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In the present work we study the effects of strongly quantizing magnetic fields and finite temperature on
the properties of inner crusts of hot neutron stars. In particular, we study the effects of Landau quantization
of electrons on the composition of the NS inner crusts. The inner crust of a neutron star contains neutron-rich
nuclei arranged in a lattice and embedded in gases of free neutrons and electrons. We describe the system
within the Wigner-Seitz (WS) cell approximation. The nuclear energy is calculated using Skyrme model with
SkM* interaction. To isolate the properties of nuclei we follow the subtraction procedure presented by Bonche,
Levit, and Vautherin [Nuc. Phys. A 427, 278 (1984); 436, 265 (1985)], within the Thomas-Fermi approximation.
We obtain the equilibrium properties of the inner crust for various density, temperatures, and magnetic fields by
minimizing the free energy of the WS cell satisfying the charge neutrality and β-equilibrium conditions. We infer
that at a fixed baryon density and temperature, a strong quantizing magnetic field reduces the cell radii, neutron,
and proton numbers in the cell compared with the field free case. However, the nucleon number in the nucleus
increases in the presence of a magnetic field. The free energy per nucleon also decreases in the magnetized inner
crust. On the other hand, we find that finite temperature tends to smear out the effects of magnetic field. Our
results can be important in the context of r-process nucleosynthesis in the binary neutron star mergers.
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I. INTRODUCTION

Pulsars are highly magnetized rapidly rotating neutron
stars having surface magnetic fields ≈1012 G. There is a class
of neutron stars named magnetars consisting of anomalous
x-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs)
with even higher surface magnetic field ≈1014–1015 G [1,2].
Such intense magnetic fields can be generated by a dynamo
mechanism in hot and newly born neutrons stars (NS) after
core-collapse supernova [1,3,4]. The maximum magnetic field
that can exist inside the core is set by the virial theorem [5,6]
and for a typical NS of mass 1.5M� and radius 10 km the
limiting field could be as high as ≈1018 G.

The properties of matter in such a high magnetic field
is an interesting field of research in theoretical astrophysics.
The magnetic field is termed quantizing in the sense that
the charged particles move in quantized orbits known as
Landau levels in the direction perpendicular to the mag-
netic field [7–10]. The charged particles become relativistic
and Landau quantized when the cyclotron energy becomes
comparable to the rest mass energy of the particle. Landau
quantization changes the phase space and density of states and
hence modifies the thermodynamic and transport properties
of highly magnetized matter. Effects of Landau quantization
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have been studied extensively on the outer crust using the
magnetized Baym-Pethick-Sutherland (BPS) equation of state
(EoS) [6] and also using atomic mass models of Hartree-Fock-
Bogoliubov [11]. In the NS core Landau quantization has
been studied using the relativistic mean field model [12–14].
The effects of strong magnetic fields and proton fraction on
the inner crust of magnetized neutron stars have been studied
extensively [15–17].

In this study we focus on the inner crust of a hot neutron
star in the presence of a quantizing magnetic field and at finite
temperature. The inner crust is composed of nuclei immersed
in a neutron and electron gas. The matter is β-equilibrated and
charge neutral and the nuclei are also in mechanical equilib-
rium with the neutron gas. In order to calculate the equilibrium
properties of nuclei in the thermodynamic method, we follow
the subtraction procedure of Bonche, Levit, and Vautherin
(BLV) [18–20]. In this method, the nuclear properties are
isolated from the nucleus plus gas phase using the subtraction
procedure in a temperature-dependent Hartree-Fock theory
[18,19] as well as in zero and finite temperature extended
Thomas-Fermi (TF) calculations [20]. The subtraction proce-
dure was extended to isolated nuclei embedded in a neutron
gas [21] and to nuclei in the inner crust at zero temperature
[22]. In a later work the subtraction procedure is also applied
to nuclei in a strongly magnetized inner crust taking into
effect the Landau quantization of degenerate electrons at zero
temperature [23]. Here, we extend the subtraction procedure
to include strongly quantizing magnetic field and finite tem-
perature effects using the finite-temperature magnetized TF
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formalism. This is relevant for inner crusts of newly formed
hot magnetars and binary neutron star mergers where the
crustal matter can be heated and the magnetic field can get
amplified during the merging process [24].

II. FORMALISM

We study the composition of the inner crust of NS for
different temperatures and magnetic fields. The inner crust
consists of nuclei arranged in a lattice and immersed in free
gases of electrons and neutrons. For finite temperatures there
might be free protons as well. We employ the Wigner-Seitz
(WS) cell approximation where the lattice is divided into
spherical cells. Each WS cell is considered to be charge
neutral containing a nucleus at its center and the interaction
between cells is ignored. We assume that the matter is in
β equilibrium. We further assume that the whole system is
placed in a uniform magnetic field. A strong magnetic field
affects electrons as their motion in the plane perpendicular to
the field get quantized into Landau levels. However, protons
are affected only through the charge neutrality condition.

Due to the presence of nucleonic gases in the inner crust,
the spherical cell itself does not define a nucleus. How to
isolate the properties of nuclei in such a scenario was shown
within both the Hartree-Fock (HF) prescription [18,19] and
TF formalism [20]. This is based on the fact that at a given
temperature and chemical potential there exists two solutions
to the HF or TF equations, one solution corresponds to the
nucleus in equilibrium with the nucleon gases while the other
represents the nucleon gases alone. The nucleus solution is ob-
tained from the difference of two solutions. More specifically,
the nuclear properties like charge number (Z), mass numbers
(A), rms radii, etc., are calculated from the subtracted density
ρNG(r) − ρG(r), where ρNG(r) and ρG(r) are density profiles
in the nucleus+gas phase and gas only phase, respectively,
and are obtained by minimizing the corresponding thermo-
dynamic potentials �NG(ρNG) and �G(ρG) as detailed below.
We refer to this as the BLV separation procedure.

The thermodynamic potential can be written as

� = F −
∑

q

μqAq, (1)

where F is the free energy, q = (n, p) stands for neutrons
and protons, and μq are Aq are the corresponding chemical
potentials and numbers, respectively. The total free energy of
the cell is a function of average baryon number density (〈ρ〉),
temperature (T ), and proton fraction (Yp) and can be expressed
as

F (〈ρ〉,Yp, T ) =
∫

[H(r) − T s(r) + Ec(r) + fe(ρe)]dr.

(2)
Here, H refers to the nuclear energy density excluding the
Coulomb energy, s is the entropy density of the nucleons, Ec

the Coulomb energy density of the system, fe = εe − T se is
the free energy density of the electrons, and ρe is the electron
number density. Here, εe is the energy density and se entropy
density of the electrons.

For the nuclear energy density H, we adopt the Skyrme
energy density functional which is written as [25,26]

H(r) =
∑
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We employ the SkM* interaction, for which the parameters x0,
x1, x2, x3, t0, t1, t2, t3, and α can be found in [25]. Properties
of SkM* at saturation density (0.16 fm−3) are: binding energy
per nucleon B/A = −15.8 MeV, symmetry binding energy per
nucleon B/A = −15.8 MeV, symmetry energy J = 30 MeV,
isoscalar incompressibility K = 216 MeV, effective mass ra-
tio m∗/m = 0.79, and symmetry energy slope L = 46 MeV.
In Eq. (3), ρ = ρp + ρn and m∗

q is the effective mass defined
as

m

m∗
q (r)

= 1 + m
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The kinetic energy density τq takes the form in TF approxi-
mation as

τq = 3

5
(3π2)2/3ρ5/3

q for T = 0,

= 1

2π2

(
2m∗

qT

h̄2

)5/2

J3/2(ηq) for T �= 0, (5)

where ηq is the fugacity that is obtained from the chemical
potential and single particle potential of nucleons Vq as

ηq(r) = (μq − Vq(r))/T . (6)

The number density of nucleons is given by

ρq(r) = 1

2π2

(
2m∗

qT

h̄2

)3/2

J1/2(ηq). (7)

The functions Jk (ηq) appearing in Eqs. (5) and (7) are Fermi
integrals:

Jk (ηq) =
∫ ∞

0

xk

exp(x − ηq) + 1
dx . (8)

The entropy density of the nucleons is related to fugacity and
number density as

s(r) =
∑

q

[(5/3)J3/2(ηq)/J1/2(ηq) − ηq] ρq. (9)

The third term in the integrand of Eq. (2) is the Coulomb
energy density of the charged particles and is given by

Ec(r) = 1

2
(ρp(r) − ρe)

∫
(ρp(r′) − ρe)

e2

| r − r′ |dr′. (10)
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We neglect the exchange term for the Coulomb energy density.
The density profiles of nucleus+gas (NG) phase ρ

q
NG and

gas (G) phase ρ
q
G are obtained from the variational equations

δ�NG

δρ
q
NG

= 0, (11)

δ�G

δρ
q
G

= 0, (12)

where �NG and �G are the thermodynamic potentials of the
corresponding phases. This results in the following coupled
equations [22,23]:

T η
q
NG(r) + V q

NG + V c
NG

(
ρ

p
NG, ρe

) = μq, (13)

T η
q
G(r) + V q
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G

(
ρ

p
NG, ρe

) = μq. (14)

At T = 0 these two equations simplify to
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2m∗
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)2/3 + V q
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p
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where V q
NG and V q

G are the nuclear part of the single particle
potentials in the nucleus+gas and gas phases, respectively,
and V c

NG and V c
G correspond to the Coulomb part of the single

particle potential for two phases and are given by the same
expression as [22,23]

V c(r) =
∫ [

ρ
p
NG(r′) − ρe

] e2

| r − r′ |dr′. (17)

The average chemical potential for the qth nucleon is given by

μq = 1

Aq

∫ [
T η

q
NG(r) + V q

NG(r) + V c
NG(r)

]
ρ

q
NG(r)dr, (18)

where Aq refers to Ncell or Zcell, where Ncell and Zcell are neu-
tron and proton numbers in the WS cell, respectively, which
can easily be obtained from the average baryon density 〈ρ〉,
proton fraction Yp and the cell radius Rc as

Zcell = Yp 〈ρ〉Vcell,

Ncell = (1 − Yp) 〈ρ〉Vcell, and Vcell = 4

3
πR3

c, (19)

where Vcell is the volume of the cell. The total number of
nucleons in the cell is Acell = Ncell + Zcell.

Finally, number of neutrons (N) and protons (Z) in a nu-
cleus are obtained from the subtracted densities following the
BLV prescription as

Z =
∫ [

ρNG
p (r) − ρG

p (r)
]
dr,

N =
∫ [

ρNG
n (r) − ρG

n (r)
]
dr, (20)

so that the mass number of the nucleus is A = N + Z .
We assume the matter to be in β equilibrium, the chemical

potential μ of the species are constrained by the relation

μe = μn − μp + �m, (21)

where �m is the mass difference between neutrons and
protons.

A. Effect of quantizing magnetic field

The properties of inner crust are significantly influenced in
the presence of strong quantizing magnetic field. We assume
a uniform magnetic field (0, 0, B) in the crust. The motion of
electrons is Landau quantized in the plane perpendicular to
the magnetic field, which indirectly affects the properties of
protons in the charge neutral WS cells and hence the nuclei.
For B > Bc = m2

e/e � 4.414 × 1013 G (with h̄ = c = 1), the
transverse motion of the electrons becomes relativistic [6].
The quantized energy levels of the electrons with momentum
pz for νth Landau level is given by (with B∗ = B/Bc)

Ee(ν, pz ) = [
p2

z + m2
e (1 + 2νB∗)

]1/2
. (22)

The number density of electrons in the magnetic field at finite
temperature can be written as [27]

ρe = m2
eB∗

4π2

∞∑
ν=0

gν

∫ ∞

−∞
f d pz, (23)

where

f = 1

1 + eβ(Ee−μe )
(24)

is the Fermi-Dirac distribution function with β = 1/(kBT ), μe

is the electron chemical potential, gν is the spin degeneracy of
the Landau level (g0 = 1 and gν = 2 for ν � 1). At T = 0 the
above expression simplifies to

ρe = m2
eB∗

2π2

νmax∑
ν=0

gν p f (ν), (25)

where p f (ν) is the maximum z component of electron mo-
mentum and is related to the chemical potential as

p2
f (ν) + m2

e (1 + 2νB∗) = μ2
e (26)

and νmax is highest Landau level that can be populated for a
given B∗ and μe and is obtained by noting that p2

f (ν) � 0:

νmax = μ2
e − m2

e

2m2
eB∗

. (27)

The energy density of electrons is obtained from

εe = m2
eB∗

4π2

∞∑
ν=0

gν

∫ ∞

−∞
f Ee(ν, pz ) d pz for T �= 0,

(28)

= m2
eB∗

2π2

∞∑
ν=0

gν

∫ p f (ν)

0
Ee(ν, pz ) d pz for T = 0.

(29)

III. RESULTS

We present the properties of matter in the inner crusts of
neutron stars under the influence of strong magnetic fields
and finite temperature. Particularly, we study the effects of
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FIG. 1. Different contributions to the free energy per nucleon as a function of Rc and A (upper x axis) for T = 0–3 MeV, B = 0, and
〈ρ〉 = 0.001 fm−3.

Landau quantization of electrons on the composition of the
inner crusts of NS. We have neglected here the Landau quan-
tization of protons. For this purpose we consider magnetic
fields B∗ = 10, 100, 103, and 104. The effect of magnetic field
is noticeable if only first few levels are populated. The highest
Landau level νm populated at a given B∗ can be calculated
from Eq. (27) for T = 0. On the other hand, one needs to
evaluate infinite sums over Landau levels to calculate number
and energy densities of electrons [Eqs. (23) and (28)], for
T �= 0. In practice, only finite number of levels contribute
when the magnetic field is strong. In the numerical imple-
mentation we set the Fermi function [Eq. (24)] to zero when
β(Ee(ν, pz ) − μe) � 30. This condition along with Eq. (22)
leads to the highest Landau level as

νmax = 1

2B∗

[(
30 T + μe

me

)2

− 1

]
. (30)

Equation (27) is recovered by putting T = 0.
We demonstrate the results only for B∗ = 104 when only

the zeroth Landau level is populated (at least for T = 0).
For lower values of B∗ there is no visible effect as several
Landau levels are populated by electrons. For comparison, we
also show the results for B∗ = 0 cases. We consider the crust
temperature in the range of 0–5 MeV. In order to obtain the
equilibrium configuration for a given average number density
(〈ρ〉), temperature (T ), and magnetic field (B∗), we minimize
the free energy of the WS cell by varying Yp and Rc while

satisfying the conditions of charge neutrality and β equi-
librium. The free energy minimum is governed by the
contribution of different terms:

F/Acell = eN + elat + eel − T s, (31)

where eN is nuclear energy per nucleon including the
Coulomb energy of protons, elat is the lattice energy per nu-
cleon which consists of electron-proton and electron-electron
Coulomb energies, eel is the kinetic energy of electrons per
nucleon, and s is the entropy per nucleon including the en-
tropy of electrons. In Fig. 1, we show the variation of all the
components of free energy per nucleon with the cell radius
or equivalently Acell (since, Acell = Vcell〈ρ〉) at a density 〈ρ〉 =
0.001 fm−3 and at different temperatures (T = 0–3 MeV) for
the nonmagnetic case. The upper x axis presents the corre-
sponding mass number of nuclei obtained from the subtracted
densities [see Eq. (20)]. It is seen from the figure that for each
T , eN has a minimum at a certain Rc. Since, the nuclear mass
number A (see upper x axis) increases monotonically with Rc,
the minimum in eN corresponds to the nucleus for which the
nuclear binding energy per nucleon is minimum. These nuclei
are very neutron-rich and get smaller with increasing T . The
free energy minima are at larger Rc as they originate from the
competition between different terms, but mostly dominated by
eN and eel and also T s at finite temperature. An interesting
feature appears at T = 2 MeV, where a sudden change in
each component of free energy is observed at Rc = 30 fm.
The upper x axis reveals that for Rc < 30 fm A = 0, which
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FIG. 2. Same as Fig. 1 but for T = 1–4 MeV, and B∗ = 104.

essentially means that no nucleus exists till that Rc and
the matter is completely in the gas state, instead. How-
ever, the complete gas state has higher free energy than the
nucleus+gas state for which the free energy is minimum
at Rc = 54.5 fm. Similar behavior is found at T = 3 MeV,
where nuclei come into the picture only after Rc = 36 fm.
Still we find that the free energy minimum corresponds to
nuclear+gas solution at Rc = 73 fm. The free energy differ-
ence between the complete gas state and the nuclear+gas
state decreases with T . At T = 2 MeV the minimum values
of free energies in the two states are −2.780 and −3.029
MeV. Whereas, for T = 3 MeV the corresponding values are
−6.038 and −6.057 MeV. For T = 4 MeV or higher (not
shown here) only the gas solution exists. Therefore, we can
say that the transition temperature from the liquid to the gas
phase lies between T = 3 and 4 MeV at this density. This
agrees with the results of other studies [28].

In Fig. 2 we present the variation of free energy and
its different components with Rc as in Fig. 1, but now in
the presence of magnetic field with B∗ = 104. We do not
show the plot for T = 0, since there are no drip neutrons
at 〈ρ〉 = 0.001 fm−3, unlike the nonmagnetic case. This is
consistent with the earlier studies where it was found that
strong magnetic fields shift the neutron drip-point to higher
densities [29]. Similar to the nonmagnetic case we find that
with increasing T the cell radius corresponding to both the eN

minimum and the free energy minimum increase, whereas the
mass number of the equilibrium nucleus decreases. At T = 3,
matter is uniform till Rc = 20 fm and beyond that nucleus

appears with free energy minimum at Rc = 35 fm, where A =
98. On the other hand, at T = 4 uniform gas solution extends
up to 29 fm and has lower free energy than the solution with
nucleus. Hence, the equilibrium corresponds to gas solution,
i.e., uniform matter at this temperature and density.

Comparison between Figs. 1 and 2 shows that when B∗ =
104 the minima in eN and free energy are obtained at lower
Rc. It can also be seen that eN plays more dominant role
in deciding the free energy minimum. As a result, the Rc

corresponding to the free energy minima are not very far from
that of eN , unlike nonmagnetic scenario. Comparing these two
figures we also observe that a strong magnetic field affects all
the components of free energy. But the effect is found to be
most significant on eN which gets appreciably reduced when
magnetic field of B∗ = 104 is applied. To understand the rea-
son we note that for a given 〈ρ〉 and Yp although the electron
density is the same for both the scenarios (since ρe = Yp〈ρ〉),
the electron chemical potential μe decreases significantly. For
instance, in the present example of 〈ρ〉 = 0.001fm−3, the eN

minimum at T = 1 MeV for the nonmagnetic case corre-
sponds to Rc = 35 fm, Yp = 0.102, ρe = 1.02 × 10−4 fm−3,
and μe = 28 MeV. When the magnetic field of magnitude
B∗ = 104 is switched on keeping the values of 〈ρ〉, T , Rc,
and Yp same we find that μe reduces from 28 to 6 MeV,
whereas μn and μp remain unaltered. The decrement in μe

is caused by the phase space modification of electrons in
strongly quantizing magnetic field. For B∗ = 104 only the
first Landau level (ν = 0) gets populated leading to a smaller
value of μe than the nonmagnetic case, for a given ρe [see
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TABLE I. Transition densities (fm−3) at different temperatures with and without magnetic field.

T (MeV) 0 1 2 3 4 5

B∗ = 0 0.056 0.054 0.049 0.043 0.035 (0.003) -
B∗ = 104 0.055 0.053 0.049 0.044 0.039 (0.002) 0.030 (0.004)

Eqs. (25) and (26)]. Hence, the value of μe required to achieve
the β equilibrium is obtained at higher Yp, which in turn
leads to higher ρe. For the present example, Yp got increased
from 0.102 to 0.321 with corresponding increase in ρe from
1.02 × 10−4 to 3.21 × 10−4 fm−3 to satisfy the β-equilibrium
condition. Although more electrons in the system increases
their kinetic energy to some extent but the nuclear energy
and therefore the free energy is greatly reduced due to the
reduction in the Coulomb energy. This can also be observed
by noting the values of eN and eel from Figs. 1 and 2. In other
words, strong magnetic field increases the binding energy of
the system. This is also the reason why the solution with
nuclei survives up to a higher temperature in the presence of
strong magnetic fields.

In Table I, we show the maximum densities up to which
nuclear cluster phase exists at different temperatures and for
B∗ = 0 and 104. Beyond these densities, which we call tran-
sition densities, the nuclear matter becomes fully uniform. It
is found that the transition density decreases with temperature
for both the magnetic and nonmagnetic cases, as expected.
The transition densities at B∗ = 104 are not very different
form that of nonmagnetic scenario at low temperatures (T =
0–3 MeV). However, the transition density is found to be
higher at T = 4 for B∗ = 104, in comparison to the field-free
case. At T = 5 MeV the cluster phase does not exist at all in
absence of magnetic field, whereas it exists till 0.030 fm−3 in
case of B∗ = 104. We also note that matter becomes homoge-
neous at higher temperature in the lower density side as well.
These lowest densities are indicated in brackets in Table I. For
example, at T = 4 MeV and without magnetic field the matter
becomes uniform for densities below 0.003 fm−3. Similarly, at
B∗ = 104 the clusters do not exist below 0.002 fm−3 at T = 4
MeV and below 0.004 fm−3 at T = 5 MeV. This feature
becomes more evident from Table II, where we have listed
the transition temperature, i.e., the temperature up to which
the cluster phase exists, at different density points. The transi-
tion temperature first increases with density, and decreases at
higher density for both the magnetic and nonmagnetic cases.
This behavior of transition temperature is consistent with the
findings of other study [28]. The value of transition tempera-
ture is comparatively higher for B∗ = 104, which can go up
to 5 MeV for a density range 0.005–0.03 fm−3. However,
at higher densities the transition temperature are same for
magnetic and nonmagnetic cases. We find that the critical

temperature defined as the highest among the transition tem-
peratures is 4 MeV for B = 0. However, at B∗ = 104 it is 1
MeV higher.

Figure 3(a) shows the WS cell radii corresponding to free
energy minima as a function of number density of nucleons
for a range of temperature (0–4 MeV). The size of the cell
always decreases with increasing baryon density. In fact, the
WS cell size is quite large at very low density, as was also
shown in Fig. 1, it shoots up at 〈ρ〉 = 0.001 fm−3 for T = 3
MeV compared to zero temperature case. For T = 4 MeV,
however, the matter becomes completely uniform at 〈ρ〉 <

0.003 fm−3. On the high density side (〈ρ〉 � 0.015fm−3), at a
given density the WS cell size is smaller for high temperature.
Also, as expected, the nuclei dissolve into uniform matter at
a relatively lower density for hot inner crust. In the presence
of strongly quantizing magnetic field, the nature of the curves
remains more or less similar. We see that for low densities
(〈ρ〉 � 0.01 fm−3) finite temperature causes the WS cell radii
to increase, but the cell size is not as large as B = 0 case. At a
fixed temperature magnetic field reduces the cell size. This is
again because at very high magnetic field the Coulomb inter-
action becomes much more efficient in increasing the nuclear
binding energy which then plays the most dominant role in
deciding the free energy minimum and thereby leading to the
reduction in the cell radius than that of the field-free case.
With rise in temperature more and more neutrons become
unbound and drip out of the nuclei. As a result, the nuclear
binding energy decreases and cell size increases.

In Fig. 3(b) we display the dependence of proton frac-
tion on average baryon density for T = 0–4 MeV and with
and without quantizing magnetic field. We note that proton
fraction decreases with temperature for both the nonmagnetic
and magnetic cases. It is also observed that magnetic field of
strength B∗ = 104 enhances the proton fraction significantly,
especially at low densities. This is because strong magnetic
field reduces electron chemical potential and therefore higher
proton fraction is needed to maintain the β equilibrium. We
have already discussed it in detail in connection with Figs. 1
and 2.

The top panels of Fig. 4 show the total number of nu-
cleons Acell(= 4/3πR3

c〈ρ〉) inside the WS cell, as a function
of baryon density in nonmagnetic (left panel) and magnetic
(right panel) NS inner crust, respectively. In both the cases,
the number grows to a maximum before falling down at higher

TABLE II. Transition temperature (MeV) at different density points with and without magnetic field.

density 〈ρ〉 (fm−3) 0.001 0.005 0.010 0.020 0.030 0.040 0.050 0.055

B∗ = 0 3 4 4 4 4 3 1 0
B∗ = 104 3 5 5 5 5 3 1 0
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FIG. 3. (a) WS cell radius Rc and (b) proton fraction Yp as a function of average baryon density for T = 0–4 MeV with and without
quantizing magnetic field.

densities. These findings are consistent with earlier studies
performed at T = 0 [23,30,31]. In B∗ = 0 case, at very low
density, the number shoots up for higher temperature. This
is the consequence of high values of Rc at low densities, as
noted earlier. At higher densities, Acell is maximum at T = 0
and decreases with temperature for both the nonmagnetic and
magnetic cases. However, for B∗ = 104, the cell can accom-
modate a lesser number of nucleons as evident from Fig. 4.

In the middle and bottom panels of Fig. 4 we plot the
individual number of neutrons and protons in the WS cell, in
the absence and presence of magnetic field (B∗ = 104). The
proton number decreases monotonically with higher baryon
density, whereas the total number of neutrons rises with num-
ber density, reaches a peak and falls off at higher density.
Therefore, the nature of total number of nucleons curve is
mostly due to number of neutrons. Both the nucleon numbers

go down for high temperature matter. At a particular density,
the proton number goes up slightly for B∗ = 104 compared to
nonmagnetic case. This is the consequence of higher values of
proton fraction in the magnetic case as noted above. It is also
seen that the number of neutrons and as a result the number
of nucleons in the cell is smaller for B∗ = 104 at any given
density.

We plot the total number of nucleons, protons and neutrons
inside the nucleus in Fig. 5 for nonmagnetic and magnetic
cases. These numbers are obtained from the subtracted densi-
ties, using Eq. (20). Number of neutrons and as a consequence
A increase in the lower density part to reach a maximum, then
they fall with increasing density for the entire range of tem-
perature from T = 0 to 4 MeV, for both the cases. The nucleus
becomes smaller with temperature containing less numbers
of neutrons and protons. These happen because with rise in
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for (a) B∗ = 0 and (b) B∗ = 104.

density and temperature increasing number of neutrons drip
out of the nucleus. In presence of magnetic field of strength
B∗ = 104 nuclei are found to be heavier having larger number
of neutrons and protons at all densities and temperatures, as
compared to the non-magnetic case. This is again due to the
extension of neutron drip point and enhancement in proton
fraction induced by the quantizing magnetic field.

Finally, in Fig. 6, we plot the minimized free energy per
nucleon (F/Acell) of the system with and without magnetic
field, which increases monotonically with baryon density. On
the other hand, at any given baryon density F/Acell is max-
imum at T = 0, and decreases as the temperature increases.
This is mostly due to the last term in Eq. (31), which grows
with temperature. For B∗ = 104 the F/Acell values (see the
right panel of Fig. 6) are smaller than the field free results
both for T = 0 and T > 0 cases. The lower F/Acell values

for the magnetized crust at the same density and temperature
again emphasizes the greater binding energy of crustal matter
in strong quantizing magnetic field [23].

IV. SUMMARY AND DISCUSSIONS

We have studied the effect of finite temperature and strong
magnetic fields on the properties of neutron star inner crusts.
We adopt the WS cell approximation where the nucleus is
considered to lie at the cell center and immersed in gases
of free electrons and neutrons. For the calculation of nuclear
energy we use Skyrme energy density functional with SkM*
interaction. The equilibrium properties at a given density,
temperature and magnetic field are obtained by minimizing
the free energy per nucleon of the cell under the condi-
tion of charge neutrality and β equilibrium. In order to
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quantizing magnetic field.
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isolate the properties of equilibrium nucleus we employ the
separation procedure within TF formalism. Magnetic fields di-
rectly affects the electrons as their motion perpendicular to the
direction of the field get quantized in Landau levels. The effect
is significant for B � 1017 G, when electrons populate only
the first Landau level. This results in less number of dripped
neutrons, higher proton fraction, heavier nucleus and higher
binding energy in the inner crust as compared to nonmagnetic
case. However, the effect of temperature is found to act in the
opposite direction and reduces the impact of magnetic fields.
We also find that with increasing temperature the transition to
uniform matter takes place at lower density.

The dynamical ejecta of a binary neutron star merger can
have two components capable of synthesizing heavy elements
via r process [32]. One component is ejected because of the
tidal forces and contains very neutron-rich matter emanating
from cold neutron star crust. The other component is hotter
as it originates due to the shock heating at the interface of
two merging neutron stars. If the neutron stars possess strong
magnetic fields or their initial low fields get amplified during

the merging process [24], our results can be useful to calculate
the r process yields in both the scenarios. However, at finite
temperature single-nucleus description may not be adequate
and one needs to consider mixtures of different nuclei [33,34].
This is also manifested in our calculation as we find that the
free energy does not change much with A or Acell (see Fig. 1
and 2) when the temperature is high. In a future study, we plan
to investigate the effect of strong magnetic fields on the com-
position of hot neutron star crust within a model that would
allow mixture of different nuclei and Landau quantization of
protons.
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