δρ
(rx′ )δρ ′(rx′ , ωi ) +

∫
dx′R̄0(x, y; x′, x′; ωi ) f ′(x′)

}
, (A4)

R̄0(x, y; y′, x′; ω) ≡
∑

h

{φ∗
h (y)Ḡ0(x, x′, εh + h̄ω + iη)φh(y′) − φ∗

h (x′)Ḡ0(y′, y, εh − h̄ω − iη)φh(x)}, (A5)

where the function R̄0 is a variant of the unperturbed response
function R0 with the sign of the second term opposite to that
of Eq. (15). Note that the Green’s function G0 is replaced with

Ḡ0(x, x′, e) ≡ G0(x, x′, e) −
∑

h

φh(x)φ∗
h (x′)

e − εh
(A6)

so that the contributions of the hole orbits in the Green’s func-
tion are removed. This replacement is necessary to remove
hole-hole components in R̄0, which are automatically canceled
out in the original unperturbed response function R0.

The normalization constant C′ is determined in the follow-
ing way. Using the strength of excited state |i〉,

Si = |〈i| M̂ ′ |0〉|2 =
∣∣∣∣
∫

dx f ′∗(x)ρ (tr)
i (rx )

∣∣∣∣
2

, (A7)

together with Eq. (A2), C′ is obtained as

C′ =
√

Si

Im
∫

dx f ′∗(x) δρ ′(rx, ωi )
. (A8)

Note that Si is calculated as an integral of the strength function
S(h̄ω):

Si =
∫ h̄ωi+�E/2

h̄ωi−�E/2
h̄dω S(h̄ω). (A9)

The integral interval �E is chosen to cover the peak corre-
sponding to |i〉.

APPENDIX B: RESPONSE FUNCTIONS FOR
SPHERICAL MEAN FIELD

Assuming the spherical symmetry of the mean field, we
represent the single-particle wave function by φnl jm(x) =
Yl jm(x̂) 1

rx
φnl j (rx ), where rx and x̂ ≡ (r̂x, σx ) are the radial and

angular-spin variables, respectively, and Yl jm(x̂) is the spin
spherical harmonics with the angular quantum numbers l jm.

The single-particle Green’s function is given by

G0(x, x′, E ) =
∑
l jm

Yl jm(x̂)
1

rxrx′
G0,l j (rx, rx′ , E )Y ∗

l jm(x̂′).

(B1)

whose radial part can be constructed exactly as

G0,l j (rx, rx′ , E )

= 2m

h̄2

1

W (φ1,l j, φ2,l j )
{φ1,l j (rx′ )φ2,l j (rx )θ (rx − rx′ )

+ φ1,l j (rx )φ2,l j (rx′ )θ (rx′ − rx )} (B2)

in terms of the regular radial wave φ1,l j (r) and the outgoing
wave φ2,l j (r) with a given complex energy E . W is the Wron-
skian.

The unperturbed response function for density matrix and
non-local one-body operators is represented by

R0(x, y; y′, x′; ω)

=
∑

l jm,l ′ j′m′
Yl ′ j′m′ (x̂)Y ∗

l jm(ŷ)
1

rxryry′rx′
R0,l ′ j′,l j (rx, ry; ry′ , rx′ ; ω)

×Yl jm(ŷ′)Y ∗
l ′ j′m′ (x̂′). (B3)
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Here the radial unperturbed response function is given by

R0,l ′ j′,l j (rx, ry; ry′ , rx′ ; ω)

=
∑

n

{φ∗
nl j (ry)G0,l ′ j′ (rx, rx′ , εnl j + h̄ω + iη)

× φnl j (ry′ )θ (εF − εnl j )

+ φ∗
nl ′ j′ (rx′ )G0,l j (ry′ , ry, εnl ′ j′ − h̄ω − iη)

× φnl ′ j′ (rx )θ (εF − εnl ′ j′ )}. (B4)

where φnl j (r) is a radial wave function of the single-particle
states occupied in the ground state.

We define the creation operator of an RPA excited state and
its forward and backward amplitudes by

Ô†
iLiMi

=
∑

ph

{
X i

ph[a†
pah]LiMi − Y i

ph[a†
hap]LiMi

}
,

[a†
pah]LiMi =

∑
mpmh

〈 jpmp jhmh|LiMi〉a†
nplp jpmp

a
˜nhlh jhmh

, (B5)

where a
˜nl jm

= (−1) j−manl j−m is the time reversal of the
Fermion annihilation operator anl jm.
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