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α-cluster formation and decay: The role of shell structure
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Shell structure effects on α-cluster formation and decay are studied by using the quartetting wave function
approach (QWFA). Both the intrinsic and center-of-mass (c.o.m.) motions of an α cluster inside a core nucleus
are investigated with different contributing shell model wave functions. The overlap between intrinsic wave
functions of four nucleons in the α-like quartet state and in a free α particle is analyzed in detail. The change of
the effective potential describing the c.o.m. motion of the quartet is explicitly shown for the major shell closures
Z = 82 and N = 126. It is found that both the α-cluster formation probability and the half-life are sensitive to the
quartet shell model states. By extending the QWFA calculations from 212Po to α emitters with one or two extra
nucleons, we show that the bound state and scattering wave functions of the α cluster are changed accordingly.
The calculated α-decay half-lives agree nicely with the experimental data.
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I. INTRODUCTION

One of the important subjects of nuclear theory is the ex-
ploration of the stability of nuclei. In recent years, significant
progress has been made on the detection of new α emitters.
The region dominated by α decay on the nuclide map has been
continuously broadened owing to the rapid development of
radioactive beams and new detector technology, especially in
the vicinity of doubly magic nuclei. For instance, the naturally
occurring 209Bi was considered to be stable for a long time
but was recently found to be metastable with respect to α

decay [1], which makes 208Pb now the heaviest stable nuclide.
Very recently, the α decay of self-conjugate nucleus 104Te to
100Sn was successfully observed [2,3], which is the second
instance of α decay to a doubly magic nucleus besides 212Po.
During the past several decades, much attention has been paid
to the superheavy island centered near the next doubly magic
nucleus (possibly 298Fl), and the stability of newly synthesized
superheavy nuclei is mainly determined by their α decays
[4,5].

Whereas the α cluster in light nuclei has been well
described by microscopic approaches [6–10], the α-cluster
formation problem in heavy and superheavy nuclei has still
not been fully solved although much effort has been devoted.
Unlike in light nuclei, the formation of α cluster and subse-
quent decay process in heavy and superheavy nuclei involves
a much more complex quantum many-body problem [11–29].
To perform microscopic calculations within present computer
capacities, the α decays of 104Te or 212Po to the doubly magic
core 100Sn or 208Pb, respectively, are of particular interest.
Very recently, several studies have been devoted to a more
microscopic understanding of these α decays. For example,
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the proton-neutron versus α-like correlations above 100Sn are
investigated with an additional pocket-like surface potential
simulating the four-body correlations [30]. The half-life of
newly observed α decay 104Te → 100Sn is calculated based
on energy density functionals [31]. A multistep shell model
calculation is performed to analyze the α-cluster formation
probabilities and subsequent decays for both 104Te and 212Po
[32]. A larger α-cluster formation probability in nuclei above
100Sn is shown when compared to analogous nuclei above
208Pb [33]. A very recent review of advanced α-decay theories
is provided by Mirea, in which the similarities and differences
of various approaches are discussed in detail [34].

In the Wentzel-Kramers-Brillouin (WKB) type approaches
of α decay, the α cluster is basically regarded as a point-like
or Gaussian-like particle, which is assumed to move freely
inside an effective c.o.m. potential as a whole. The decay
width is determined by the c.o.m. motion of α-cluster tun-
neling through the Coulomb barrier. The α-cluster formation
probability can be empirically extracted from experimental
data [35]. In connection with the decay process, the change
of the intrinsic motion between four nucleons in the α cluster
is not considered in such approaches. Inspired by the pairing
in nuclei and by the THSR (Tohsaki-Horiuchi-Schuck-Röpke)
wave function concept [6], we recently proposed the quartet-
ting wave function approach (QWFA) to describe α-cluster
formation and decay in heavy and superheavy nuclei [36–40].
In QWFA, the motion of the four-nucleon (α-like) quartet
is divided into the intrinsic motion between four nucleons
within the α-like cluster and the c.o.m. motion of the α-
like cluster versus the core, with a potential containing the
nucleon-nucleon interaction in mean field interaction as well
as the Pauli principle which is represented as a repulsion term
in this effective interaction for the c.o.m. motion of the quar-
tet [36,37]. The respective c.o.m. and intrinsic Schrödinger
equations are coupled in a complex way containing derivative
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terms of the intrinsic wave function with respect to the
c.o.m. coordinate [36,37]. An important feature of α-cluster
motion in QWFA is that inside the core nucleus the α clus-
ter dissolves and four nucleons are nearly uncorrelated due
to self-energy shifts and the Pauli blocking effects, which
means the α cluster can only be formed on the surface of
the core [38,39]. With the two-potential technique [41], the
α-cluster formation probability and decay half-life can be
self-consistently obtained by solving both the c.o.m. motion
equation of the quartet and the scattering state of the formed
α cluster [38–40].

Very recently, we improved the local density approxima-
tion of QWFA by introducing quasiparticle (shell model)
nucleon states for the core nucleus and analyzed the decay
properties of ideal α emitters 104Te, 212Po and their even-even
neighbors. An improved treatment of shell structure for the
core nucleus is added instead of the rigid Thomas-Fermi rule
[40]. In the present work, we first investigate the intrinsic
motion between four nucleons in the α cluster by taking shell
structure effects into account. The overlap between the intrin-
sic wave functions of four nucleons in the α-like quartet state
and in a free α particle is analyzed. Second, we investigate
the behavior of c.o.m. effective potentials of an α cluster
inside the core nucleus 208Pb under the influence of different
contributing shell model wave functions. In particular, we
show the sensitivity of both α-cluster formation probability
and half-life to different shell model states. Third, we extend
the QWFA calculations from the ideal case 212Po to those with
one or two extra nucleons, namely, the α emitters 213Po(n +
212Po), 213At(p + 212Po), and 214At(n + p + 212Po). The in-
fluence of extra nucleons on the corresponding bound state
and scattering wave functions of the quartet is analyzed and
the calculated half-lives by QWFA are compared with the
experimental data.

The outline of this paper is as follows. The formalism
of the quartetting wave function approach is briefly given in
Sec. II. In Sec. III, the intrinsic motion of four nucleons and
the similarity of the intrinsic wave functions in the α-like
quartet and in a free α particle are discussed. The sensitivity of
α-cluster formation probability and half-life to different shell
model states is discussed in Sec. IV. The numerical results of
α-decay half-lives of 213Po, 213At, and 214At are presented in
Sec. V. The last section gives a short summary.

II. FORMALISM OF THE QUARTETTING
WAVE FUNCTION APPROACH

Whereas the formalism of pairing, which describes two-
nucleon correlations in a mean field in a self-consistent way,
has been well elaborated, the description of quartetting, where
the many-particle problem is approximated by considering
four nucleons moving in a self-consistently determined mean
field, remains a challenging problem. We focus on an α-like
quartet consisting of four nucleons (n ↑, n ↓, p ↑, p ↓), which
are implemented in the nonoccupied states above the Fermi
surface of a heavy core nucleus. The interaction with this
heavy core nucleus will be replaced below by an appropriately
determined mean field.

FIG. 1. A sketch of Jacobi-Moshinsky coordinates for the quartet
with two protons at positions r1 ↑, r2 ↓ and two neutrons at positions
r3 ↑, r4 ↓.

To calculate the wave function of this α-like quartet in
position representation, we introduce a collective variable R
describing the c.o.m. motion of the quartet, and variables
that describe the intrinsic motion s j = S, s, s′ with the Jacobi-
Moshinsky coordinates for the quartet nucleons (see Fig. 1)
[20,36,37]:

r1 = R + S/2 + s/2, r2 = R + S/2 − s/2,

r3 = R − S/2 + s′/2, r4 = R − S/2 − s′/2. (1)

In position representation, the wave function �(R, s j ) of
the quartet can be subdivided in a unique way into two nor-
malized parts, i.e., the c.o.m. motion part �com(R) and the
intrinsic motion part ϕintr (s j, R):

�(R, s j ) = ϕintr (s j, R)�com(R). (2)

In particular, we are interested in the energy eigenstate of
a four-nucleon Hamiltonian of the form

H =
(

− h̄2

8m
∇2

R + T [∇s j ]

)
δ3(R − R′)δ3(s j − s′

j )

+V (R, s j ; R′, s′
j ) (3)

where − h̄2

8m ∇2
R is the kinetic energy of the c.o.m. motion and

T [∇s j ] the kinetic energy of the intrinsic motion of the quartet.
The interaction V (R, s j ; R′, s′

j ) contains the mutual interac-
tion between quartet nucleons as well as the interaction of the
quartet nucleons with an external potential. Below we discuss
how the interaction of the quartet with the heavy core nucleus
can be approximated by such an external potential. The c.o.m.

034302-2



α-CLUSTER FORMATION AND DECAY: THE … PHYSICAL REVIEW C 104, 034302 (2021)

motion of the quartet satisfies the Schrödinger equation

− h̄2

8m
∇2

R�com(R) − h̄2

4m

∫
d9s jϕ

intr,∗(s j, R)[∇Rϕintr (s j, R)]

× [∇R�com(R)]

− h̄2

8m

∫
d9s jϕ

intr,∗(s j, R)
[∇2

Rϕintr (s j, R)
]
�com(R)

+
∫

d3R′ W (R, R′)�com(R′) = E �com(R), (4)

in which W (R, R′) is the nonlocal c.o.m. potential for the
quartet:

W (R, R′)

=
∫

d9s j d9s′
j ϕ

intr,∗(s j, R)
[
T [∇s j ]δ

3(R−R′)δ9(s j−s′
j )

+V (R, s j ; R′, s′
j )
]
ϕintr (s′

j, R′). (5)

For the intrinsic motion of quartet nucleons, we have another
Schrödinger equation,

− h̄2

4m
�com,∗(R)[∇R�com(R)][∇Rϕintr (s j, R)]

− h̄2

8m
|�com(R)|2∇2

Rϕintr (s j, R)

+
∫

d3R′ d9s′
j �

com,∗(R)
[
T [∇s j ]δ

3(R−R′)δ9(s j −s′
j )

+V (R, s j ; R′, s′
j )
]
�com(R′)ϕintr (s′

j, R′)

= F (R)ϕintr (s j, R). (6)

The Schrödinger equation of intrinsic motion is coupled
with the c.o.m. motion in a rather complex way. In present
calculations, the derivative terms ∇Rϕintr (s j, R) in Eqs. (4)
and (6) are not included and a local effective c.o.m. potential
W (R) is introduced in order to make the calculations practical
[40]. In the problem considered here, the approximation of
the interaction of the quartet with the heavy core nucleus
contains not only the direct nucleon-nucleon interaction [42]
but also exchange terms such as the Fock self-energy and Pauli
blocking, which are genuine nonlocal interactions. As shown
in Sec. IV, it is possible to construct an effective local potential
which reproduces the same c.o.m. wave function as W (R, R′).
This Pauli-blocking potential is valid in the low density region
with relative error below 1% [20,36,37].

To describe the α-decay process [41], two different regions
R � Rsep and R > Rsep are introduced. The effective c.o.m.

potential W (R) is split into two potentials, namely the bound
state potential Wbound(R) which coincides with W (R) at R �
Rsep, and a perturbation potential Wscattering(R) which trans-
forms the bound state to a quasistationary one. The choice
of this separation radius Rsep does not affect the final result as
long as it is large enough and ensures a bound state for the α

cluster [41]. For our calculations, we take the value Rsep = 15
fm. Both the bound state wave function �(R) of the first
potential and the scattering state wave function χ (R) of the
second one at Rsep are calculated by solving the corresponding
Schrödinger equations.

As we consider that an α-like state can exist only at
densities lower than the critical density ρc = 0.02917 fm−3

(see Refs. [20,36,37]) and dissolves at higher densities, the
α-cluster preformation probability Pα can be obtained by inte-
grating the bound state wave function �(R) from the critical
radius Rc (where the baryon density ρB(R) = ρc) to infinity:

Pα =
∫ ∞

0
d3R|�(R)|2	[ρc − ρB(R)]. (7)

Approximately, for R < Rc, the intrinsic wave function of
the quartet describes four independent nucleons in quasipar-
ticle states (shell model), whereas the intrinsic wave function
changes its character if for R > Rc a bound state is formed,
and becomes α-like.

The decay width given as the product of the preexponential
factor ν and the exponential factor T is calculated by using the
values of the normalized bound state wave function �̃(R) =
(4π )1/2R �(R) and the scattering wave function χ (R) at the
separation radius [38,39]:

� = ν × T = 4h̄2ζ 2

μk
|�̃(Rsep)χ (Rsep)|2, (8)

where μ = AαAcore/(Aα + Acore ), ζ =√
2μ[V (Rsep) − Etunnel]/h̄, k = √

2μQα/h̄. The tunneling
energy is Etunnel = Qα − 28.3 MeV, where Qα is the
experimental α decay energy. Finally the decay half-life
is given by T1/2 = (h̄ ln 2)/(Pα�).

III. INTRINSIC MOTION OF FOUR NUCLEONS AND
SIMILARITY OF INTRINSIC WAVE FUNCTIONS IN

QUARTET AND IN α PARTICLE

In this section, we investigate the intrinsic motion between
four nucleons in the α cluster (quartet) and in a free α particle.
For the latter one, its normalized intrinsic wave function may
be given by the Gaussian approximation

ϕintr
α (S, s, s′) =

(aα

π

)9/4
2−3/2e− aα

4 (2S2+s2+s′2 ),

or ϕintr
α (r1, r2, r3, r4; R) =

(aα

π

)9/4
2−3/2e− aα

2 (r2
1+r2

2+r2
3+r2

4−4R2 )

= Yα (r1)Yα (r2)Yα (r3)Yα (r4)

Zα (R)
, (9)

034302-3



SHUO YANG, CHANG XU, AND GERD RÖPKE PHYSICAL REVIEW C 104, 034302 (2021)

where the functions Yα (r) = (aα/π )3/4e−aαr2/2 and Zα (R) =
(4aα/π )3/2e−4aαR2

, respectively. The parameter aα = 0.5351
fm−2 is fitted to the rms radius (Rrms,α = 1.45 fm) of the α

particle. According to the subdivision of the total quartet wave
function into a center-of-mass (com) part and an intrinsic
(intr) part [see Eq. (2)], the intrinsic wave function for the
quartet is given by

ϕintr
quartet (R, S, s, s′) = �quartet (R, S, s, s′)

�com
quartet (R)

, (10)

The total quartet wave function describes the motion of the
four nucleons in a mean field produced by the remaining
nucleons of the nucleus, where the antisymmetrization (i.e.,
the Pauli principle) of all nucleons must be satisfied. We
solve this problem in two steps. In the first approximation,

we neglect the interaction between the nucleons of the quartet
and approximate the mean field of the remaining nucleons
by a Woods-Saxon potential widely used in shell model cal-
culations; see the Appendix. In a second approximation, we
take the interaction between the nucleons into account. The
first step, where the interaction between the nucleons is only
considered in mean field approximation, is solved by the
shell model wave functions Rnl (r)Ylm(θ, ϕ). We assume that
inside the core of the nucleus where the nucleon density is
high, these shell model wave functions give already a good
description of the many-nucleon state because correlation ef-
fects are suppressed owing to Pauli blocking. Then, the total
quartet wave function is approximated by the product of the
constituting four shell model wave functions, and the Pauli
principle is fulfilled using shell model states.

The total quartet wave function �quartet (R, S, s, s′) with the
Jacobi-Moshinsky coordinates (R, S, s, s′) is [40]

�quartet (R, S, s, s′) = �(r1, r2, r3, r4) =
∑

J12,M12,J34,M34

〈
J12, M12, J34, M34

∣∣∣J, M
〉

×A12

{ ∑
ms1,ms2

∑
m1,m2,ml1,ml2

〈 j1, m1, j2, m2|J12, M12〉
〈
l1, ml1,

1

2
, ms1

∣∣∣ j1, m1

〉

×
〈
l2, ml2,

1

2
, ms2

∣∣∣ j2, m2

〉
Rn1l1 (r)Yl1ml1 (θr1, ϕr1)Rn2l2 (r)Yl2ml2 (θr2, ϕr2)

}

×A34

{ ∑
ms3,ms4

∑
m3,m4,ml3,ml4

〈 j3, m3, j4, m4|J34, M34〉
〈
l3, ml3,

1

2
, ms3

∣∣∣ j3, m3

〉

×
〈
l4, ml4,

1

2
, ms4

∣∣∣ j4, m4

〉
Rn3l3 (r)Yl3ml3 (θr3, ϕr3)Rn4l4 (r)Yl4ml4 (θr4, ϕr4)

}
, (11)

where A12 and A34 are antisymmetrizers and several Clebsch-Gordan coefficients are also involved (see Appendix). The
notations 1,2 denote two protons p ↑, p ↓ in the quartet, and 3,4 denote two neutrons n ↑, n ↓. The quantum numbers for
the total angular momentum and its z component of nucleon i are denoted by ji and mi, respectively. j1 and j2 are coupled to
J12, j3 and j4 to J34, and then J12 and J34 to J . For the state of two protons or neutrons in the same orbit, J12 and J34 become
zero, then we have J12 = J34 = J = 0, M12 = M34 = M = 0. Note that an example of the total quartet wave function in 212Po is
given in the Appendix.

The overlap between the intrinsic wave functions of quartet and α particle as a function of c.o.m. variable R can be written as

〈
ϕintr

α

∣∣ϕintr
quartet

〉
(R) =

∫
d3S d3s d3s′ ϕintr,∗

α (S, s, s′)ϕintr
quartet (R, S, s, s′)

=
∫

d3S d3s d3s′ Y ∗
α (r1)Y ∗

α (r2)Y ∗
α (r3)Y ∗

α (r4)�quartet (R, S, s, s′)
Z ∗

α (R)�com
quartet (R)

= 64(2π )9

Zα (R)�com
quartet (R)

∫
d3 pφ12(p)φ34(p)e4ip·R, (12)

where the c.o.m. wave function �com
quartet (R) of the quartet can be obtained from the integral [36]

�com
quartet (R) =

[ ∫
d3S d3s d3s′ |�quartet (R, S, s, s′)|2

]1/2

. (13)
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FIG. 2. The overlaps between the intrinsic wave functions of the quartet and the α-particle as a function of c.o.m. coordinate R for the α +
doubly magic core systems 20Ne, 44Ti, 104Te, and 212Po.

Let a, b = 1, 2 or 3,4. Then, φab(p) is defined as

φab(p) = 1

(2π )6

∫
d3ra

∫
d3rbY

∗
α (ra)Y ∗

α (rb)�ab(ra, σa; rb, σb)e−ip·ra−ip·rb

= 1

(2π )6
Aab

{ ∑
msa,msb

∑
ma,mb,mla,mlb

〈 ja, ma, jb, mb|0, 0〉
〈
la, mla,

1

2
, msa

∣∣∣ ja, ma

〉

×
〈
lb, mlb,

1

2
, msb

∣∣∣ jb, mb

〉
fla,mla (p) flb,mlb (p)

}
, (14)

where the function fl,ml (p) can be obtained from the contributing shell model wave functions

fl,ml (p) =
∫

d3r Rα (r)Y ∗
00(θr, ϕr )Rnl (r)Ylml (θr, ϕr )e−ip·r

=
√

4π (−i)l (2l + 1)〈l, 0, l, 0|0, 0〉〈l, ml , l,−ml |0, 0〉Yl −ml (θp, ϕp)

×
∫ ∞

0
r2Rnl (r)(

√
4πYα (r)) jl (pr)dr. (15)

The probability of finding the α particle in the localized shell model states can be defined as [36]

Fα =
∫

dR 4πR2ρcom
quartet (R)

∣∣〈ϕintr
α

∣∣ϕintr
quartet

〉
(R)

∣∣2
, (16)

where the density ρcom
quartet (R) = |�com

quartet (R)|2. It is expected
that the probability Fα is small as the wave function of
the quartet is approximated by a product of shell model
states. It describes the character of the intrinsic wave func-
tion of the localized shell model quartet state as a function
of R. The decrease at large values of R is owing to the
decrease of the probability ρcom

quartet (R) of finding a quartet.
In the core region, the overlap is rather small, as expected
from the suppression of correlations at high densities. To
identify the surface region of the nucleus, we show in Fig. 2
the value of the critical radius. Surprisingly, the intrinsic

wave function changes its shape, and in the surface region
the intrinsic wave function has already nearly the form of
the free α particle. In Table I, we give the numerical results
of Fα for four different groups of nuclei for comparison,
namely {18O, 18Ne, 20Ne}, {42Ca, 42Ti, 44Ti}, {102Sn, 102Te,
104Te}, and {210Pb, 210Po, 212Po}. It is interesting to divide
the total probability Fα into the low density part F low

α =∫ ∞
Rc

dR 4πR2ρcom
quartet (R)|〈ϕintr

α |ϕintr
quartet〉(R)|2 and the high den-

sity one F high
α = Fα − F low

α . As expected, in Table I the total
probability Fα is quite small, but the low density probability
F low

α is significantly enhanced for α + doubly magic core
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TABLE I. Probability of finding the α-particle in the localized proton and neutron states of four groups of nuclei.

Nuclei Proton Neutron Fα F low
α F low

α /Fα

18O (2n + 16O) 1p1/2 1d5/2 2.239 × 10−3 5.652 × 10−4 0.2525
18Ne (2p + 16O) 1d5/2 1p1/2 2.029 × 10−3 8.743 × 10−4 0.4309
20Ne (α + 16O) 1d5/2 1d5/2 2.004 × 10−3 1.553 × 10−3 0.7748
42Ca (2n + 40Ca) 1d3/2 1 f7/2 5.097 × 10−4 8.726 × 10−5 0.1712
42Ti (2p + 40Ca) 1 f7/2 1d3/2 4.706 × 10−4 8.093 × 10−5 0.1720
44Ti (α + 40Ca) 1 f7/2 1 f7/2 3.689 × 10−4 1.597 × 10−4 0.4328
102Sn (2n + 100Sn) 2p1/2 2d5/2 1.267 × 10−4 2.614 × 10−5 0.2070
102Te (2p + 100Sn) 2d5/2 2p1/2 1.074 × 10−4 2.070 × 10−5 0.1929
104Te (α + 100Sn) 2d5/2 2d5/2 1.316 × 10−4 5.114 × 10−5 0.3887
210Pb (2n + 208Pb) 3s1/2 2g9/2 9.003 × 10−6 3.201 × 10−6 0.3557
210Po (2p + 208Pb) 1h9/2 3p1/2 4.358 × 10−6 2.323 × 10−6 0.5332
212Po (α + 208Pb) 1h9/2 2g9/2 8.499 × 10−6 4.810 × 10−6 0.5660

systems 20Ne, 44Ti, and 104Te as compared with those of their
neighbors. For 212Po, the quartet protons and neutrons occupy
very different shell model states (see Fig. 6 in the Appendix)
and their Fermi surfaces are relatively far from each other;
therefore, the F low

α of 212Po is slightly enhanced as compared
to its neighbors. We show in Fig. 2 the overlaps between the
wave functions of the quartet and the α-particle as a function
of c.o.m. coordinate R for 20Ne, 44Ti, 104Te, and 212Po. It is
clearly demonstrated that in each case there exists a peak in
the region beyond the critical radius (i.e., the surface region
of the core) [37–40]. Inside the core, the probability of find-
ing the α-like state is quite low not only for α+core bound
quantum systems 20Ne and 44Ti but also for open quantum
systems 104Te and 212Po (see Fig. 2).

IV. EFFECTIVE C.O.M. POTENTIAL OF QUARTET AND
SENSITIVITY OF α-DECAY HALF-LIFE TO DIFFERENT

SHELL MODEL STATES

Shell structure effects manifest themselves clearly in the α-
decay energy, and its value along an isotopic chain has a large
gap across the major shell closures, especially the neutron one
at N = 126. However, the gap in the α-decay energy cannot
fully account for the abrupt change in the measured α-decay

half-lives. In the WKB-type approaches, the depth of the
α-core effective c.o.m. potential usually needs to be shifted
when crossing the N = 126 shell closure in order to fit the
measured α-decay half-lives [17–19]. Shell structure effects
also manifest themselves in the nuclear radius (or density
distribution) of the core nucleus. Experiments have observed
a sudden increase in the charge radius of an isotope chain
(such as lead isotopes) just beyond the major shell closures
[43]. Note that the calculated α-decay half-life could also be
sensitive to the parametrization of nuclear radius (or density
distribution) of the core.

We can construct an effective c.o.m. potential W (R) which
reproduces the known density ρcom

quartet (R) of the α-like cluster
given by [36] according to

W (R) = h̄2

8m

ρcom
quartet

′(R)

Rρcom
quartet (R)

− h̄2

32m

ρcom
quartet

′(R)2

ρcom
quartet (R)2

+ h̄2

16m

ρcom
quartet

′′(R)

ρcom
quartet (R)

+ E . (17)

This effective c.o.m. potential as constructed from the shell
model quartet state should be nearly constant; deviations are
seen in Fig. 3. At the critical radius Rc, the nucleon density
falls below the critical density value ρc = 0.02917 fm−3 so
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FIG. 3. The α-208Pb effective c.o.m. potentials with different contributing shell model states. The sketches in the small boxes show the
details of proton or neutron shell model states.
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FIG. 4. The ratio of calculated α-decay half-lives to the experimental one for 212Po with different contributing shell model states.

that an α cluster can be formed. We consider the second
approximation where interactions between the constituents of
the quartet are taken into account. In homogeneous systems,
if a bound state below the continuum edge is formed, the
ground-state energy is shifted by the binding energy. As de-
scribed in [38–40], in the local density approximation we use
the density dependent shift of the α particle for the intrinsic
energy shift E (R), which takes the value −28.3 MeV in the
limit of large R.

In Fig. 3, we show in left panel the c.o.m. effective poten-
tials of an α cluster in 208Pb constructed with three different
quartet proton states 1h9/2, 3s1/2, and 2d3/2, and in right panel
with three different quartet neutron states 2g9/2, 3p1/2, and
2 f5/2. It is shown that the “pocket” in the surface region is
still formed after introducing different shell model states for
the quartet nucleons. Sharp edges at the critical radius Rc can
be avoided in future with a better account of gradient effects.
In the core region, the effective c.o.m. potential reveals a
moderate shift for the Z = 82 shell closure, but a very large
one for the N = 126 shell closure (see the right panel). So the
c.o.m. effective potential W (R) is rather sensitive to the details
of contributing neutron states, and the impact of the change of
W (R) on both the α-cluster formation probability and half-life
cannot be neglected.

As introduced in our previous work [40], for the density
distribution of protons and neutrons, we use the parametrized
Fermi functions ρp(R) = ρp0/[1 + e(R−Cp)/ap], ρn(R) =
ρn0/[1 + e(R−Cn )/an ] where Cp,Cn are the half-density radii
and ap, an are the diffuseness parameters for protons and
neutrons. For the core nucleus 208Pb, the parametrization
of the density distribution is constrained by both the
electron scattering and coherent pion photoproduction
data, i.e., Cp = 6.68 fm, Cn = 6.70 fm, ap = 0.447 fm,
an = 0.55 fm [44]. For the purpose of comparison, we change
the half-density radii Cp and Cn in a reasonable range, from
6.60 to 6.80 fm, in our analysis. The corresponding ap and
an are obtained by the following relation with the rms radius
unchanged [45].

a =
√

5

7π2

(
〈r2〉 − 3

5
C2

)
. (18)

Figure 4 gives the ratio of calculated α-decay half-life to
the experimental one for 212Po as a function of half-density
radii Cp (left panel) and Cn (right panel). The star symbol
denotes the reference result, in which both the “correct” den-
sity distributions and “correct” quartet states are applied. It is
shown in Fig. 4 that there is substantial change in the α-decay
half-life by using different quartet states. For instance, the
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FIG. 5. The bound state wave functions and scattering wave functions for α emitters 213Po, 213At, and 214At in the two-potential approach.
The separating radius is chosen to be Rsep = 15 fm. In the left panel, the normalized bound state wave function �̃(R) = (4π )1/2R�(R),∫ ∞

0 |�̃(R)|2dR = 1 is shown.
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TABLE II. The QWFA calculations of the α-cluster formation probabilities and half-lives for 213Po, 213At, and 214At.

Parent Iπ proton neutron Qα (MeV) Pα T expt.
1/2 (s) T calc.

1/2 (s)

213Po(212Po +n) 9
2

+ → 9
2

+
1h9/2 2g9/2 8.537 0.0952 4.200 × 10−6 3.160 × 10−6

213At(212Po +p) 9
2

− → 9
2

−
1h9/2 2g9/2 9.254 0.1021 1.250 × 10−7 1.626 × 10−7

214At(212Po +n + p) 1− → 1− 1h9/2 2g9/2 8.987 0.0928 5.639 × 10−7 6.865 × 10−7

α-decay half-life can be altered by more than three orders of
magnitude by changing the quartet neutron state from 2 f5/2 to
2g9/2. Interestingly, the calculated α-decay half-life is found
to be more sensitive to the neutron half-density radius Cn than
the proton one Cp. This is probably because the Coulomb
potential/barrier changes with the proton half-density radius
Cp as well.

V. EXTENSION OF QWFA CALCULATIONS TO ODD-A
α EMITTERS 213Po, 213At AND ODD-ODD ONE 214At

Now we extend the QWFA calculation to the cases with
one or two extra nucleons added to the ideal α emitter 212Po,
i.e., 213Po(n + 212Po), 213At(p + 212Po), and 214At(n + p +
212Po). We analyze the influence of the extra nucleons on both
the bound state wave function and scattering wave function of
the α-cluster. Because the ground-state to ground-state transi-
tions of these α emitters are favored and the branching ratios
are almost 100%, we assume that the angular momentum
carried away by the α particle is zero and other decay channels
are not involved. The problem of partially filled shells is not
considered here, which should be included when spherical
symmetry can no longer be assumed. The information of the
core radius is not complete, especially the neutron radius,
so we make a simple extrapolation of the density distribu-
tion of 208Pb. A Fermi function is still used for the density
distribution of core nucleus, in which the half-density radii
are Cp = 1.538Z1/3

d fm and Cn = 1.336N1/3
d fm, respectively.

The parameters 1.538 and 1.336 are obtained directly by
fitting the experimental half-density radii of 208Pb [44]. Zd

and Nd are the proton number and the neutron number of
the core nucleus, respectively. The diffuseness parameters of
both protons and neutrons are kept the same, ap = 0.447 fm
and an = 0.55 fm [44]. For these α emitters, the extra proton
occupies the same 1h9/2 state as the quartet protons and extra
neutron the same 2g9/2 state as the quartet neutrons.

Both the bound state and scattering state wave functions of
the α cluster for 213Po, 213At, and 214At are plotted in Fig. 5.
The behavior of the bound state wave functions �̃(R) for these
α emitters is rather similar in the inner region. In the outside
region, a small peak of the bound state wave function around
R = 8 fm is clearly shown in Fig. 5, as a result of the “pocket”
in the effective c.o.m. potential. The scattering state wave
functions in Fig. 5 show an oscillating feature with different
phase shifts due to different decay energies. The numerical
results of QWFA for 213Po, 213At, and 214At are summarized
in Table II. It is seen that the α-cluster formation probabilities
of these nuclei are close to each other, but slightly smaller than
that of even-even α emitter 212Po (Pα = 0.1045). This feature,
associated with the blocking effect of an extra nucleon, is con-
sistent with a previous empirical analysis of α-decay data [18].

Surprisingly, it is seen from Table II that the experimental
α-decay half-lives (see Ref. [46]) are reproduced quite nicely
without fitting any parameter in QWFA.

VI. SUMMARY

By using the quartetting wave function approach, both the
intrinsic and c.o.m. motions of the α-like cluster inside the
core nucleus are investigated under the influence of different
contributing shell model wave functions. We found from the
intrinsic motions that the probability of finding the α particle
in the localized shell model states is enhanced for the α +
doubly magic core systems as compared to their neighbors
containing additional nucleons. The overlap between the in-
trinsic wave functions of the α-like cluster and the free α

particle shows that the α-like state can be formed on the
surface of the core nucleus. We also found from the c.o.m.
motions that the shell structure effects result in an abrupt
shift of the α-core effective potentials across the major shell
closures. The α-decay half-life is quite sensitive to different
contributing quartet shell model states. We further extend the
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QWFA calculations to the α emitters with one or two extra
nucleons. The calculated α-decay half-lives are found to be in
excellent agreement with the experimental data.
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APPENDIX: SHELL MODEL WAVE FUNCTIONS
WITH THE WOODS-SAXON POTENTIAL

In present calculations, we use the widely used Woods-
Saxon potential

VWS(r) = V0

1 + exp
( r−R0

a

) (A1)

together with the spin-orbit coupling interaction

Vso(r) = 1

2μ2r

(
∂

∂r

λV0

1 + exp( r−Rso
aso

)

)
l · s (A2)

to determine the shell model wave functions of quartet
nucleons. The strength of the Woods-Saxon potential is
parametrized as V0 = −46[1 ± 0.97( N−Z

A )](“+” for protons
and “−” for neutrons). The parameter R0 is 1.43A1/3 fm
for both protons and neutrons while the parameter Rso is
1.37A1/3 fm. The diffusivity parameters a and aso are chosen
to be the same value 0.7 fm. μ is the reduced mass of the
α-core system and the normalization factor of the ls coupling
strength λ is 37.5 for neutrons and 31 for protons, respectively.
The Coulomb potential we adopt is

VC (r) = (Z − 1)e2

{
(3R2

Coul − r2)/2R3
Coul, r � RCoul,

1/r, r > RCoul,
(A3)

with the radius RCoul = 1.25A1/3 fm. Note that all the pa-
rameters for the Woods-Saxon potential and the ls coupling
remain the same as those in our previous work [40]. We show
in Fig. 6 the shell model wave functions of quartet nucleons
for 20Ne, 44Ti, 104Te, and 212Po, respectively. It is clearly seen
that, for 20Ne, 44Ti, 104Te, the shell model wave functions for
quartet protons and quartet neutrons are almost identical. For
212Po, the proton wave function 1h9/2 is quite different from
the neutron one 2g9/2. The total wave function for the quartet
�quartet (R, S, s, s′) in 212Po can be given by

�quartet (R, S, s, s′) = �quartet (r1, r2, r3, r4)

=
[√

2

2

( 9
2∑

m1=− 9
2

〈
9

2
, m1,

9

2
,−m1

∣∣∣∣0, 0

〉〈
5, m1 − 1

2
,

1

2
,

1

2

∣∣∣∣9

2
, m1

〉

×
〈
5,−m1 + 1

2
,

1

2
,−1

2

∣∣∣∣9

2
,−m1

〉√
4πψp(r1)Y5,m1− 1

2
(θr1, ϕr1)

×
√

4πψp(r2)Y5,−m1+ 1
2
(θr2, ϕr2)

)
−

√
2

2

( 9
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〈
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2
, m1,

9

2
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∣∣0, 0

〉
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2
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2
, m1

〉〈
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2
,

1

2
,
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2
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2
,−m1

〉
×

√
4πψp(r1)Y5,m1+ 1

2
(θr1, ϕr1)

√
4πψp(r2)Y5,−m1− 1

2
(θr2, ϕr2)
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×
[√

2

2
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2
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,

1
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1
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2
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〉

×
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4,−m3 + 1

2
,

1

2
,−1

2
|9

2
,−m3

〉√
4πψn(r3)Y4,m3− 1

2
(θr3, ϕr3)

×
√

4πψn(r4)Y4,−m3+ 1
2
(θr4, ϕr4)

)
−

√
2

2

( 9
2∑

m3=− 9
2

〈
9

2
, m3,

9

2
,−m3

∣∣∣∣0, 0

〉

×
〈
4, m3 + 1

2
,

1

2
,−1

2

∣∣∣∣9

2
, m3

〉〈
4,−m3 − 1

2
,

1

2
,

1

2

∣∣∣∣9

2
,−m3

〉

×
√

4πψn(r3)Y4,m3+ 1
2
(θr3, ϕr3)

√
4πψn(r4)Y4,−m3− 1

2
(θr4, ϕr4)

)]
, (A4)

where the Clebsch-Gordan coefficients can be found in Ref. [47].
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