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In the standard effective V — A theory of low-energy weak interactions [i.e., in the standard model (SM)] we
analyze the structure of the correlation coefficients S(E,) and U(E,), where E, is the electron energy. These
correlation coefficients were introduced to the electron-energy and angular distribution of the neutron beta decay
by Ebel and Feldman [Nucl. Phys. 4, 213 (1957)] in addition to the set of correlation coefficients proposed
by Jackson et al. [Phys. Rev. 106, 517 (1957)]. The correlation coefficients S(E,) and U (E,) are induced by
simultaneous correlations of the neutron and electron spins and electron and antineutrino three-momenta. These
correlation structures do no violate discrete P, C, and T symmetries. We analyze the contributions of the radiative
corrections of order O(« /), taken to leading order in the large nucleon mass my expansion, and corrections
of order O(E,/my), caused by weak magnetism and proton recoil. In addition to the radiative O(«/m) and
O(E,/my) corrections we take into account the contributions of the second class currents by Weinberg [Phys.
Rev. 112, 1375 (1958)]. The contributions of interactions beyond the SM (BSM) are calculated in terms of the
phenomenological coupling constants of BSM interactions by Lee and Yang [Phys. Rev. 104, 254 (1956)].
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I. INTRODUCTION

The general form of the electron-energy and angular dis-
tribution of the neutron beta decay for polarized neutrons,
polarized electrons, and unpolarized protons were proposed
by Jackson et al. [1] and Ebel and Feldman [2]. It can be
written in the following form:
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where €, and &, are unit three-vectors of spin-polarizations of
the neutron and electron, (E,, /?e) and (E;, IZ—,) are energies and
three-momenta of the electron and antineutrino, d 2, and d2;
are infinitesimal solid angles in directions of three-momenta
of the electron and antineutrino, respectively.

The calculation of the correlation coefficients in Eq. (1) in
terms of the phenomenological coupling constants, introduced
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by Lee and Yang [3], has been carried out by Jackson et al.
[1] and by Ebel and Feldman [2] to leading order (LO) in
the large nucleon mass my expansion. In turn, the analysis
of the distribution in Eq. (1) within the standard effective
V — A theory of low-energy weak interactions [4-7] [i.e.,
within the standard model (SM)], carried out to LO in the large
nucleon mass my expansion [8], has shown that, in addition to
the well-known expressions for correlation coefficients a(E,),
A(E,), B(E,), G(E,), H(E,), N(E,), Q.(E,.), and K.(E,), the
correlation coefficient T (E, ), introduced by Ebel and Feldman
[2], survives and depends on the axial coupling constant g4
only [9-11]. Recall that the axial coupling constant appears in
the effective V — A theory of low-energy weak interactions by
renormalizing of the hadronic axial-vector current by strong
low-energy interactions [5,12]. The function ¢ (E,) defines the
contributions of different corrections to the neutron lifetime
[13-18]. In the SM it is equal to unity in the LO of the
large nucleon mass my expansion and at the neglect of ra-
diative corrections [6,7] (see also Ref. [17]) and Wilkinson’s
corrections [15]. In Refs. [14,16,19,20] (see also Ref. [17])
the radiative corrections of order O(« /) (or so-called outer
model-independent radiative corrections [21]) were calculated
to LO in the large nucleon mass my expansion to the neutron
lifetime and correlation coefficients a(E, ), caused by electron-
antineutron three-momentum correlations, A(E,) and B(E,),
defining the electron(beta)- and antineutrino asymmetries, re-
spectively. In turn, the outer radiative corrections of order
O(o/mr) were calculated to LO in the large nucleon mass my
expansion to the correlation coefficients G(E, ), H (E.), N(E.),
0.(E.), and K,(E,) in Refs. [22,23] and to the correlation
coefficient T(E,) in Ref. [8]. These correlation coefficients
are induced by correlations of the electron spin with a neutron
spin and three-momenta of the electron and antineutrino. The
corrections of order O(E,/my), caused by weak magnetism
and proton recoil, were calculated (i) to the neutron life-
time and correlation coefficients a(E,), A(E,), and B(E,) in
Refs. [13,15] (see also Refs. [16,17,20]), (ii) to the correla-
tion coefficients G(E,), H(E,), N(E,), Q.(E.), and K,(E,) in
Refs. [22,23], and (iii) to the correlation coefficient T (E,)
in Ref. [8]. The correlation coefficients D(E,), R(E,), and
L(E,) characterize the strength of violation of time-reversal
invariance (T-odd effect) [24,25]. According to Callan and
Treiman [26], the correlation coefficient D(E,) is of order
O(aE,/my). It is induced by the weak magnetism, proton
recoil, and the final-state electron-proton electromagnetic in-
teraction. In Ref. [27] the correlation coefficient D(E,) has
been calculated in the frame work of the heavy baryon chiral
perturbation theory (HBxPT). The authors have reproduced
the results obtained by Callan and Treiman [25] and analyzed
the contributions of order O(a?/27) and O(E?/m%), respec-
tively. In turn, the correlation coefficients R(E,) and L(E,)
are caused by the distortion of the Dirac wave function of
the decay electron in the Coulomb field of the decay proton
[28,29] (see also Ref. [23]). The correlation coefficient b(E,)
is the Fierz interference term [30]. It is assumed that the
Fierz interference term is caused by BSM interactions [30]. As
regards the contemporary experimental and theoretical status
of the Fierz interference term we refer to Refs. [31-37]. So
one may conclude that the neutron lifetime and the correlation

coefficients of the electron-energy and angular distribution of
the neutron § decay proposed by Jackson et al. [1] are inves-
tigated theoretically well in the SM at the level of 107#-1073
caused by the outer radiative corrections of order O(«/7) and
the corrections of order O(E,/my) induced by weak mag-
netism and proton recoil.

This paper is addressed to the analysis of the structure of
the correlation coefficients S(E,) and U(E,) introduced by
Ebel and Feldman [2]. As has been shown in Ref. [8] these
correlation coefficients do not survive to leading order in the
large nucleon mass my expansion in contrast to the correlation
coefficient T (E,).

The paper is organized as follows: In Sec. II we adduce the
analytical expressions for the correlation coefficients S(E,)
and U(E,) in dependence of (i) the radiative corrections of
order O(« /), calculated to LO in the large nucleon mass my
expansion, and (ii) the corrections of order O(E, /my ), caused
by weak magnetism and proton recoil. In Sec. III we calculate
the contributions of the second-class currents by Weinberg
[38]. In Sec. IV we analyze the contributions of BSM inter-
actions, expressed in terms of the phenomenological coupling
constants of the effective phenomenological BSM interactions
by Lee and Yang [3] (see also Jackson et al. [1] and Ebel and
Feldman [2]). In Sec. V we give the total expressions for the
S(E,) and U (E,). We discuss the results obtained and the use
of these correlation coefficients for experimental searches of
BSM interactions. We point out that the obtained SM theo-
retical background of the correlation coefficients S(E,) and
U(E,), carried out at the level a few parts of 10—, should be
very useful for experimental searches of contributions of BSM
interactions in the experiments with transversally polarized
decay electrons [39]. In Appendixes A and B we give in
details the calculations of the correlation coefficients S(E,)
and U (E,) and the analysis of the correlation structure of the
neutron radiative beta decay for polarized neutrons, polarized
electrons, unpolarized protons, and unpolarized photons.

II. CORRELATION COEFFICIENTS S(E.) AND U (E,) IN
THE STANDARD MODEL

In the SM with the account for the contributions of the
radiative corrections of order O(«/m) and the corrections
of order O(E,/my), caused by weak magnetism and proton
recoil, the neutron beta decay can be described by the stan-
dard effective V — A low-energy weak interaction [4,5] and
electromagnetic interaction with the Lagrangian

Lwy (x) = Lw((x) + Lem(x), 2

where Lw(x) and L., (x) are the Lagrangian of the standard
effective V — A low-energy weak interactions [4,5] (see also
Ref. [17]):

Ly (x) = =Gy {[¥p(X)y, (1 — gay )P ()]
K

+ Eav“ﬁp(x)oﬁﬂmt(x)]}
x [P )y (1 = ) (0)], A3)

and the Lagrangian of electromagnetic interactions [25]

Lem(x) = —e{[¥p ()7, ¥p ()] = [Py " e ()DA,L (), (4)
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respectively, where Gy is the vector weak-coupling constant,
including the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element V4 [11], g4 is the real axial coupling constant [9,10],
Yp(x), Y (x), Ye(x), and v, (x) are the field operators of the
proton, neutron, electron, and antineutrino, respectively, y#* =
°, 9), ¥°, and o*¥ = %(y“y" — yYyH) are the Dirac ma-
trices [25], k = k, — k, = 3.7059 is the isovector anomalous
magnetic moment of the nucleon, defined by the anomalous
magnetic moments of the proton «,, = 1.7929 and the neutron
kn, = —1.9130 and measured in nuclear magneton [11], my =
(my, +mp)/2 is the average nucleon mass, e is the electric
charge of the proton, and A, (x) is a four-vector electromag-
netic potential.

For the calculation of the correlation coefficients under
consideration we use the amplitude of the neutron beta decay,
calculated in Ref. [17] (see also Ref. [23] and the Appendix).
The detailed calculation we have carried out in the Appendix.
Below we adduce only the results obtained.

Analytical expressions for the correlation coefficients S(E,) and
U (E,) in the standard model

In Eq. (A9) of Appendix A we have defined the general
expression for the structure part of the electron-energy and
angular distribution of the neutron beta decay for a polar-
ized neutron, a polarized electron, and an unpolarized proton.
According to this expression, we have shown that the contri-
butions of the radiative corrections of order O(«/m), caused
by one-virtual photon exchanges [14,16,19,20] (for the de-
tailed calculations we refer to Ref. [17]) do not appear in
the correlation coefficients S(E,) and U (E,), respectively. In
Appendix B we show that the neutron radiative beta decay
n— p+e 4+, + y does not contribute to the correlation
coefficients S(E,) and U (E,). It is well known [40-44] (see
also Refs. [14,17,19]) that the contribution of the neutron
radiative beta decay is extremely needed for cancellation
of infrared divergences in the radiative corrections of order
O(w /1), caused by one-virtual photon exchanges.

Thus [see Eq. (A9)], the contributions caused by the
SM interactions appear in the correlation coefficients S(E,)
and U(E,) only due to weak magnetism and proton re-
coil. For the correlation coefficients ¢ (E,)SMWS(E,)®M and
Z(E)SMU(E,)SM we have obtained the following analytical
expressions:

1 m
(SM) (SM) __ el _ 5,2 _
C(E)SWS(E,) _1+3g§mN[ 585 — galk — 4)
+ (k + D],
C(EHMUE,H)M =0, §))

where for the calculation of the corrections of order
O(E,/my), which cause weak magnetism and proton recoil,
we have taken into account the contribution of the phase
volume of the neutron 8 decay [see Eq. (A3)]. The correla-
tion function ¢ (E,)®™ was calculated in Refs. [13-18]. It is
equal to unity at the neglect of the contributions of radiative
corrections and corrections, caused by weak magnetism and
proton recoil, Wilkinson’s corrections [15]. Hence, the corre-
lation coefficients S(E,)S™ and U (E,)SM), including the SM

contributions of order O(E,/my), are equal to

1 m,
1+ 3¢ my
U(E,)®™ = 0. (6)

S(E,)SM = [-5¢% — galk —4) + (k + D],

Now we may move on to calculating the contributions of the
second class currents and BSM interactions.

III. CONTRIBUTIONS OF THE SECOND CLASS
CURRENTS OR THE G-ODD CORRELATIONS

For the calculation of the contributions of the second class
currents or the G-odd correlations (see Ref. [45]) we follow
Weinberg [38], Holstein [46], Gardner and Zhang [47], and
Gardner and Plaster [48] (see also Refs. [8,23,49]). Skipping
intermediate calculations we give the results:

284 m,

1438 my’
2 m,
1+3& my’

S(E,)S® = —[Regs(0) — Ref3(0)]

U(E,)5© = +[Reg2(0) — gaRef3(0)] (7

where Ref3(0) and Reg,(0) are the phenomenological cou-
pling constants of the induced scalar and tensor second class
currents [38,46—48] (see also Ref. [31]), respectively.

IV. CONTRIBUTIONS OF INTERACTIONS BEYOND THE
STANDARD MODEL

For the calculation of the contributions of interactions
beyond the SM we use the effective phenomenological La-
grangian of BSM interactions proposed by Lee and Yang [3]
(see also Refs. [1,50,51]). Skipping intermediate calculations
we give the results:

S(E,)B™M = —U(E,)®™ = Re(Cr — Cr), (8)

1434

where Cr and Cr are the phenomenological tensor coupling
constants of the effective phenomenological BSM interactions
by Lee and Yang [3]. The contributions of the tensor BSM
interactions are linear in the phenomenological tensor cou-
pling constants Cr and Cr. This agrees well with the result
obtained by Ebel and Feldman [2]. However, in addition to
the results obtained by Ebel and Feldman [2] we, following
Refs. [52-56] (see also Refs. [8,17,22,23,49]), have taken
the contributions of the phenomenological vector coupling
constants Cy and Cy in the linear approximation, i.e., Cy =
14+ 6Cy and Cy = —1 + 8Cy, where we have used the nota-
tions of Refs. [8,17,22,23,49].

V. DISCUSSION

We have analyzed the structure of the correlation coeffi-
cients S(E,) and U (E,) introduced by Ebel and Feldman [2]
in addition to the set of correlation coefficients proposed by
Jackson et al. [1]. Summing up the SM contributions, caused
by weak magnetism and proton recoil only, and contributions
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beyond the SM we obtain the following expressions:

S(E,) = @%[‘Sé’i gl — )+ (e + 1]
+1+3g§‘Re(Cr—Cr)
~ [Rega(0) — Reﬁ(@]i%gi;"—;,
UE,) = —ﬁRC(CT — )
e

+ [Reg2(0) — gaRe f3(0)]

—_— 9

1+ 3¢5 my ©)
For the axial coupling constant g4 = 1.276 41(45)sa. (33 )sys.
[9], measured with a relative experimental uncertainty of
about a few parts of 107*, the correlation coefficients S(E,)
and U (E,) are given by

S(E,) = —2.83 x 107* 4+ 0.17(Re(Cr — Cr)
+1.39 x 10°Ref3(0)) — 2.36 x 10~*Reg,(0),
U(E,) = —0.17(Re(Cr — Cr) + 1.39 x 10Ref3(0))
+1.85 x 107*Reg,(0), (10)

where we have also used m, = 0.5110 MeV and my = (m,, +
mp)/2 = 938.9188 MeV [11].

We would like to notice that the correlation structures of
the correlation coefficients S(E,) and U (E, ) and as well as the
correlation coefficients 7'(E,) are even with respect to parity
transformation (P even), charge conjugation (C even), and
time-reversal transformation (T even). However, in contrast
with the correlation coefficient T (E,), the absolute value of
which is of about |T(E,)| =~ 1, the absolute values of the
correlation coefficients S(E,) and U (E, ) are of a few orders of
magnitude smaller. It is also important to mention that, unlike
the correlation coefficient T (E,), the correlation coefficients
S(E,) and U (E,) do not depend on the electron energy E,.

The correlation coefficients S(E,) and U (E,) can, in prin-
ciple, be investigated in experiments with both longitudinally
and transversally polarized decay electrons [39] (see also
Ref. [8]). However, a successful result for searches of the
contributions of BSM interactions one might expect only from
experiments with experimental uncertainties of about a few
parts of 107> In this case, any deviation of the correlation
coefficient S(E,) from —2.83 x 107*, caused by weak mag-
netism and proton recoil, should testify to a presence of the
contributions of the second-class currents and BSM interac-
tions.

The phenomenological tensor coupling constant Reg,(0)
can be measured in experiments on the 8 asymmetry [47,49]
and in experiments with longitudinally polarized decay elec-
trons from the measurements of the correlation coefficient
T(E,) [8]. If in the neutron B decay the absolute value
of the Fierz interference term b could be of order 1072
(see, for example, Refs. [33,36]), after the measurement of
the phenomenological tensor coupling constant Reg,(0) the
contribution of the scalar coupling constant Ref3(0) to the
correlation coefficients S(E,) and U (E,) could be screened
by the contributions of the phenomenological tensor coupling
constants Re(Cr — Cr) of the phenomenological tensor BSM
interactions.
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APPENDIX A: THE ELECTRON-ENERGY AND ANGULAR DISTRIBUTION OF THE NEUTRON g DECAY FOR
POLARIZED NEUTRONS, POLARIZED ELECTRONS, AND UNPOLARIZED PROTONS

Following Refs. [17,22,23] (see also Ref. [8]), we define the electron-energy and angular distribution of the neutron § decay
for a polarized neutron, a polarized electron, and an unpolarized proton as follows:

ds)‘ﬂ;y(Em ]_éev ED» g:nv ge)
dE.d2.d2;

X q)n(]_éev ]_é\‘)) Z

2
=(1+ 35)%@0 — E)?\JE2 —m2E,F(E,,Z = 1)

IM(n — pe™v,)|?
(14 382)IGy [264m2E,E;’

(AD)

pol.

where the sum is over polarizations of massive fermions. Then, F'(E., Z = 1) is the relativistic Fermi function, describing the
electron-proton final-state Coulomb interaction, is equal to (see, for example, Ref. [57], Ref. [15], and a discussion in Ref. [22])
2

o
F<1~|—y+iﬁ> , (A2)

ena/ﬁ

F(E Z—l)—(l l )4(2rpme/3)zy
et =D=\1Y ) m3 12y A=Y
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where g = k,/E, = (E2 — m?)'/?JE, is the electron velocity, y = (1 —@?)"/2 — 1, and r, is the electric radius of the proton
[58]. The function CI),,(/_C;, I_c}) defines the contribution of the phase-volume of the neutron 8 decay [17,59]. It is equal to [17,59]

.o E, k, - ks
&,k k) =1+3=(1 , A3
( ) + mN< EeEv) (A3)

taken to next-to-leading order in the large nucleon mass my expansion. The amplitude of the neutron 8 decay M(n — pe™v,),
taking into account the contribution of the corrections, caused by one-virtual photon exchanges, weak magnetism and proton
recoil, was calculated in Ref. [17] (see also Ref. [23]). It is given by

M(n — pe~v,) = _2mnGV{<1 + %fﬁ{(Eev M)) [‘P;<P;z] [ﬁeyo(l - VS)UD]

+2a(1+ 3= fi Eee ) [0} 0] - [17 (1= 7)vs] = S=gr B} (1 = ¥°)vs]

2
— e aagr E e} 0] [5°7 (1= )] - o[ [a(1 - v)u]
: o o1 " __
_;’TAN[%(G kp)ou[ier°(1 = ¥)vs] — i szN (055 x k)wn]~[uey(1—ys)vv]}’ (A4)

where ¢, and ¢, are Pauli spinorial wave functions of the proton and neutron, u, and v, are Dirac wave functions of the
electron and electron antineutrino, G are the Pauli 2 x 2 matrices, and g4 = ga(1 — Eo/2my), Eg = (m> — mlz, +m2)/2m, =
1.2926 MeV is the endpoint energy of the electron-energy spectrum of the neutron g decay [6,7,11], and k, = —k, — k, is the
proton three-momentum in the rest frame of the neutron. The functions fg-(E,, 1) and gr(E,) were calculated by Sirlin [14]
(see also Eq. (D-51) of Ref. [17]), and u is a covariant infrared cutoff introduced as a finite virtual photon mass [14] (see also
Refs. [40—44]). The function gr (E,) [see Eq. (D-44) of Ref. [17] ] is equal to

J1-—p2 1
P n +p . (AS)
2B 1-8

It is defined by the contributions of one-virtual-photon exchanges [14] (see also Ref. [17]). Using Eq. (A4) for the square of

the absolute value of the amplitude M(n — pe™¥,), summed over polarizations of massive fermions, we obtain the following
expression:

y. Mo pevl {( 4 )
(1+3¢3)IGy|*64m2E.E; (1 +3g§ )8E.Es I (Ee 1t

gr(E,) =

x (t{(1+E, - ) Jo{ (ke +mey’8) %y’ (1 - v%))

+aatr{(14+&,-5)5} - r{(k +mey L) (v + 7ksyv°) (1 — ) }

+au{(1+& - 5)o ol (ke +mey’C)ykoy (1 - ¥7)})

- (20; - )tr{(1 +& - 3) tr{(me + key L) ko (1 = 7))

+tr{(me+l?ey55e) ks(1+77)})

(B + 5 CJel(148,-0)) - (tr{(me + LRy (1= )
1

+ir{ (ke + mey L) phs (14 7°
_gAz_gF(E tr{(1+& - 5)a} - (r{(me + kv’ L)y 7ksy° (1 — v°)}
—tr{(me+key )y kv "7 (1+v°)})

(1+& - 5)o%0?} (tr{(me + key 2) vy "oy (1 - 7))
—tr{(me + ke 8) v ke v (1 4+ ¥°)})

7)

=B (18- 8) (5 - o) e (ke + merP8) 1y (1 — 7))

my

gAz grEtr](1+&,
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gf* (o148 -9)5 B}l +mer8) k7 (1 - )
+tr{( +&,-5)(7 ~l€,,)a} tr] (ke + mey 2) 7y (1 = %))

tr{(1+§n~3)(3 x k) - wrf (ke + mey L) (Phay® = "k 7) (1 = 7))

lg A
xtr{(kg—}—mey ;e)ybkl—)y (1 — ys)}), (A6)
where ¢, is the four-vector of the spin polarization of the electron. It is defined by [25]

_ 0 7\ _ Ee'ge 2 (EE'ge)]_ée
z;e—(z;e,ze)—( o ,se+me(Ee+me)>. (A7)

The four-vector ¢, of the spin polarization of the electron is normalized by ;ez = —1 and obeys also the constraint k, - £, = 0
[25]. Calculating the traces over the nucleon degrees of freedom and using the properties of the Dirac matrices [25] gives

YOyt =yt =yttt i Py, (A8)

where 1V is the metric tensor of the Minkowski spacetime, £*"*# is the Levi—Civita tensor defined by £°'%3

—g2vf [25], we transcribe the right-hand side (r.h.s.) of Eq. (A6) into the form [17,22,23] (see also Ref. [8])

M(n — pe7,)|? B 1+ 38 { o |:( £, k ) N 52001 5
%.: (1+322)IGy P64m2E,E; (1 +38)4E, <1+ nfﬁf(Ee’“)> L+ 5o E; trf (ke +mey e )" (1= 7))

=1and g4up =

v

~ = ;D ~ ~
+(Ak+ v ) - wllle+ mr8)7 (1= )|

1 o m, A 5a
- m(;gF(Ee) + m—N> <tr{(me + key’te)}
_z_ﬁ. P52V 05.51) 84 E, ks .
£, tr{(me-i-ke)’ ;‘e)y Yy }) 1+3gi< gF( e) mN)( E, {(me-l-ke)/ é‘e)}
2 N5 0-.5 .gnx v ra,5% 05 gA
_En'tr{(me"‘key Ce)y 184 }+l 3 tr{(me“‘key Ce)y V} 1+3g2 gF( E,)
v AT

v

(g”b; Lirf(me + keyZe) ) — & - tr{(me + ke 8e)y Py}

é:n X]_é\’)
—1
E;

-k A o
+ <2§n + E_> . tr{(me + key5§e)y0)7y5}:|
D

el + k29 - B o] (340255 Yl + 22

14387 5

g I ~ A
- i (@ Bl mat )y )
B wlftmy )P0 ) - L
n - Kp Ef; e e e 1+3gi my

ky K5 (- .
X |: PE— tr{(ke +me]/5§e)y0(l - 7/5)}

= Bk kyke - s s k+1 1
+<k,,+ K - S) r{ (k. +m.y Ce)y(l—y)}]—l+3gim1v

E, ky- ko Ky " A=
X< E\—} kp_ E{) gn)'tr{(ke'i‘meysge)y(l_ys)}
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g 1 [ k& .- . .
84 K+ [(2? +2(.§,,~kp)>tr{(ke+mgy5§e)y0(l—ys)}

1+38 my E;
(- - B ) g tr - | o
where &, A, and By are defined in terms of the axial coupling constant g,:
ap = 11;3%;‘%, 0= ‘%_3;;) By = 2%. (A10)

Before the calculation of the traces over leptonic degrees of freedom one may see that the terms proportional two gr (E, )i (&, x
l_é,—,) - tr{(m, + I%eysfe)yo?}, which are responsible for contributions of the radiative corrections of order O(« /) to the correla-
tion coefficients S(E,) and U (E,), cancel each other out. Hence, there are no contributions of the radiative corrections of order
O(w /1), caused by one-virtual-photon exchanges, to the correlation coefficients S(E,) and U (E, ), respectively.

In Eq. (A9) the second term on the third line from above, proportional to m,/my, and last four lines define the contributions of
order O(E,/my) of weak magnetism and proton recoil to the correlation coefficients of the neutron § decay. Having calculated
the traces over leptonic degrees of freedom, taking into account the contribution of the phase volume (A3) and keeping only the
contributions with the correlation structures, inducing the correlation coefficients S(E, ) and U (E, ), we obtain the SM corrections,
caused by weak magnetism and proton recoil only, which we give in Eq. (5).

APPENDIX B: ELECTRON-PHOTON ENERGY AND ANGULAR DISTRIBUTION OF NEUTRON RADIATIVE g DECAY FOR
POLARIZED NEUTRONS, POLARIZED ELECTRONS, AND UNPOLARIZED PROTONS AND PHOTONS

Following Refs. [8,17,22,23] we define the electron-photon energy and angular distribution of the neutron radiative 8 decay
for a polarized neutron, a polarized electron, a polarized photon, and an unpolarized proton as follows:

dgkﬂgy (Ee’ , ]_ée’ l_€>f)’ C_j, gna ge))hr)h
dwdE,d2,dQ:9,

o |Gy|?
7 (27)°

1
= (1+3g3) E2 — m2E,F(E,, Z = 1)(Ey — E, _‘“)25

Z M (n — pe’Dey)|%,Aw2

, Bl
(1+34%)e?|Gy [264m2E, E;, (BD)

pol.

where we sum over polarizations of massive fermions. Since we calculate the contribution of the neutron radiative 8 decay to
leading order in the large nucleon mass my expansion, the contribution of the phase volume of the decay is equal to unity. The
photon state is determined by the four-momentum ¢* = (w, §) and the four-vector of polarization £*(g), with A = 1, 2, obeying
the constraints *(g), - €,(g) = —8ys and ¢q - €,(g) = 0. In the tree-approximation and to leading order in the large nucleon
mass my expansion, the amplitude of the neutron radiative 8 decay is equal to [17]

_ my 1 T - s
M(n — pe v.y), = er;ﬁ{[w,ﬁ%][ueQwo(l — ¥)s] + galg} G onl - [1.057 (1 — ¥ )v]). (B2)
e — - Ke
The Hermitian conjugate amplitude is determined by
Mt 5y = Gy L o0y (1 — v 15 0a] - (.00 7 (1 — ¥5)vy B3
(n — pe~Vey), = eGy 0 E 7k {le,onllicQrry™ (1 — v )vs] + gal@,6 nl - [ Q7 (1 — ¥ )usl}, (B3)
e — - Ke

where 7i = §/w, Q = 2(¢* - k) +8*G, and O = y°Q'y® =2(¢ - k,) + G&. Then, ¢, and ¢, are the Pauli wave functions of
the neutron and proton, u, and vy are the Dirac wave functions of the electron and antineutrino, respectively. The sum over
polarizations of the massive fermions is equal to [17,22,23]

Z IM(n — pe ,y)|2, 0
o (1+383)e?|Gy [P64m] E E;
_ 1 1
(B, —7i- k)2 (1 + 38)32E.E;
+gatr{(1 + &, - )5} - tr{(ke +moy°£)00y %ho¥ Qi (1 — ¥} + gate{(1 + &, - 5)3) - tr{(ke + m.y )
x 07k’ 00 (1 — v} + Gtr{(1 + &, - 8)o 0 Ytr{(ke + my 805y ko 0n (1 — y )} (B4)

{te{(1 + &, - (ke + mey )05y hoy°0u (1 — y°))
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Having calculated the traces over the nucleon degrees of freedom and using the properties of the Dirac matrices Eq. (A8) we
transcribe the r.h.s. of Eq. (B4) into the form [17,22,23]

IM(n — pe b,y )2, 0 1 1 ( g, /'é) . os o~ S
= _ 1+B tef (k, + m,y 3%, (1 —
3 (i 38) 16, PoameE .~ & —7 T 6 |\ TR, r{ (ke + mey 8e) sy 0 (1 - v°))

pol. v

- k’f) ~ A - A
+ (AoEn + aOE) trf{ (ke + mey ) 017 0n (1 — VS)}}' (BS)
The traces over Dirac matrices in Eq. (B5) were calculated in the covariant form in Refs. [17,23]. The result is
tr{aQuy"0u (1 —7°)}
= (&] - k)& - ko)a" + 3[(e} - ke)(er - a) + (€5 - a)(ew - ko) — (€5 - e )a - @))g"
— (e} - ko)el, + e (ex - k)l(a - q) — i3 P} - ko)ewy — 5, (ex - ke)lawqp — i3q"e"**P ] erpa0qp.  (BO)
where a = k, or a = ¢,, respectively. As a result, for the r.h.s. of Eq. (BS) we obtain the following expression:

Z IM(n — pe D,y)|2, 0
(1+34%)e?|Gy [*64m2E, E;,

pol.

1 g ks \ oy 1, o 1o, \
= —2: (1 +Bo ){[(ex e k(14 1) = 365 ek ) = 3l kel + 6% ko]

(E. —7i-k.)
ke -
x S ] T ke g + 5[ ke )+ (- Cler ) = (6 -0 o
1 2 ks
— 565 ksl + &% - k]G q)]}+<Aosn+aoE—ﬁ)-{[(efke)(sw-ke)
k. -k k) — S(e* - e)(k 72— e s e k) 4] = el er k
<t ((sA- ex k) = 5 (6 - &) e~q))nE—e— RSN G T B [C R SICH S
| 1
X B+ 5106 K)o - )+ (55 - E)ew ko) = (6 - )G - @I = 31065 - KBy + 8o - KNG q)]}}. (B7)

The r.h.s. of Eq. (B7) we calculate in the physical gauge ¢, = (0, &;) [17,22,23,32,34,35,60], where the polarization vector &,

obeys the constraints

G ES=q-Fn=0, E =08y Y EF= "—kk = —iwl, Y > #E = (B8)

w?
r=1,2 Jj=12,31=1,2

In the physical gauge ¢; = (0, ;) we obtain for the r.h.s. of Eq. (B7) the following expression:

Z |M(n g Pe_l_)e)/)ﬁ/,\wz

o (1438)e*IGy P16m2E, E;

_’]’5&[(@* R (@ RS+ (7 R) @ 8) + (3 - E) (@ R) + @8- a) ]}
k - Lk, .
<A05n + aO_) {[(g):k ke) (gk ke)E + ((g):k ke) (-) k ) + (8)\ €)Lr)(k q))n_
1 FE A - keC] Mol Ly 7\/= N
+§[(sx ke)& + &1 (8 ke)] 3 ]—E—g[(eA k) (8 - k)2,

1 - - > 1 > >
+ [(Z";‘ . ke) (gl’ ' ge) + (g)L* é.e) (gk’ ' e) + (g)\* . g)»’)(;e : Q)]wﬁ + 5((5; : ke)g)\’ + g):k(gk’ ' ke))(ge ' 61)] }} (B9)
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Plugging Eq. (B9) into Eq. (B1) we obtain the electron-energy and angular distribution for a polarized neutron, a polarized
electron, an unpolarized proton, and a polarized photon:

dS)"ﬁ;V (Ee’ w, ]_éf’ ]_éﬁ’ Eiv gna ge))\/)\

dwdE,dQ.d2%Q,
= (1+38)= IGvP o2 ek F(E,,Z = 1)(Ey — E, — w)*
A ﬂ(27‘[)6 e e™—e e’ e
1 1 £, ks e - w 1, w
X ;m{(l"‘B(} El—) >{|:(8A -ke)(gk/.ke)<1+E_‘8>+§(8)‘ -EA/)(ke.q)E}
el (=% 7 = 7 1 =% 7 = =2 2% 2 \(= 7 2% =
- %[(Ex kE) (8A : ke)geo + E((EA kE) (8)\ e) + (€A Ce) (8)»’ : ke) + (8)L &) - Q))U)]}
Ev o % - N - %e o % - N - 1 S % N = w
(a0 + ot ) {6 B R+ (6 R Ew R+ 565 50tk )i
1 S% T \o IR - ke'q Me[ 1 7\ (= -\ > - >
R (G L G ) el B [ O A [ ST (R S ICHS)
- - 1 R
+ (E)L* : ge)(gk’ : ke) + (EA* &) - Q))wn + 2((5 “k )EA +&,(¢ ( ))(ge Q)] }} (B10)

Summing up over polarizations of the photon we get

dg)‘ﬁf}’(Ee’ w, I_ée’ l_éﬁ’ qa gn’ ge)
da)dEedQengQy

= (143g; )“5‘”')6,/15 m2E F(E,,Z = 1)(Ey — E —a))zé

v (1—7-B)
m B —(i-B) o —(i-B)i-L) o 0—i-L
_E_ _.2;-e E ) +_2 )
el (1—17i-B) e (1—17-B) EZ(1-7-B)
B\ [[82-@ B)Z(zée ﬂ)) wh—ii-B) o i
Aok, + ag=2 e 59\, 2 L _
(v {[(l—a.af ECTE)TE AR CET-a R
m [ B =B w0l o i, A0 ;e)“
- — —5Ce+ — =5 B+ = —, +— — , (B11)
Ee[(l—ﬁ- Y Ee(i—a-B)Y  El-i-B° El (1-i-p

where we have used that B L= ¢9. The next step is to average over directions of the three-momentum § = wii of the real
photon. This gives

d6)\'ﬁ;y(E€’ @, ]zev ]_é\_}v gnv ge)
dwdE,d2,dQ2;

=(1 +3g§)“%\/ﬂ@n@,zz 1)(Eo — E, — w)?

1 [dQ, E ks 2 (i-p)’ o1
X;‘/‘?[<1+BO El-, >{|:( B) (+E)+E_'31_ﬁﬁ
m, | B> — (- B) w—(-B)E-L) o -l
E e T E > Ty 2

eL(1-7-p) e (1-7-B) ¢(1—7-p)
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ke Lo R
. Ee e Ee 1—7lB (zzl_ﬁB
2 (= B\ 0_75.7 _ > 25(c0 —7- 7
—%[ﬁ e fg)21+E3§€ e aner%n({e nfi)”} (B12)
el (1—7-B) e(1—7i-pB) el—1n-pB e (1—7-B)

The integration over the directions of the vector 7 we carry out by using the results obtained in Ref. [22]. We get
d6)‘ﬂ;y (Ee’ w, iée? ]_él_)s gns ge)
dwdE,d2,d2;

—(1+ 3gﬁ OlIGvI

=\ E2 — m2EF(E., Z = 1)(Eo — E —a))zl{<1+30

e (i) 2] 2]

E?

gl’l U)
E;
1 w 1w 1 148
() |[e(5) 2]
ks k, 1 o lw 1 (148 ~m, 1 o*\[1 (148
<A°§”+“°ET> {_[1 (e |e(ip) -2 - #E (- 2_/32E_3>[Ez”<1—ﬁ>_2]
~m, 1l w[1 1+ 5 1 o (3-pT1 1+ 8
L [ﬁzE[ﬂm(l—ﬂ>_2}+ﬁE_3< 2 [EK”<1—/8)_2}_2>]”'
The r.h.s. of Eq. (B13), rewritten in terms of irreducible correlation structures [see Eq. (1)], takes the form

d6kﬁ;V (EL” w, ]_ée’ ]_él_la gns 'ge)
dwdE,d2,d2;

= (1+38)= ‘ 'GVl _JE? — m2EF(Ee,Z = )(Ey — E. — o)
1 o lo 1+8Y_, w? 12’-1%11 lo 1 o
* w[( +_+5E_>[ ( ) :|+E2:|+aOEeEr;_< +FE+2_/32§>
L (148 §,,k1 1 w 1 *\[1 (148 £, - ks
<[penl25) 2|+t (1 e+ g (5l 55) -2+
1 o 1*\[1 [1+8 w* E -k 1 1 » 1 o
w[(HEsz_z)[Ez (1—ﬁ>_2}+ }“ D7E _<1+ﬁ2E +ﬁﬁ>

E2

1 (148 E .kl 1 o?\[1 B
X[E€n<—1_ﬂ> i|+( l)— ap (1 2,82 Ez)l:ﬂ ( ’3) }-i—( l)—Ao
Lo 1 *\[1 (148 . . 1
Xs”'%(l_z_ﬂzE_z)[Eﬁn(l—ﬂ) }H e (E+ e)E {

(B13)

E, E, o

w _ﬁﬁ
1 1+8 l w1 1+ 8 1 o (3-p
X[E“(l—ﬁ)_z}”H l_ﬂz)[ﬁi[#”(l—ﬁ)_z]ﬂ_ﬂfz( 2
R
x| —=4£n 2 2
g

1+ (gel_ée)(l_éel_éﬁ) 1 1 o 1 1+
LR )”H_() Yo ) [ae(12) 2]
148 1 w? (3B 148
+(1+ 1_'32)|:,32E[ﬂ£n<1—f3)_2}+2ﬁ2E2( 5 [ﬁm(l_ﬁ)—z}—z)“
(En- ) (E k) 1 low 1 o*\[1 [1+8
E.E; (HEEUWEZ)[/%K (1—ﬂ) 2} ‘
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It is seen that the terms with the correlation structures (g?n . gg)(l;e . I?;,) and (5,1 . Ee)(g?e . 7{}), inducing the correlation coefficients
S(E,) and U (E,), respectively, do not appear in the electron-energy and angular distribution of the neutron radiative 8 decay
for polarized neutrons, polarized electrons, unpolarized protons, and unpolarized photons. This confirms the results, obtained in
Appendix A, that there are no contributions of the radiative corrections of order O(c /7 ) caused by one-virtual-photon exchanges

to the correlation coefficients S(E,) and U (E, ), respectively.
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