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Contributions from � hyperons to nucleosynthesis in kilonovae
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We study the expansion of neutron star (NS) matter containing hyperons � from high densities up to the
end of nucleosynthesis. This process should occur in NS-NS or NS–black hole collisions. Hyperons � decay
by mesonic and nonmesonic reactions on a very short timescale to form proton and neutron matter. When
material becomes diluted enough, the formation of helium and heavier nuclei releases energy and increases its
temperature to reach nuclear statistical equilibrium (NSE) conditions with high entropy per baryon. From then
on, nucleosynthesis proceeds and the final composition is largely determined by the proton per baryon fraction
Yp. We consider a recent equation of state that considers the presence of � hyperons [D. Logoteta, I. Vidaña,
and I. Bombaci, Eur. Phys. J. A 55, 207 (2019)] and simultaneously allows for the existence of NSs with masses
M � 2M�. We assumed the composition of NS matter at densities above the threshold for the occurrence of �

hyperons and computed its decay, finding that it appreciably increases Yp. Then, we computed the subsequent
nucleosynthesis starting from NSE assuming that the density falls exponentially. We find that, depending on the
initial composition of the ejected material, the increase in Yp due to hyperon decay is sufficient to sizeably affect
the final isotopic composition of ejected matter (for example, lanthanide production may be strongly inhibited).
These results indicate that � hyperons may affect the final composition of matter ejected in kilonova events. We
also discuss the case of pure � matter as a possible scenario for the collision by strange stars, where we have
obtained values Yp ≈ 0.4–0.5, which leads to final isotopes far lighter than in the former case.
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I. INTRODUCTION

The compact stars historically named neutron stars (NSs)
nowadays represent one of the most interesting objects in
the cosmos. Their existence provides important information
from the astronomical point of view, and also as a test labo-
ratory for our physical models. The landmark measurement
of gravitational waves (GWs) by the Laser Interferometer
Gravitational Wave Observatory (LIGO) [1] has opened a
new field of research in astronomy: gravitational wave as-
tronomy. GWs can be measured from black hole–black hole
(BH-BH) merges, but also from BH-NS, and NS-NS merges.
Astronomers recently observed the GW source GW170817
and identified its electromagnetic counterpart, designed as
AT 2017gfo, revealing a very detailed picture of these events
[2].

The improvements in observational information establish
a dialectic interaction between the theoretical models and
data. After the discovery of the neutron by Chadwick [3],
the proposal of the existence of NSs was a hypothesis due to
Baade and Zwicky [4], and it took a bit more than thirty years
until the first observations by Hewish and Okoye [5]. From
then on, through observational information we have some
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certainty about macroscopic properties of a NS like its mass,
radio, angular velocity, and the intensity of the magnetic field.
Because of the character of the electromagnetic signal from a
NS, they received their denomination as pulsar, magnetar, etc.
A summary of this classification can be found in [6].

The first models for the composition of NSs considered
that these objects are made up of neutrons and protons
(i.e., nonstrange hadrons). Several equations of state (EOS)
were proposed, and by integrating the Tolman-Oppenheimer-
Volkoff equations of hydrostatic equilibrium in general
relativity a variety of NS models have been constructed;
see, e.g., [7]. More recently, the structure of NSs has been
studied, for example in [8], and the topic was reviewed in
[9,10]. Regarding the possible presence of strange hadrons
in NSs, this was proposed long ago by Ambartsumyan and
Saakyan [11], and studied more recently by Glendenning [12]
and by Glendenning and Moszkowski [13]. An even more
extreme hypothesis is that NSs are actually quark stars with
strangeness per baryon S ≈ −1. Following the proposals of
Bodmer [14] and Witten [15], this possibility was further
studied by, e.g., Alcock et al. [16] and seriously challenged by
Bethe and Brown [17] and by Alpar [18]. A third possibility is
that NSs have a quark core, surrounded by hadron matter. This
is usually called a hybrid star (see, e.g., [19]). The problem of
the EOS of matter inside NSs is still a topic of great interest,
especially since the discovery of the existence of very massive
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objects PSR J1614−2230 with 1.928 ± 0.017 M� [20], PSR
J0348+0432 with 2.01 ± 0.04 M� [21], and particularly PSR
J0740+6620 with 2.14+0.10

−0.09 M� [22].
An important issue is the possibility of getting some

observable indication of the presence of some strangeness
content inside NSs. Regarding hyperons, Sekiguchi et al. [23]
performed numerical calculations of the NS merger process,
finding that hyperons affect the dynamics and the GW ra-
diation of the merger in a potentially detectable way. An
equivalent result has been found for the case of quark matter
in [24,25].

One of the most challenging problems in astrophysics is
to identify the origin of chemical elements. For the case of
isotopes heavier than iron, it is well known from long ago
(see [26,27]), that most of their abundances are due to neutron
captures. One of the processes responsible for the existence of
these elements is the so called slow neutron capture (or simply
s process) in which nuclei evolve on or very close to the
stability valley. This mechanism, occurring during hydrostatic
stellar evolution, is well understood [28] and involves isotopes
which are well measured in the laboratory.

The other process is the rapid neutron capture, which is
considered to be responsible for the existence of other el-
ements like europium, osmium, platinum, etc. In this case,
nuclei should be in a medium with a very large density of
free neutrons. Some time ago, the r process was considered
to take place in the core collapse of supernovae (see, e.g.,
[29]). However, nowadays it is considered that the most likely
scenario for this process is a NS-NS or NS-BH collision.
We should note that this possibility was studied long ago by
Lattimer and Schramm [30]. A recent review on the r process
was presented by Cowan et al. [31].

If matter that underwent r process captures suddenly de-
compresses, the very neutron rich nuclei undergo a sequence
of β decays towards the stability valley, releasing enough
energy to make the collision remnant shine for a while. This is
what it is usually called as a kilonova. The first detection of an
infrared source associated with a gamma-ray burst compatible
with a kilonova event was announced in [32]. More recently,
as stated above, the event GW170817 was detected by Abbott
et al. [2] as a NS-NS merger together with the associated
electromagnetic signal AT 2017gfo. These unprecedent ob-
servations provide fundamental information to investigate the
characteristics of these mergers and also the nucleosynthetic
results. Kasen et al. [33] have presented a model for the
nucleosynthesis and the light curve for the AT 2017gfo event,
strongly arguing that this was a kilonova. They found two
components in the ejecta: one composed of light isotopes
with A < 140 and another of heavier isotopes with A > 140.
Simultaneously, analyzing the spectra of this event, Pian et al.
[34], found that the data are compatible with an ejection of
2–5 × 10−2 M� matter containing high opacity lanthanides.
Further analysis of the spectra allowed identification of the
presence of strontium in the remnant [35].

In this paper we shall focus on the problem of the strange
component present within a NS. We shall consider that the
matter that undergoes expansion has an initial composition
containing � particles. In particular, we shall consider a re-
cent model presented by Logoteta et al. [36], where an EOS

containing � particles was developed. Usually, it is con-
sidered that neutron matter is softened by the presence of
hyperons, making it difficult to account for the existence of the
most massive NSs referred to above. Reference [36] employed
a nucleon-nucleon-lambda (NN�) three-body force, together
with realistic nucleon-nucleon, nucleon-nucleon-nucleon, and
nucleon-hyperon interactions, to calculate the EOS within the
many-body nonrelativistic Brueckner-Hartree-Fock approach.
It is shown that the inclusion of the NN� force leads to an
equation of state stiff enough such that the resulting NS max-
imum mass is compatible with the largest currently predicted
maximum mass Mmax � 2M�.

Below, we develop a formalism which starts with hot dense
matter containing �’s at supranuclear densities and ends with
nuclei. This is done in two stages: first the � matter decays
into protons, neutron, and pions; this system further expands
and cools down. Finally, nucleosynthesis takes place. Consid-
ering the complexity of the whole kilonova event, we prefer to
study the effects due to the presence of �’s in a very simplified
way in order to gain a clear understanding of their effect on
final nucleosynthetic results.

Let us discuss now the mean lifetimes of the particles
involved in our model. All these times correspond to decays
in free space. For the �-particle decay we have τ� ≈ 2.6 ×
10−10 s. The products of the � decay are protons, neutrons,
and π0 (−). Protons are stable and neutrons decay after 841 s,
a time which we also consider as stable. The π0 decays
through π0 → 2 γ with a branching ratio (BR) of 0.98823.
From this, the π0 has no effect in our calculation. The π−
decays mainly as π− → μ− + νμ, with a BR = 0.999 877
and τπ− ≈ 2.6 × 10−8 s. The μ− can interact with the proton,
leading to a change in the relative population of protons and
neutrons. These reactions are μ− + p → νμ + n and μ− +
p → νμ + n + γ . The importance of these reactions depends
on our model for the expansion of the whole system. In any
case, at this stage we neglect any reaction but � decay itself.
The values of all decay widths and BR were taken from [37].

In summary, in this work we evaluate the partial contri-
bution to the nucleosynthesis of elements from hot, dense
matter containing �’s ejected from a NS-NS merger. We
model this process by evaluating microscopically the � decay
and considering that no further decays or reactions take place
until nucleosynthesis operates. We consider also the extreme
case of pure � matter, which is a theoretical possibility in the
collision of strange stars. Our results should be interpreted as
a partial contribution to the whole problem of kilonovae.

This work is organized as follows. In Sec. II, we discuss
the different � decay mechanisms in a dense medium and
briefly describe the techniques we employed to compute the
final nucleosynthesis. Our results are discussed in Sec. III,
where we give special attention to the initial � decay and
the nucleation conditions. Finally, in Sec. IV we discuss the
relevance of our results and give some conclusions.

II. FROM DENSE MATTER WITH �

HYPERONS TO NUCLEI

As mentioned in Sec. I, our concern in this work is the
final isotopic composition resulting from matter ejected in a
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kilonova event. More specifically, we consider matter com-
posed of protons, neutrons, and � particles. The � particle
is the lightest hadron with strangeness and its properties are
better understood than other strange particles. Due to this, it
is the natural choice as the starting point for nucleosynthesis
from the strange component of NSs. One should keep in mind
that within a NS it is the gravitational force that is responsi-
ble for the high densities of the system. Ejected matter will
expand due to the weakening of the gravitational attraction.
In this fast decrease of density which starts with hot dense
matter containing � particles and ends with nuclei, we define
two stages:

(i) In the first stage, we start with matter which contains
different proportions of � particles, until their exhaus-
tion. We assume values for the initial density, entropy
per baryon, s, and a model for the expansion of the
system. The final products of this decay process are
neutrons, protons, and pions. From the decay process,
we obtain the final fraction of protons per baryon, Yp,
together with the final temperature and density.

(ii) The second stage is the time interval from � particles
exhaustion up to the end of the nucleosynthesis.

In the next subsections we address these points in detail.

A. The � hyperon decays

Let us consider hot matter with a partial or total content of
� particles, at high density. The � particle has several decay
modes induced by the weak interaction. In free space, the �

decays via the so-called mesonic decays, namely,

� → nπ0, (1)

� → pπ−. (2)

In a nuclear medium we have to add the nonmesonic decays,

�n → nn, (3)

�p → np. (4)

For each of them we define the corresponding decay widths as

�π0 ≡ �(� → nπ0),

�π− ≡ �(� → pπ−),

�n ≡ �(�n → nn),

�p ≡ �(�p → np). (5)

These decay widths depend on the partial densities of each
kind of particle and on the temperature of the system. In
Figs. 1 and 2, we show the Feynman diagrams for the transi-
tion amplitude for each decay width. By inspection of these
transition amplitudes, we should emphasize that the only
source of protons is reaction (2) (associated with the �π−

decay width). The amount of protons in the initial and final
state is the same for the reaction �p → np. Note, from Fig. 2,
that two transition amplitudes contribute to �p: the second
diagram in this figure is the direct one, while the third one
is the charge exchange contribution. Note also that, � being a

Λ

n π0

Λ

p π−

FIG. 1. Transition amplitudes for the mesonic decays �π0 and
�π0 , respectively.

noncharged particle, charge conservation does not allow any
other decay at first order in the weak interaction.

At zero temperature, explicit expressions for �π0 and �π−

are found in [38], while we refer the reader to [39] for the
expressions for �n and �p. For the benefit of the reader, we
give the finite temperature expressions in the Appendix, which
are easily obtained from these ones at T = 0.

The mesonic and nonmesonic decays play different roles
in the evolution of the system from matter which contains �

particles to hadronic matter without �’s. To make our point
clearer, let us consider pure � matter. In the initial time, the
absence of protons and neutrons makes the mesonic decays
the only possible reactions. Shortly after this, the presence of
these hadrons triggers the nonmesonic decay. As the density
of protons and neutrons grow, the Pauli principle inhibits the
mesonic decay. There is a certain competition among the
mesonic and the nonmesonic channels: while the mesonic
channel favors the production of protons, the nonmesonic
one gives only neutrons. The mesonic channel dominates for
low densities or high temperatures, while the nonmesonic
contribution is more important for high densities at low tem-
peratures.

Before we go further, it is worth mentioning that there are
others decays channels which we are not considering here. In
first place we should mention the reaction �� → �n. It is
a nonmesonic reaction induced by the � particle itself and it
has the peculiarity that it is active all over the decay of the
� matter. This reaction has been studied in [40], from which
we know that it gives a small contribution. Still, there are
higher order nonmesonic contributions such has �np → nnp

Λ n

n n

Λ p

n p

Λ p

p n

FIG. 2. Transition amplitudes for the nonmesonic decays �n

(first diagram) and �p (second and third diagram). By a dashed line
we represent the weak interaction, given by the exchange of the π ,
ρ, K∗, η, ω, and K mesons.
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[41,42]. These reactions originate from ground state correla-
tions and we have preferred not to include them in this work.
This is because, being higher order contributions, we do not
expect them to change significantly the final result.

Let us now discuss a model for the time evolution of our
system, from hot matter with � hyperons to proton-neutron
matter. Our aim is to know the proton fraction Yp ≡ Np/(Np +
Nn + N�), where Ni is the total number of particles of the
kind i. The quantity Yp is in fact a time-dependent function
and, after all � particles have decayed, it is taken as an initial
condition for the subsequent evolution of the system, when
nucleosynthesis occurs. The link between the decay widths
and the number of particles is given by the general relation-
ship,

dNf (t )

dt
=

∑
α

�α (N1, N2, . . . , T )
∏
i=1

Ni(t ). (6)

The index α runs over the values α = π0, π−, n, and p [see
Eqs. (5)], and contains in its final state the particle of kind f .
The notation

∏
i Ni(t ) represents the product of the number

of particles in the initial state: for instance, for the decay
�(�p → np),

∏
i Ni(t ) = N�Np. This expression results in a

set of coupled first-order differential equations, where f = �,
n, and p, together with the constrain N = Nn(t ) + Np(t ) +
N�(t ) = const. The initial conditions will be given soon.

Rather than working with the total number of particles,
Nj , it is convenient to show these equations using the rel-
ative fraction of particles, defined as Yi ≡ Ni/N . Note also
that Yi = ρi(t )/ρ(t ), where ρi(t ) = Ni(t )/V (t ) is the number
density, where the volume V (t ) depends on time. The set of
Eqs. (6) are rewritten as

dYn(t )

dt
= �π0Y�(t ) + �nYn(t )Y�(t ) + �pYp(t )Y�(t ),

dYp(t )

dt
= �π−Y�(t ), (7)

which can finally be expressed as1

dρn

dt
ρ = �π0 ρ� ρ + �n ρnρ� + �p ρpρ� + ρn

dρ

dt
,

dρp

dt
ρ = �π− ρ�ρ + ρp

dρ

dt
, (8)

where for simplicity the explicit functional dependences of the
densities and decay widths have been omitted for brevity of
the notation. Notice that the last terms in the right-hand sides
of these equations (i.e., ρi dρ/dt) are always negative for an
expansion. Keeping in mind that ρ = ρ� + ρn + ρp, we write
for completeness

dρ�

dt
= dρ

dt
− dρn

dt
− dρp

dt
. (9)

To solve this set of equations one has to specify the initial total
densities ρi(t = 0), i = n, p, �, and the initial temperature,
together with a model for the temporal evolution of density
and temperature. This is discussed below, in Sec. III. The

1Note that dYi
dt = ( dρi

dt ρ − ρi
dρ

dt ) ρ−2.

dynamics of the decays (contained in the decay widths �i),
gives us the relative number of protons and neutrons or Yp. We
are aware that the inverse reactions which produce � particles
are possible. This would affect the total time to the � matter
decay, but it is not expected an important change in the final
result for Yp. This point is further discussed in the next section.

Before going on, we should discuss briefly the physics of
the � decay. What we know about the � decay comes from
two different physical sources: first, the �-free decay, which
is well understood; second, the �-hypernuclei decay. We ex-
plain now why we are dealing with a third kind of problem.
The �-free decay is dominated by the �π0 and �π− , decays.
These decays are induced by the weak interaction and the �

particle has also an electromagnetic decay, whose branching
ratio is negligible.

The experimental information about the �-hypernuclei de-
cay comes from the emission spectra of the particles emitted
in the decay; see for instance [43,44]. In these spectra one
plots Nn(E ) and Np(E ), where E is the energy of the emitted
neutron and proton, respectively. Obviously

∫
Ni(E )dE = Ni.

And in fact data for the Nn/Np ratio are given. But this ratio has
a different meaning than ours. This is important, because the
Nn/Np hypernuclear result must not be used in our problem.
The main differences with our problem are

(i) The spectra from the hypernuclear decay result from
the decay of a large set of hypernuclei all at the same
quantum state. On the other hand, in our problem, once
a � decays, this process affects the composition (or
partial density), and the next decay is different due to
this change in the density.

(ii) In the hypernuclear spectrum, �(�p → np) is a
source of protons: from the � decay a bound proton
acquires enough energy to be ejected to the continuum.
The residual nucleus has one proton less and, as men-
tioned, in hypernuclei the �p → np decay contributes
to the proton spectra. The situation for our problem
is different, because the only source of protons is the
�π− decay. Our concern is the total number of protons
in the whole system and the �p → np decay does not
change this number.

Briefly, the physical situation of having a set of hypernu-
clei, all at the same quantum state, which emit particles and
leaves a residual nucleus, is different than the one of matter
containing � particles. From this, we can assert that � decay
discussed in this work represents a novel process.

B. The nucleosynthesis process

As matter expands, its density and temperature go down
to values in which the formation of nuclei becomes possible.
Then, the material undergoes the nucleosynthesis process.

In order to obtain the final isotopic abundances of the ex-
panding matter, it is necessary to consider a large network of
nuclear reactions. To tackle this problem, we have employed
the TORCH code [45]. Among other capabilities, TORCH can
compute the nucleosynthesis during the expansion of matter
starting from nuclear statistical equilibrium conditions. All the
calculations to be presented below were performed assuming
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FIG. 3. Time-evolution of the �, neutron, and proton fractions
from Eq. (7). We have shown the results for two different values of
the initial baryon density, while the entropy per baryon is 3kB. Time
is given in seconds.

a network of 3298 isotopes. Recently, Kasen et al. [46] have
employed this code to compute nucleosynthesis in kilonovae
models.

III. RESULTS

In this section we discuss our results in three subsections.
First, we consider the decay of matter containing � particles
into protons, neutrons, and pions. In a second subsection we
analyze the expansion and cooling process up to the nucle-
osynthesis. Finally, in the third subsection we discuss the
extreme case where the initial composition is entirely made
out of �’s.

A. From � matter to protons and neutrons

In this initial stage, the evolution of the system is modeled
with the function ρ̃b(t ) = ρb e−t/τexp , where ρ̃b(t ) is the total
baryonic density and the constants ρb and τexp will be spec-
ified soon. We consider different values for the entropy per
baryon, s. We employ the equilibrium values for the partial
hadronic densities from the EOS developed in [36] at zero
temperature. We refer the reader to Fig. 3 (left panel) of
that work to see the partial hadronic densities at equilibrium.
For the benefit of the reader, we show some values for the
different partial baryonic densities in Table I. We also show
the proton fraction Yp, which has been defined in Sec. II A.
Within our scheme, the proton fraction depends on time and
we have employed the notation (Yp)NS for its equilibrium
value in the NS. Note also that there is a threshold density
from which we begin to have � particles. In this work, we
also study the hypothetical pure � matter at twice the nuclear

TABLE I. Different initial composition of NS matter at thermo-
dynamical equilibrium taken from [36]. Densities are given in units
of fm−3. For convenience we show the proton fraction (Yp)NS .

ρb ρn ρp ρ� (Yp)NS

0.1089 0.1046 0.0042 0.0000 0.0386
0.2017 0.1873 0.0143 0.0000 0.0711
0.3038 0.2696 0.0342 0.0000 0.1127
0.4059 0.3439 0.0613 0.0007 0.1511
0.5080 0.3901 0.0851 0.0328 0.1675
0.6008 0.4220 0.1048 0.0741 0.1744
0.7029 0.4564 0.1277 0.1188 0.1817
0.8051 0.4920 0.1530 0.1600 0.1901
0.9072 0.5288 0.1808 0.1975 0.1993
1.0000 0.5627 0.2081 0.2292 0.2081

saturation density, having the initial condition ρb = ρ� = 2ρ0

(ρn = ρp = 0). For the nuclear matter saturation density, we
have employed ρ0 = 0.16 fm−3. Results from pure � matter
are discussed in Sec. III C.

As mentioned, we ascribe to the expelled matter a nonzero
value for the entropy per baryon. Under this assumption, mat-
ter evolves to a new equilibrium, which should be achieved
through a set of reactions among the particles. In this work, we
focus on the � decay which, as we shall show, is faster than
the expansion. To reach complete equilibrium, all possible
reactions have to be taken into account. In Sec. I, we called
attention to a set of reactions in free space which can be
relevant in this problem, where some mean lifetimes are rather
slow compared to our expansion model. In this case, the model
for the expansion would be as important as the reactions them-
selves. Our concern is the effect of the � decay on the final
composition, assuming that the sudden change from matter at
zero temperature to hot expanding matter triggers this decay.
It is worth mentioning that a rather different approach would
be to construct an EOS. This approximation assumes that
the characteristic timescale of all possible reactions is much
shorter than that of expansion and, as a consequence, matter
has sufficient time to reach equilibrium. At the end of this
subsection we discuss further this point by making a brief
comparison between these two approaches.

We start with four different initial conditions summarized
in Table II. For different initial baryonic densities ρb, each
case has a different proportion of � matter; this proportion
rises for increasing values of the density. For the expansion,
we have taken the value τexp = 10−3 s, while for the entropy
per baryon we consider values which range from s = 1.0kB

TABLE II. Four initial composition of NS matter analyzed in this
work, taken from [36]. Densities are given in units of fm−3.

Case ρb ρn ρp ρ� (Yp)NS

A 0.4987 0.3867 0.0831 0.0289 0.1667
B 0.6008 0.4220 0.1048 0.0741 0.1744
C 0.7029 0.4564 0.1277 0.1188 0.1817
D 0.7958 0.4888 0.1506 0.1564 0.1893
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up to 4.0kB. As will be clear soon, the choice of τexp is not
important for this initial stage, since the � matter evolves on
a timescale far shorter than the expansion. The weak transi-
tion potential required for the � decay is described in terms
of the usual one-meson-exchange (OME) potential, which is
represented by the exchange of π , η, K , ρ, ω, and K∗ mesons
within the formulation of [47], with values of the coupling
constants and cutoff parameters taken from [48,49].

We go straight to the solution of the set of Eqs. (7). These
equations are solved numerically and the functions Y�(t ),
Yn(t ), and Yp(t ) are plotted in Fig. 3, where the initial con-
ditions are the ones for Cases A and D, in Table II. In this
figure we show the evolution of these fractions from the initial
supranuclear density up to the decay of all �’s. Having in
mind our expansion law, the total density remains almost
constant during the � decay process, a point which is further
discussed in this subsection.

From this figure we can evaluate the average � half-life—
starting at t0 = 0 s, the time when half of the �’s have decayed
is t f ≈ 10−10 s—and from this we can estimate the half-life as
t ≈ 10−10 s. We recall that the � mean lifetime in free space
is τ� ≈ 2.6 × 10−10 s. The half-life is always smaller that
the mean life, but still it is clear that the decay of this dense
medium is faster than the free decay. We address this point
because at first glance it looks contradictory: for a particular
decay mechanism, in a dense medium the available phase
space of final states is always smaller than in free space.
But in a dense medium we also have the nonmesonic decay,
which is not present in free space and ultimately enlarges the
phase space. This half-life becomes smaller as the temperature
grows. For increasing values of the temperature the phase
space of final states is bigger, which leads to also bigger values
of the decay widths (we recall that τ = h̄/�).

Going on with the analysis of Fig. 3, we consider now
the different decay mechanisms as shown in Eqs. (5). The
distinction between mesonic (�π0 and �π−) and nonmesonic
(�n and �p) is important due to energy considerations. To
make this point clear, let us consider a � particle at rest. The
� decay vertex contains the � particle (m� = 1116 MeV),
a nucleon (mN = 939 MeV), and a meson. If the meson is a
pion (mπ = 139 MeV), from the decay we have, Q = m� −
mN − mπ = 38 MeV. At zero temperature and assuming that
all this energy becomes kinetic energy for the nucleon, if the
Fermi energy is bigger than Q, then the mesonic decay is
forbidden. Equivalently, we can say that the mesonic decay
is Pauli blocked. For � particles with kinetic energy and for
finite temperature, the Pauli blocking is less effective, but it is
still present.

By inspection of the Q value we notice that the pion is the
only meson which can be produced in the mesonic decay. The
situation is different for the nonmesonic decay. In this case,
mesons are off the mass shell and we should consider all pos-
sible mesons. As we do not have any meson in the final state,
the final nucleons now share an energy Q̃ = m� − mN = 177
MeV, which makes it unlikely for them to be Pauli blocked.
The nonmesonic decay is induced by a nucleon. This means
that, in the particular case of pure � matter (see Sec. III C), at
t = 0 the only possible decays are �π0 and �π− . Shortly after
this, there are protons and neutrons in the medium and the

decays �n and �p turn on. Under the initial conditions from
Table II, both mesonic and nonmesonic decays are present all
over the � decay process.

As we have already mentioned, further reactions which
produce � particles are possible and we are not considering
them. This is because no change in the lower limit of the
proton fraction is expected due to these reactions. The �

creations induced by π mesons are possible (for instance,
the strong induced reaction π− + p → K0 + �), but due to
the difference in the rest mass of the incoming and outgoing
particles these reactions are unlikely, meaning that their effect
should be small in our final results. The mesonic inverse re-
action, N + n → � + N , with N = n, p, turns a neutron into
a � particle. Afterwards, the � particle can decay through
any of the decay channels shown in Eqs. (1)–(4). This means
that some of them would add protons to the system. From
these considerations, it is reasonable to assume that our values
for the proton fraction are a lower limit for that quantity. We
should recall that there is a threshold density for the stability
of the � particles. For densities ρb � 2ρ0, all �’s decay.

Also from Fig. 3, due to isospin considerations the �π−

decay width is always bigger than the �π0 one. No matter the
initial composition, the mesonic decay increases the amount
of protons and neutrons, reducing the phase space for the
mesonic decay itself. This means that in the � decay process
the nonmesonic decay becomes more important at the final
stages of the decay. The nonmesonic decay only supplies
neutrons. From both panels the general conclusion is that the
decay of � particles increases the proton fraction.

Now we give explicit numerical values for the fraction of
protons once all � particles have decayed. For this stage,
when we have protons and neutrons, we name the proton frac-
tion as (Yp)PN . We show (Yp)PN as a function of the entropy
per baryon (or equivalently as a function of the temperature)
in Table III. From this table we notice that as the entropy per
baryon grows, so does (Yp)PN . This is because the mesonic
decay becomes more important when the temperature rises.
In any case, this value saturates at (Yp)PN, max = 2/3, which
is the value where the nonmesonic decay plays no role. The
values of (Yp)PN are the main result of this subsection; they
are employed as inputs for the next step. Finally, the � decay
process is very fast and the initial conditions of temperature
and density are almost unchanged during the � decay. For
consistency, we have considered these changes, but due to
their magnitude it is not worth tabulating them.

As mentioned, the � decay process is very fast relative to
the expansion. To show this point, we have also solved the set
of Eqs. (8), under the same conditions of Fig. 3. These results
are depicted in Fig. 4. We show the evolution of the functions
ρ�(t ), ρn(t ), and ρp(t ) from the initial supranuclear density
up to a density slightly below ρ0. In this figure, due to our
expansion law, it is clearer that the total density remains al-
most constant during the � decay process, as we have already
discussed. Having in mind that time is plotted in a logarithmic
scale, the drop in ρn(t ) and ρp(t ) at t ≈ 10−4 s is due to
the expansion. In the same figure we have superimposed the
dimensionless proton fraction Yp as a function of time, which
shows that this fraction remains constant after all �’s have
decayed.
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TABLE III. Proton fraction when all � particles have already
decayed. We show the conditions at which NS matter undergoes
hyperon decay. From left to right we list the initial condition con-
sidered (given in Table II), the considered entropy per baryon (in
units of the Boltzmann constant), the temperature (given in MeV)
at which the process occurs, and the final value of the proton per
baryon abundance, (Yp)PN . Due to the timescale of the � decay, the
final baryonic densities are approximately the same as the ones in
Table II).

Case s T (Yp)PN

A 1.0 7.1189 0.1803
B 1.0 8.0053 0.2038
C 1.0 8.8373 0.2209
D 1.0 9.5118 0.2324

A 2.0 14.861 0.1873
B 2.0 16.711 0.2183
C 2.0 18.448 0.2408
D 2.0 19.856 0.2570

A 3.0 23.594 0.1913
B 3.0 26.483 0.2262
C 3.0 29.189 0.2507
D 3.0 31.381 0.2681

A 4.0 34.040 0.1942
B 4.0 38.136 0.2314
C 4.0 41.967 0.2569
D 4.0 45.065 0.2748

A 5.0 46.725 0.1963
B 5.0 52.250 0.2351
C 5.0 57.409 0.2611
D 5.0 61.575 0.2792

A 6.0 60.949 0.1979
B 6.0 67.903 0.2376
C 6.0 74.375 0.2640
D 6.0 79.585 0.2821

Before we end this subsection, we turn back to the alterna-
tive approach of considering the results from an EOS model.
In Fig. 2 in [50], the authors depicted the relative particle
fractions as functions of baryon density in beta-equilibrated
matter using different entropies, starting from zero. We are
interested in the low density region, where there is no �’s.
We notice an increase of the proton fraction for increasing
values of the entropy per baryon. This result is in qualitative
agreement with ours, where our proton fraction has increased
for the same conditions. Beyond this qualitative agreement,
the physical origin of this result is different. Our increase in
the proton fraction is due to the � decay, while the EOS has no
memory of the former configurations. As we have stated, this
depends on the timescale of the reactions involved compared
with the expansion times. There is no contradiction between
the approaches: if the time is long enough, all possible reac-
tions take place and eventually the reactions would erase the
information about the � component of matter. On the other
hand, if the expansion does not allow all the needed reactions
for equilibrium, then the EOS result is not accurate for this
problem. In any case, our scheme and the EOS approach

FIG. 4. The same as Fig. 3, but for the time evolution of the �,
neutron, and proton densities from Eq. (8).

can be thought of as two extreme models. The fact that both
predictions are in agreement suggests that the actual physical
situation is close to both models.

The evolution of matter, from the equilibrium conditions
in the NS to low densities, requires a time-dependent model
which must consider both the expansion and the reactions
needed to restore equilibrium. We have shown that the mi-
croscopic description for the � decay is important and the
method to evaluate this decay is particular to this problem. We
have also shown that the � decay is very fast, which means
that, no matter how rapid the expansion is, all �’s will decay.
Once all �’s have decay, we freeze the composition.

B. Nucleosynthesis

Here we shall present our results on the nucleosynthesis of
NS matter after its decompression. Freiburghaus et al. [51]
have shown that the conditions of temperature and density
at which nucleosynthesis occurs are largely independent of
the values at which matter is ejected. Indeed, the formation
of helium and heavier nuclei results in an energy release so
large that it increases the temperature of the matter to reach
conditions of NSE. Because of this reason, following [46],
for this final stage of evolution we shall assume that mat-
ter initially is in NSE and with a temperature of 5 × 109 K
undergoing expansion with a constant value for entropy per
baryon of s = 20kB, and density falling down exponentially
with a timescale of τexp = 0.1 s. The conditions from which
we start out these calculations are based on the results pre-
sented by Fernández and Metzger [52] related to the dynamics
of outflows after NS coalescence, in particular their Fig. 5.
At conditions of higher densities and temperatures the ma-
terial stays in NSE since nuclear reactions are faster than
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Lanthanides
Region

Lanthanides
Region

FIG. 5. Nucleosyntesis resulting from the expansion of matter
for different values of the proton per baryon abundance, (Yp)PN ,
covering the range of values found by expanding the hyperon rich
matter (see Table III). Red squares represent the abundances due
to the r process given in [53], shifted 10(7.5) upwards for graphical
purposes. Abundances are given in mass fractions.

decompression. However, this is no longer valid for temper-
atures lower than 5 × 109 K. So, in these conditions it is
unavoidably necessary to perform a detailed nucleosynthetic
calculation. TORCH does not include a treatment of fission;
so, we followed the calculations up to the moment in which
temperature falls to 106 K. This represents a timescale of only
2.58 seconds. Notice that among the final abundances to be
presented below, many of them correspond to unstable nuclei.
As stated above, the aim of this paper is to study the effects
of the presence of � hyperons in the final nucleosynthesis of
a kilonova event. So, we consider that the treatment presented
in this paper is detailed enough to show that hyperons have a
non-negligible effect on the final abundances of these events.
In order to perform a more detailed treatment of the whole
kilonova event we would need, among other things, to include
fission in this treatment. This is beyond the scope of this paper.

The resulting nucleosynthesis is presented in Fig. 5. There,
we considered the range of (Yp)PN presented in Table III to-
gether with the abundances due to the r process given in [53],
shifted 10(7.5) upwards for graphical purposes. We applied this
shift since we consider it relevant to the pattern of the resulting
nucleosynthesis. We see that for (Yp)PN � 0.22 lanthanides
are produced, but for (Yp)PN = 0.24 their abundances are two

TABLE IV. The same as in Table III, but starting from pure �

matter. We assume the initial condition ρb = ρ� = 2ρ0 (therefore,
ρn = ρp = 0).

s T (Yp)PN

1.0 11.2 0.406
2.0 26.0 0.493
3.0 47.1 0.525
4.0 74.3 0.544

orders of magnitude lower. For (Yp)PN � 0.26 no lanthanides
are produced at all.

If we analyze these results together with the values of
(Yp)PN presented in Table III, we have to conclude that, de-
pending on the initial baryon number density (and then the
particle composition) of the material that undergoes decom-
pression, a detailed treatment of the � hyperon decay is very
relevant to find the final nucleosynthesis of the event and, in
particular, if it produces lanthanides and heavier isotopes or
not. In our opinion, this is the main finding of this paper.

As discussed, in this work we have shown a model for
the decay of the � component of the ejected matter in a
NS-NS merger. We assume an EOS which has � matter. It
is possible to have a different EOS without �’s, but with the
same value for (Yp)PN . In this case, the final product would
be indistinguishable from ours. If the EOS does have �’s, we
have developed a model to manage the decay and we have
concluded that the �’s have a sizable effect on the value of
(Yp)PN and, therefore, on the final nucleosynthesis. Due to
the uncertainty in the knowledge of the EOS, this result does
not imply a way to demonstrate the presence of � matter in
a NS-NS merger. However, a theoretical possibility is matter
entirely made up of �’s, which is discussed in the next subsec-
tion. In this case, there is no way out but to implement some
model for the � decay.

C. The case of strange stars

Let us consider the extreme possibility of the collision of
stars made up of strange quark matter up to their surface
(SQS). Here we shall consider that this material behaves as
a gas of close-packed �’s, as proposed long ago by Bethe,
Brown, and Cooperstein [17]. Usually, in the literature it
has been considered that the surface density of these hypo-
thetical stars is around two times that of nuclear saturation
density (see, e.g., [16]). It is a current issue and a recent work
[54] explored the possibility that the event GW 190814 was
a BH-SQS system, where the SQS can have a mass M ≈
(2.5–2.67)M�. So, we shall assume it and compute the decay
of hyperons in protons and neutrons with the same techniques
described above. The results of these calculations are shown
in Table IV.

We notice that the values of (Yp)PN are markedly higher
than those found starting from a NS composition. This has
a direct consequence for the final nucleosynthesis products.
We performed the corresponding calculations as described in
Sec. III B assuming that matter undergoes its expansion with
the same characteristics as there, but with the values of (Yp)PN
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FIG. 6. Abundances per mass unit for the most abundant isotopes
resulting from the expansion of matter resulting from the collision
of strange stars. Notice that the isotopes are far lighter than those
found for the case of the expansion of NS matter with hyperons.
In particular, lanthanides are not synthesized at all. Abundances are
given in mass fractions.

given in Table IV. The results are shown in Fig. 6. As can
be expected, the resulting isotopes are far lighter than those
found for the case of NS matter expansion. In particular, we
find that lanthanides are not synthesized at all. Evidently, this
provides a way for distinguishing strange stars from NSs: the
final nucleosynthesis resulting from the collision of each type
of star is completely different.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have studied the expansion of neutron
star (NS) matter containing a non-negligible fraction of �

particles from densities above nuclear saturation density up to
the end of nucleosynthesis. This process may occur in nature
in the collision of two NSs or a NS with a black hole. The
� hyperons decay by means of mesonic reactions (1) and
(2) or, if proton and neutron densities are non negligible,
nonmesonic reactions (3) and (4). Hyperons � exhaust on
a timescale so short that their decay is decoupled from the
hydrodynamic expansion of matter. When proton and neutron
matter is diluted enough, the formation of helium and heavier
nuclei releases an amount of energy large enough to increase
its temperature to values high enough to result in conditions
of nuclear statistical equilibrium with high entropy per baryon
[51]. From then on, nucleosynthesis proceeds and the final
composition is largely determined by the proton per baryon
fraction Yp.

It is worth mentioning that the � decays described in this
work show a very different behavior than the same decays in
hypernuclei: for hypernuclei with A � 12, the Pauli blocking
strongly inhibits the mesonic decay. In our case, the mesonic
decay is always important. This is because the finite tempera-
ture weakens the Pauli blocking. Another important difference
with the hypernuclei case is that we do not have a set of
hypernuclei all at the same quantum state, but a chain of
decays where each decay modifies the conditions of the next
one.

In this paper we have considered a NS matter equation
of state [36] that contains � hyperons and allows for the
existence of objects with a mass M � 2M�, which is not in
conflict with recent detection of massive NSs (see Sec. I).
We have assumed the equilibrium composition of matter at
some densities given in Table II above the threshold for the
occurrence of � hyperons and computed its decay. The values
of Yp when hyperons exhaust are presented in Table III. Evi-
dently, hyperon decay affects appreciably the value of Yp. We
computed the subsequent evolution of this material starting
out from NSE conditions for the range of Yp values on an
expansion with constant value for the entropy per baryon and
an exponentially decaying density. We find that, depending
on the initial density of the ejected material, the increase in
Yp due to hyperon decay is sufficient to seriously affect the
final isotopic composition of ejected matter. For example, if
we consider the case labeled as C in Table II, the value of the
proton abundance per baryon increases from (Yp)NS = 0.1817
to the range of (Yp)NP = 0.2209–0.2640 depending on the
entropy per baryon, s, considered during the � hyperon decay.
Changes of proton abundance per baryon of such size are large
enough to completely change the final composition of ejected
matter from abundant to completely devoid of lanthanides, as
shown in Fig. 5.

Although our treatment of nucleosynthesis is very simpli-
fied, and does not include the complexity of actual kilonovae
events, these results indicate that the presence of � hyperons
affects the final composition of matter ejected in kilonova
events in a sizable way. Unfortunately, our knowledge of
the EOS for the problem under consideration is not accurate
enough to establish unequivocally the initial composition of
the ejected matter. In this work we have shown how to deal
with the � component of matter under the hypothesis of its
existence at the initial time.

We have also considered the collision between the hypo-
thetical so-called strange quark stars, assuming that the decay
starts from pure � matter, roughly at two times the nuclear
saturation density. The decay of this matter leads to values Yp

(given in Table IV) far higher than for the case of NS colli-
sions. This leads to a final composition completely different
from the one found by starting with NS matter, with the most
abundant isotopes belonging to the neighborhood of iron (see
Fig. 6), without lanthanide production. This may provide a
new way to differentiate NSs from strange stars.
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APPENDIX: EXPLICIT EXPRESSIONS FOR
THE � DECAY WIDTHS

In this Appendix we present explicit expressions for the
� decay widths. At zero temperature, �π0 and �π− are found
in [38], while we refer the reader to [39] for the expressions
for �n and �p. In the present work we evaluate the � decay
widths at finite temperature. The corresponding decay widths
are easily obtained from the ones at T = 0, considering each
particle involved and by making the replacement

θ (pF − |p|) → f (Ei, μi, T ), (A1)

where p is the momentum of the particle and pF is the Fermi
momentum. The particle occupation function f (Ei, μi, T ) is
given by the Fermi-Dirac one,

f (Ei, μi, T ) = 1

1 + exp[{Ei(p) − μi(T )}/T ]
, (A2)

where Ei(p) is the single-particle energy and μi the chemical
potential for a particle i. In fact, in this work we consider
no strong interaction among the hadrons involved. From this
and keeping in mind that we performed a nonrelativistic
calculation, for the single-particle energy we have Ei(p) =
mi + p2/(2mi ). We give the density ρi for each particle and
from this density we obtain the chemical potential by solving
the equation for μi,

ρi =
∫

dp

(2π )3
f (Ei(p), μi, T ), (A3)

We show now the expressions for the decay widths.

1. The partial mesonic decay widths

The Feynman diagrams representing the mesonic transition
amplitudes are shown in Fig. 1. The mesonic decay widths
result from squaring these amplitudes and using the standard
rules for the evaluation of diagrams. The result is given and
discussed in [38]. Here we reproduce this result, but for finite
temperature and differentiating the two isospin channels. As a
first step, it is convenient to show the partial decay width as a
function of the momentum of the � particle:

�̃π0 (k) = (GF m2
π )2

∫
dq

(2π )3

[
A2

π +
( Bπ

2mN

)2

q2

]
× θ (k0 − En(k − q))[1 − f (En(k − q), μn, T )]

× π

ωπ (q)
δ(k0 − En(k − q) − ωπ (q)) (A4)

and

�̃π− (k) = 2 (GF m2
π )2

∫
dq

(2π )3

[
A2

π +
( Bπ

2mN

)2

q2

]
× θ (k0 − Ep(k − q))[1 − f (En(k − q), μp, T )]

× π

ωπ (q)
δ(k0 − Ep(k − q) − ωπ (q)), (A5)

where k ≡ (k0, k) is the energy-momentum of the � particle
and (q0, q) is the energy-momentum carried by the weak
interaction. Here GF is the Fermi weak coupling constant
[GF /(h̄c)3 = 1.16637(1) × 10−5 GeV−2], and Aπ = 1.05 and
Bπ = −7.15 are the parity violating and parity conserving
couplings constants. The function ωπ (q) = √

q2 + m2
π is the

pion energy. Note that these partial decay widths depends
also on the temperature and on the chemical potential of each
particle.

2. The partial nonmesonic decay widths

Let us recall that the corresponding transitions amplitudes
are depicted in Fig. 2. To give the expressions for �n and �p,
it is convenient to define first the partial decay widths,

�̃nn(k) = (
GF m2

π

)2 1

(2π )5

∫
dq

∫
dhSnn(q) f (En(h), μn, T )

× [1 − f (En(k − q), μn, T )]

× [1 − f (En(h + q), μn, T )]

× θ (q0)δ(q0 − [En(h + q) − En(h)]), (A6)

�̃np(k) = (
GF m2

π

)2 1

(2π )5

∫
dq

∫
dhSnp(q) f (Ep(h), μp, T )

× [1 − f (En(k − q), μn, T )]

× [1 − f (Ep(h + q), μp, T )]

× θ (q0)δ(q0 − [Ep(h + q) − Ep(h)]), (A7)

and

�̃pn(k) = (
GF m2

π

)2 1

(2π )5

∫
dq

∫
dhSpn(q) f (Ep(h), μp, T )

× [1 − f (Ep(k − q), μp, T )]

× [1 − f (En(h + q), μn, T )]

× θ (q0)δ(q0 − [En(h + q) − Ep(h)]). (A8)

By assigning momentum values to the different lines in Fig. 2
and by taking into account the momentum conservation, one
obtains the different momenta in this equation. For simplicity,
in these expressions we have shown only their k dependence,
but these partial decay widths depend also on the temperature
and the chemical potential of each particle.

The function SNN ′ (q) contains the information on the weak
transition potential and the isospin summation. First we show
the partial isospin contribution, given by

Sττ ′ (q) = 4 {Sτ (q)Sτ ′ (q) + S′
τ (q)S′

τ ′ (q) + PL,τ (q)PL,τ ′ (q)

+ PC,τ (q)PC,τ ′ (q) + 2 PT,τ (q)PT,τ ′ (q)

+ 2 SV,τ (q)SV,τ ′ (q)}, (A9)
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where τ = 0 or 1 for the isoscalar and isovector terms of
the weak interaction, respectively. The functions Sτ (q), S′

τ (q),
PL,τ (q), PT,τ ′ (q), and SV,τ (q) are defined in the Appendix B in
[39]. The isospin summation for each contribution is

Snn(q) = S11(q) + S00(q) + S01(q) + S10(q),

Snp(q) = S11(q) + S00(q) − S01(q) − S10(q),

Spn(q) = 4S11(q). (A10)

In what follows, we show how to obtain the final
values for the decay widths, from these k-dependent
expressions.

3. The mesonic and nonmesonic decay widths

To obtain the values for �π0 , �π− , �n, and �p,
we average the corresponding partial decay widths as

follows:

�α = 1

ρ�

∫
dk

(2π )3
f (k0, μ�, T ) �̃α (k), (A11)

where k0 = E�(k) = m� + k2/(2m�). It is straightforward
to> see that α = π0, π−, n, and p. Note that �̃n(k) = �̃nn(k)
and �̃p(k) = �̃np(k) + �̃pn(k).

Before we end this Appendix, it is convenient to discuss the
functional dependence of the decay widths �α . It is clear that
it depends on the temperature and, from Eq. (A11), also on
μ� (the � chemical potential). From Eq. (A3) we can see that
a dependence on a chemical potential is equivalent to a de-
pendence on the corresponding density. Summarizing, we can
write that the functional dependences of each decay width are
the following: �π0 = �π0 (ρn, ρ�, T ), �π− = �π− (ρp, ρ�, T ),
�n = �n(ρn, ρ�, T ), and �p = �p(ρn, ρp, ρ�, T ).
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