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Nucleon resonance contributions to the inclusive proton F2 and FL structure functions are computed from
resonance electroexcitation amplitudes in the mass range up to 1.75 GeV extracted from CLAS exclusive meson
electroproduction data, taking into account interference between different excited nucleon states. The resonance
contributions are compared with inclusive proton structure functions evaluated from (e, e′X ) cross section data
and the longitudinal to transverse cross section ratio. Contributions from isospin-1/2 and -3/2 resonances remain
substantial over the entire range of photon virtualities Q2 � 4 GeV2, where their electroexcitation amplitudes
have been obtained, and their Q2 evolution displays pronounced differences in the first, second, and third
resonance regions. We compare the structure functions in the resonance region with those computed from parton
distributions fitted to deep-inelastic scattering data, and extrapolated to the resonance region, providing new
quantitative assessments of quark-hadron duality in inclusive electron-proton scattering.
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I. INTRODUCTION

Inclusive electron scattering from protons has for many
years provided fundamental information on the structure of
the nucleon. Data on inclusive (e, e′X ) cross sections and
structure functions F1, F2, and/or FL have been key ingredi-
ents in global QCD analyses of parton distribution functions
(PDFs) [1–7]. The PDFs characterize the momentum distri-
butions of the quark and gluon constituents of the nucleon,
and can be systematically extracted from the structure func-
tions via QCD factorization theorems [8]. The leading twist
approximation is found to be accurate at invariant masses of
the final state hadrons W � 2 GeV and photon virtualities
Q2 � 1–2 GeV2. Consequently, global QCD analyses [5–7]
have traditionally made cuts in W and Q2 [or in the Bjorken
scaling variable x = Q2/2Mν, where M is the nucleon mass
and ν = (W 2 − M2 + Q2)/2M is the energy transfer in the
target rest frame] to avoid the resonance region, sometimes
with even more conservative cuts of W � 3–3.5 GeV [1–4]
(for recent reviews see Refs. [9–11]).

From another perspective, the need to understand strong
interaction physics across a broad range of energy and
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distance scales has provided motivation to extend knowledge
of inclusive structure functions covering wider regions of
W and Q2, including the resonance region of W < 2 GeV
and Q2 > 1 GeV2. Moving into the nonperturbative regime,
an important question is how low in W and Q2 one can go
while still retaining a partonic interpretation of the scattering
process.

There is indeed a long history of PDF computations from
nonperturbative models of QCD [12–35]. More recent ap-
proaches to this problem have focused on the extraction of
PDFs from the lattice QCD calculation of nucleon matrix
elements of nonlocal operators [36–40], which in principle
provide a systematic, though not necessarily straightforward,
means of connecting PDFs obtained from global QCD analy-
ses with those from the fundamental QCD theory.

The goal of bridging the strongly coupled, nonperturbative
realm with the perturbative domain remains a challenge that
drives ongoing endeavors. Efforts to expand the range of W
(or, equivalently, x) covered in global analyses to as low as
W = 1.75 GeV have been made, notably by the CTEQ–
Jefferson Lab (CJ) Collaboration [5,41], in an effort to provide
stronger constraints on the behavior of PDFs at large values
of x. There are interesting theoretical predictions for the PDFs
in the limit x → 1 [42–46], which have never been quanti-
tatively tested. However, extracting information from data in
this region requires careful treatment of subleading effects,
such as target mass corrections [5,7,47,48] and higher twists,
as well as factorization breaking corrections. Furthermore, at
W < 2 GeV, the inclusive structure functions exhibit peaks
related to the contributions from the excited states of the
nucleon. The electroexcitation amplitudes of the resonances
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should therefore be incorporated into the description of the
structure functions.

It was observed long ago by Bloom and Gilman [49] in
pioneering experiments at the Stanford Linear Accelerator
Center (SLAC) that a remarkable “duality” exists between
the structure functions in the nucleon resonance region, W �
2 GeV, when averaged over resonances, and the scaling func-
tion extrapolated from the deep-inelastic scattering (DIS)
region at high W to the low-W (or high-x) domain populated
by resonances. In addition to the Bloom-Gilman duality, in the
low-x region the structure functions also exhibit the Veneziano
duality between s- and t-channel resonance/Reggeon ex-
changes.

The early data have since been supplemented by high-
precision measurements of inclusive electron scattering cross
sections in the resonance region at Jefferson Lab Hall B
[50,51] and Hall C [52–55]. The modern experimental stud-
ies confirmed and further elaborated on the observations of
duality in unpolarized proton structure functions [52,56–59].
A compilation of the data for unpolarized structure functions
and inclusive cross sections in the range 1.07 � W � 2 GeV
and 0.5 � Q2 � 7 GeV2, together with a tool for the interpo-
lation between bins, is available online [60–62]. Subsequently,
studies of Bloom-Gilman–type duality have been extended
to various other observables, including unpolarized neutron
structure functions [63], spin-dependent nucleon structure
functions [64], γ ∗ p helicity cross sections [65], neutrino
scattering [66,67], and nuclear structure functions [68,69].
Models exist that account for both the Veneziano and Bloom-
Gilman dualities [70], but a quantitative understanding is still
missing.

It has long been realized that, when integrating the struc-
ture functions over W (or x), duality can be related to QCD
through the operator product expansion (OPE). Here, the
moments of the structure functions are expanded in inverse
powers of Q2, with numerators given by matrix elements of
local quark-gluon operators characterized by a certain twist
(mass dimension minus spin). The leading term, referred to as
leading twist, involves quark and gluon bilinear operators, and
is associated with incoherent scattering with individual par-
tons in the nucleon. The correction terms, referred to as higher
twist, are determined by matrix elements of multiparton oper-
ators, and capture elements of long-distance, nonperturbative
quark-gluon dynamics associated with color confinement in
QCD [71]. In this language the appearance of duality is in-
terpreted in terms of the dominance of the leading twist term
and suppression of higher twist contributions to the structure
function moments [72].

Moreover, it was later shown that this interpretation could
be generalized to truncated moments of structure functions,
involving finite intervals of x, without the need to extrapo-
late outside of measured kinematics [73,74]. For the leading
twist part of the structure functions, the truncated moments
were found to obey Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP)–type Q2 evolution equations [75–77], so that
deviations of the empirical truncated moments from the pre-
dicted Q2 behavior could reveal the magnitude of the higher
twist contributions. An earlier phenomenological analysis
[78] of Jefferson Lab Hall C data [55] found deviations of the

truncated moments of the resonance region data (W � 2 GeV)
from leading twist behavior of � 15% for Q2 > 1 GeV2.
For the individual resonance regions, the first (�) resonance
region was found with ≈ −15% higher twist contribution
at Q2 ≈ 1 GeV2, while the second and third resonance re-
gions had somewhat larger duality violations, ≈ −15% to
≈ +25% and ≈0 to ≈ +15% in the range Q2 ≈ 1–5 GeV2,
respectively.

While the integrated version of the Bloom-Gilman dual-
ity can formally be framed within QCD, understanding the
functional dependence on x is more challenging and requires
nonperturbative model arguments. Indeed, the question of
how to obtain a smooth, scaling function from a sum of
sharp resonances has inspired considerable theoretical at-
tention [79–86] (see Ref. [87] for additional references to
the literature). Phenomenological calculations exploring how
exclusive contributions to the final states build up the in-
clusive structure functions have been made by modeling the
resonant contributions [88], as well as combining resonance
models with Regge physics [70,89]. Attempts to correlate the
behavior of individual resonances with Q2 with the x depen-
dence of the dual leading twist structure function have been
made [72], including for the superlocal case of elastic scatter-
ing at x ≈ 1, with interesting phenomenological predictions
[90–92].

Recently, a hybrid model was developed [93] for the
description of (e, e′X ) observables in both the resonance
and DIS regions. In this model, the nonresonant processes
were evaluated from a PDF fit to the DIS region data, and
extrapolated to the resonance region. At low photon virtu-
alities, where the partonic description becomes problematic,
additional constraints imposed by the total photoproduction
cross section data were employed. The resonant part in-
cluded contributions from �(1232) 3/2+, N (1440) 1/2+, and
other excited states of the nucleon parametrized by sums of
three effective Breit-Wigner cross sections. Inclusive struc-
ture functions in the resonance region were also evaluated
within the Argonne-Osaka (AO) coupled-channel approach
as a sum of contributions from eight meson-baryon channels
most relevant in the resonance region [94]. This approach
was used successfully in multichannel analyses of exclusive
meson photoproduction data, and extended to the analysis of
exclusive neutrino production [95,96], with model parameters
fitted to Nπ electroproduction data.

In the past decade, the experimental program exploring
exclusive π+n, π0 p, ηp, and π+π− p electroproduction chan-
nels in the resonance region using the CLAS detector at
Jefferson Lab has provided important new information on
the nucleon resonance electroexcitation amplitudes, or γ ∗ pN∗
electrocouplings. These include the electrocouplings of most
nucleon resonances in the mass range W � 1.75 GeV and
Q2 � 5 GeV2 [97–102], as well as the new baryon state
N ′(1720) 3/2+ observed in combined studies of the π+π− p
photo- and electroproduction data [103]. The consistency of
the results for the γ ∗ pN∗ electrocouplings of several nucleon
resonances from independent studies of πN and π+π− p elec-
troproduction allows us to determine the uncertainties related
to the use of the reaction models in the extraction of these
quantities [99,100]. These results from CLAS make it possible
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to evaluate the resonant contributions to inclusive electron
scattering in the resonance region using parameters of the
individual nucleon resonances extracted from data, pioneered
in Ref. [104].

The majority of previous studies of (e, e′X ) processes have
employed parametrizations of the ratio RLT of the longitudinal
to transverse virtual photon cross sections from DIS region
data. However, dedicated studies in Jefferson Lab Hall C
have provided information on RLT from data in the resonance
region, based on Rosenbluth separation [54,55]. Using the
Hall C results for RLT, we first update the determination of
the inclusive F2 and FL structure functions from cross section
data. These are compared with the resonant contributions to
the structure functions computed from the empirical γ ∗ pN∗
electrocouplings obtained from the analyses of exclusive me-
son electroproduction data from CLAS [97,102]. We update
the Ansatz of Ref. [104] for the evaluation of the resonant
contributions, allowing interference effects to be included be-
tween the excited nucleon states, with the overall resonant
amplitudes expressed as a coherent sum over all relevant
resonances in the mass range W < 1.75 GeV. In particular,
our analysis enables us to assess the role of the interference
between resonances in the composition of the inclusive struc-
ture functions.

The availability of phenomenological results on γ ∗ pN∗
electrocouplings allows us to quantitatively explore the evo-
lution of the resonant contributions to the inclusive electron
scattering observables with Q2. The experimental data on the
F2 and FL structure functions elucidate the role of the differ-
ent nucleon excited states in the generation of the inclusive
electron scattering cross sections, and their contributions to
the truncated moments of the structure functions in the first,
second, and third resonance regions.

Ultimately, the information on the Q2 evolution of the
resonant contributions over a broad range of W < 1.75 GeV
can shed light onto the prospects for the studies of the γ ∗ pN∗
electrocouplings at Q2 > 5 GeV2 with the CLAS12 detec-
tor at Jefferson Lab [102,105]. Furthermore, the data on the
inclusive structure functions, combined with the resonance
contributions presented here, may provide insights into nu-
cleon PDFs at large x values in the DIS-resonance transition
region.

The rest of the paper is organized as follows. In Sec. II
we give a brief review of the main definitions of struc-
ture functions and cross sections in inclusive electron-proton
scattering, where we also summarize the status of RLT mea-
surements. The formulas for the resonant contributions to
structure functions are presented in Sec. III, in terms of the
γ ∗ pN∗ electrocouplings for transverse and longitudinal pho-
tons. Results on the resonant contributions to inclusive F2 and
FL structure functions are discussed in Sec. IV, where we
compare individual and overall resonance contributions to the
structure function data. In Sec. V we compare the structure
functions in the resonance region with those extrapolated
from the high-W region, to examine the degree to which
quark-hadron duality is satisfied by the data, for both the
x-dependent functions and their lowest truncated moments.
Finally, in Sec. VI we summarize our results and discuss
future extensions of our work. In the Appendix, for complete-

ness we collect the main formulas for target mass corrections
from the OPE and collinear factorization approaches.

II. STRUCTURE FUNCTIONS FROM INCLUSIVE
ELECTRON SCATTERING

We begin the discussion here by firstly reviewing the basic
formulas for cross sections and structure functions for inclu-
sive electron-nucleon scattering. Following this, we reevaluate
the F2 and FL structure functions from inclusive proton cross
section data from CLAS [50], using the most recent informa-
tion on the ratio of longitudinal to transverse cross sections
from Jefferson Lab Hall C measurements [53–55], which will
be used in our subsequent analysis.

The inclusive F1 and F2 structure functions are related to
the total virtual photon-nucleon scattering cross sections σT

and σL, for transversely and longitudinally polarized photons,
respectively [106]:

F1(W, Q2) = KM

4π2α
σT (W, Q2), (1a)

F2(W, Q2) = KM

4π2α

2x

ρ2
[σT (W, Q2) + σL(W, Q2)], (1b)

where α is Sommerfeld’s fine structure constant, K is the equi-
xvalent photon energy, defined here in the Hand convention as

K = W 2 − M2

2M
, (2)

and ρ is a kinematic parameter,

ρ2 = 1 + 4M2x2

Q2
. (3)

The F2 structure function can also be written in terms of the
unpolarized virtual photoproduction cross section σU :

F2(W, Q2) = KM

4π2α

2x

ρ2

1 + RLT

1 + εRLT
σU (W, Q2), (4)

where

σU (W, Q2) = σT (W, Q2) + ε σL(W, Q2), (5)

and ε is the degree of transverse virtual photon polarization,
determined by the scattered electron angle θe in the laboratory
frame and the parameter ρ in Eq. (3):

ε =
(

1 + 2ρ2

ρ2 − 1
tan2 θe

2

)−1

. (6)

In Eq. (4) RLT is the ratio of longitudinal to transverse virtual
photon cross sections,

RLT(W, Q2) = σL(W, Q2)

σT (W, Q2)
. (7)

It is also convenient to define the longitudinal structure func-
tion, FL, in terms of the longitudinal cross section σL, or,
equivalently, in terms of the F1 and F2 structure functions:

FL(W, Q2) = KM

4π2α
2x σL(W, Q2)

= ρ2F2(W, Q2) − 2xF1(W, Q2). (8)
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FIG. 1. Kinematic coverage in W and Q2 of RLT measurements
from Jefferson Lab Hall C data, as presented in Ref. [55].

While the total inclusive cross sections have been measured
in many experiments across a large range of kinematics, the
extraction of the individual σT and σL components, using
the Rosenbluth separation technique, is considerably more
difficult, and the RLT ratio is known to much less accuracy.
The experiments from Hall C at Jefferson Lab [53–55] pro-
vided the first data on RLT in the resonance region. The
kinematic coverage of the data from the Jefferson Lab E94-
110 experiment is shown in Fig. 1, where we also indicate
the interpolated values of RLT from the analysis of Ref. [55].
Using the recent results on RLT [53–55], we have extracted
the F1 and F2 structure functions from the CLAS inclusive
electron-proton scattering cross sections [50] at W < 2 GeV
and at Q2 < 3.5 GeV2, updating the results from Ref. [104]. In
addition, we perform a further interpolation and extrapolation
in order to obtain a finer grid over W and Q2, covering the
range of Q2 < 7 GeV2. However, the extrapolation region is
not used in the present analysis, which we restrict to the actual
experimental region, where the results on γ ∗ pN∗ electrocou-
plings are available [102,104].

In Fig. 2 representative examples of RLT are shown as
a function of Q2 in several fixed bins of W . Extrapolation
to larger Q2 values is performed by fitting a second degree
polynomial to the grid of Ref. [55] at Q2 > 3 GeV2. For the
error estimate at Q2 = 7 GeV2, we choose the largest of the
following two approaches: (i) taking the difference between
fits obtained using second and first degree polynomials; (ii)
extrapolating the error of the last Q2 bin in Ref. [55] to
Q2 = 7 GeV2 by scaling it with the extrapolated value using
the second-degree polynomial at Q2 = 7 GeV2. The full un-
certainty band is then obtained as the interpolation between
the data errors and the larger of the two estimated errors
at Q2 = 7 GeV2. At Q2 = 0 we set the ratio RLT to zero.
The comparison in Fig. 2 illustrates the differences between
the Q2 evolution of our RLT interpolation bands and those of
the grids in the analyses of Refs. [54,55] evaluated at the same
values of W .

We stress that, because of the almost complete, 4π angular
acceptance of the CLAS detector, the data from Ref. [50] span
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FIG. 2. Longitudinal to transverse cross section ratio RLT versus
Q2 in several bins of W , represented as interpolation/extrapolation
bands computed from the data in Ref. [55] (large open circles) and
compared with the Hall C data from Ref. [54] (small filled circles).

the entire kinematically allowed range of W in each bin of Q2,
with a bin width �Q2 = 0.05 GeV2. The broad coverage over
W is particularly important in the resonance region of W <

2 GeV due to the presence of resonance structures in the ex-
perimental data at these kinematics. Outside of the kinematic
area covered by the data of Ref. [50], at Q2 > 3.5 GeV2,
we use the parametrization of the world data developed in
Refs. [53,60]. The data used in those analyses had more
limited coverage over W at any given Q2 than those in [50].
However, at the higher values Q2 > 3.5 GeV2 the resonance
structures become less pronounced, which makes the data
interpolation over W and Q2 more reliable.

III. RESONANT CONTRIBUTIONS TO INCLUSIVE
STRUCTURE FUNCTIONS

In this section, we describe the evaluation of the resonant
contributions to the inclusive structure functions F1 and F2, or
their combination, FL. The formalism used in the analysis of
unpolarized structure functions in Ref. [104] has been updated
in the present paper, allowing us to explicitly take into account
interference effects between different resonances.

The contributions of the isospin-1/2 N∗ and isospin-3/2
�∗ resonances to inclusive γ ∗ p cross sections are described
[104] by employing γ ∗ pN∗ electrocouplings from exclu-
sive meson electroproduction data [97–99,101,102,107–109].
Currently, this information is limited to the resonances in
the mass range up to W ≈ 1.75 GeV. Apart from the well-
established, four-star resonances identified in the Review of
Particle Physics (RPP) [110], we include also the recently
observed N ′(1720) 3/2+ state [103], since, as discussed be-
low, this state plays an important role in the generation of the
peak in the third resonance region of the inclusive electron
scattering data. A list of the nucleon resonances included in
our analysis, together with their properties, can be found in
Ref. [104].
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If the interference between different resonances is ne-
glected, the contribution from a resonance R of mass MR and
spin JR to the transverse (σ R

T ) and longitudinal (σ R
L ) inclusive

virtual photon-proton cross sections is given by an incoherent
sum over Breit-Wigner cross sections from all resonances
[99,104],

σ R
T,L(W, Q2)= π

q2
γ

∑
R

(2JR+1)
M2

R �R(W ) �T,L
γ ,R(MR, Q2)(

M2
R − W 2

)2 + (MR�R(W ))2
,

(9)

where �R(W ) is the W -dependent total decay width of the
resonance R [104]. Here, qγ and Eγ are the virtual pho-
ton three-momentum and energy in the photon-target proton
center-of-mass frame, respectively,

qγ =
√

Q2 + E2
γ , Eγ = W 2 − Q2 − M2

2W
. (10a)

The electromagnetic decay widths �T,L
γ ,R of the resonance R

to the γ ∗ p state with transversely or longitudinally polarized
virtual photons are related to the electrocouplings AR

1/2(Q2),
AR

3/2(Q2), and SR
1/2(Q2) by

�T
γ ,R(W = MR, Q2) = q2

γ ,R(Q2)

π

2M

(2JR + 1)MR

× (∣∣AR
1/2(Q2)

∣∣2 + ∣∣AR
3/2(Q2)

∣∣2)
, (11a)

�L
γ ,R(W = MR, Q2) = 2q2

γ ,R(Q2)

π

2M

(2JR + 1)MR

× ∣∣SR
1/2(Q2)

∣∣2
, (11b)

where qγ ,R ≡ qγ (W =MR) is the virtual photon momentum at
the resonance peak. Further details about the resonance elec-
tromagnetic decay widths �

T (L)
γ ,R and total decay widths �R(W )

can be found in Ref. [104]. The resonant contributions to the
inclusive structure functions are then obtained by inserting the
resonant cross sections in Eq. (9) into Eqs. (1).

In order to take into account the interference between dif-
ferent resonances, the resonant contribution to the structure
functions needs to be evaluated in terms of a coherent sum of
γ ∗ p → N∗,�∗ → X amplitudes, where X stands for all final
states populated in the resonance decays. The contribution
from each resonance of spin J , isospin I , and parity η can be
described by the amplitudes GR

m, where m = +1, 0,−1 is the
virtual photon spin projection onto the quantization axis Oz,
aligned along the direction of the virtual photon momentum.
Adding the amplitudes coherently, the resonant contributions
to the structure functions can then be written as [87,111]

F R
1 = M2

∑
IJη

[∣∣∣∣∑
RIJη

GRIJη

+

∣∣∣∣2

+
∣∣∣∣∑

RIJη

GRIJη

−

∣∣∣∣2
]
, (12a)

ρ2F R
2 = Mν

∑
IJη

[∣∣∣∣∑
RIJη

GRIJη

+

∣∣∣∣2

+
∣∣∣∣ ∑

RIJη

GRIJη

−

∣∣∣∣2

+ 2

∣∣∣∣ ∑
RIJη

GRIJη

0

∣∣∣∣2
]
, (12b)

F R
L = ρ2F R

2 − 2xF R
1 , (12c)

where the outer sum runs over the possible values of spin
J , isospin I , and intrinsic parity η, and the inner sums run
over all those resonances RIJη which satisfy JR = J , IR = I ,
and ηR = η for the spin, isospin, and parity of the resonance
R. As detailed below, the combination of inner and outer
sums in Eqs. (12) reflects the cancelation between interference
terms for resonances of different spin, isospin, or parity after
integration over the final hadron emission angles in the center-
of-mass frame, and after the sum over the resonance decays
into all possible final states. Ultimately, this amounts to taking
into account only the interference between states of the same
isospin, spin, and parity, which in practice involves the pairs
of excited nucleon states N (1440) 1/2+ and N (1710) 1/2+,
N (1535) 1/2− and N (1650) 1/2−, and N (1720) 3/2+ and
N ′(1720) 3/2+.

The amplitudes GR
m [87,111] in Eqs. (12) are proportional

to the electrocouplings AR
1/2, AR

3/2, and SR
1/2 [97]. The GR

+ and
AR

1/2 amplitudes are defined for the same values of the virtual
photon and target proton spin projections onto Oz, while the
GR

0 and GR
− amplitudes are obtained from SR

1/2 and AR
3/2 after

space reflection:

GR
+ ∼ AR

1/2, (13a)

GR
0 ∼ SR

1/2 (−1)P, (13b)

GR
− ∼ AR

3/2 (−1)P, (13c)

where the parity transformation factor P is given by

P = η

ηγ ηN
(−1)J−Jγ −JN = η(−1)J−1/2. (14)

The subscripts γ and N here denote the virtual photon and
nucleon, respectively. Note that for unpolarized structure
functions, as considered in the present analysis, the phase
factor in Eq. (14) is not relevant for the absolute values of
the GRIJη

+ amplitudes in Eqs. (12). The approach described
above is also applicable for the evaluation of the resonant
contributions to polarized inclusive structure functions, where
this phase factor does become relevant. The contribution from
a single resonance R of finite and W -dependent decay width
�R(W ) is then evaluated by expressing the amplitudes GR

m
computed within the Breit-Wigner Ansatz of Ref. [99]:

GR
+ ∼ C

√
MR�R(W )

M2
R − W 2 − i�R(W )MR

AR
1/2(Q2), (15a)

GR
− ∼ C

√
MR�R(W )

M2
R − W 2 − i�R(W )MR

AR
3/2(Q2)(−1)P, (15b)

GR
0 ∼ C

√
MR�R(W )

M2
R − W 2 − i�R(W )MR

SR
1/2(Q2)(−1)P, (15c)

where C denotes the conversion factor that transforms the
amplitudes GR

m into the convention corresponding to the
Breit-Wigner cross section of Eq. (9) for a single resonance
contribution. The factor C can be evaluated by computing
the structure functions in Eqs. (1) using the cross sections in
Eq. (9), and comparing with the structure functions computed
from Eqs. (12) with the GR

m amplitudes defined in Eqs. (15)
for the contribution from a single resonance R. Setting the
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resulting expressions to be equal, the conversion factor is
determined to be

C = 1

4π

√
W 2 − M2

αM

qγ ,R

qγ

. (16)

The resulting resonance interference can be constructive or
destructive, since the electrocouplings can be positive-valued
or negative-valued real numbers.

It is well known that resonances with different quantum
numbers do not interfere in the W dependence of the inte-
grated cross sections. This can be seen explicitly by observing
that the resonant contributions to F2 and FL described by
Eqs. (12) with the amplitudes of Eqs. (15) are obtained after
integration over the center-of-mass emission angle of one
of the final hadrons in all exclusive channels. The angular
dependence of the amplitudes in Eqs. (15) is implicitly given
by the Wigner functions dJ

νμ(θ ), where θ is the polar angle
between the virtual photon and the meson directions in the
center-of-mass frame, and ν, μ are the sum of spin projec-
tions of the initial virtual photon and proton onto the virtual
photon direction, and sum of spin projections of the final state
particles onto the direction of one of the final particles, respec-
tively. The structure functions defined in Eqs. (12) contain
the amplitude squared integrated over θ . When the integral
is performed, the interference terms between resonances of
different spins J vanish because of the orthogonality of the
Wigner functions. Similarly, the interference terms between
resonances of different parities vanish due to the orthogo-
nality of the eigenvectors of the orbital angular momentum
operator, upon integration over θ . Finally, the interference
terms between resonances of different isospin vanish after
summing over the decays to the final states with all possi-
ble isospin projections, because of the orthogonality relations
for the isospin Clebsch-Gordan coefficients. Therefore, only
interference terms from the resonances of the same spin J ,
isospin I , and parity η contribute to the observables of inclu-
sive processes.

One needs to take particular care with interferences be-
tween resonances of close mass, such as the N (1720) 3/2+
and the N ′(1720) 3/2+. The recent CLAS analysis [103]
found that the decays into the π� and ρ p final states account
for the largest part of the hadronic width for these resonances,
and the interference between these two resonances should be
evaluated in each of these exclusive channels separately. In
our Ansatz of Eq. (15), we do not take into account differ-
ences in hadronic decay widths of the N ′(1720) 3/2+ and
N (1720) 3/2+ resonances into the π� and ρp final states.
While this is approximately the case for the decay into the π�

final state, where the branching fraction for the N ′(1720) 3/2+
is only about 20% larger than that of the N (1720) 3/2+, the
differences in the ρ p channel are too large to be neglected:
the branching fraction for the N (1720) 3/2+ is about 5.5 times
larger than that of the N ′(1720) 3/2+. Therefore, compared
to our Ansatz, there is a suppression factor coming from
differences in the two resonance decays widths both to the
π� and the ρp final states. These suppression factors for the
interference between the N ′(1720) 3/2+ and N (1720) 3/2+
resonances in the π� and ρp channels are equal to the square
root of the decay width ratio to the π� or ρp final state for

the resonance with larger decay width over the resonance of
smaller decay width. In order to estimate the effect on our
Ansatz, we average between the suppression factors for the
π� and ρp final states:

1

2

(√
�N ′(1720)→π�

�N (1720)→π�

+
√

�N (1720)→ρ p

�N ′(1720)→ρ p

)
≈ 1.72, (17)

and use this value for the suppression of the interference
between the N (1720) 3/2+ and N ′(1720) 3/2+ states.

IV. NUMERICAL RESULTS

In this section we present the results of our calculations
of the resonance contributions to the inclusive proton F2 and
FL structure functions from the experimental results on the
γ ∗ pN∗ electrocouplings [102,104], and compare these with
the structure functions extracted from experimental inclusive
cross sections from CLAS [50] combined with empirical re-
sults on the RLT ratio from Hall C [54,55]. The data are then
interpolated on a grid of (W, Q2) values presented in our
paper, by employing the web tool in Ref. [62].

We examine the role of individual resonance contributions
to the structure functions, and assess the importance of the in-
terference effects computed from our coherent Ansatz relative
to the incoherent approach from Ref. [104].

A. Resonance contributions to structure functions

Representative examples of the W dependence of
F2(W, Q2) and FL(W, Q2) are shown in Figs. 3 and 4 for
several values of Q2 between Q2 ≈ 1 and 4 GeV2, which
lie within the kinematics area over W and Q2 measured in
Refs. [50,54]. Three distinct resonance peaks are clearly seen
in the W dependence of both F2 and FL for the entire Q2 range
covered in our analysis, and their qualitative features can
be understood from the behavior of the individual resonance
contributions displayed in the panels of Figs. 3 and 4.

More specifically, in the first resonance region, the contri-
butions from the �(1232) 3/2+ resonance to the F2 structure
function decrease rapidly with Q2, so that at Q2 > 2 GeV2 the
tail from the N (1440) 1/2+ state becomes essential. The rela-
tive �(1232) 3/2+ contribution to the FL structure function is
much smaller than for F2, and falls steeply with Q2.

In the second resonance region, the N (1520) 3/2− and
N (1535) 1/2− states are responsible for the largest contri-
butions to F2, and at Q2 ≈ 1 GeV2 they are of comparable
size. As Q2 increases, the contribution from the N (1535) 1/2−
becomes dominant. The FL structure function in the second
resonance region at Q2 < 3 GeV2 is determined mostly by
the contribution from the N (1535) 3/2− state. As Q2 increases
above 3 GeV2, the tail from �(1700) 3/2− becomes the main
resonant contribution in the second resonance region.

The resonance peak in the F2 structure function in the third
resonance region is generated by contributions from several
nucleon resonances, the biggest impact stemming from the
N ′(1720) 3/2+ state. The N (1680) 5/2+ and N (1720) 3/2+
resonances give subleading contributions to F2 in this region.
Because of the intricate interplay with other resonances, the
evolution with Q2 of the third resonance peak seen in the
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FIG. 3. Proton F2 structure function at fixed values of Q2 corresponding to the data bins in Ref. [50]: (a) Q2 = 1.025 GeV2, (b) Q2 =
2.025 GeV2, (c) Q2 = 3.025 GeV2, (d) Q2 = 4.025 GeV2. The interpolated experimental data from Ref. [62] (filled black circles) are compared
with the full resonant contributions to the structure functions computed by adding amplitudes (thick blue curves) and cross sections (thin blue
curves) from the contributing resonances, using the central values of their electrocouplings. The contributions from individual resonances are
shown separately, as indicated in the legends. Below each panel, we also show the uncertainty sizes of the thick blue curves (full coherent sum
of resonant contributions), which are computed by propagating the electrocoupling uncertainties via a bootstrap approach, see Ref. [104] for
details.

W dependencies of F2 becomes rather involved. In the range
Q2 < 3 GeV2, the contribution from N (1720) 3/2+ decreases
with Q2, the N (1680) 5/2+ and N ′(1720) 3/2+ resonances
become the most significant ones, and the contribution from
the �(1700)3/2− state remains almost negligible in com-
parison. At Q2 > 3 GeV2, the relative contribution from the
�(1700) 3/2− resonance increases and becomes comparable
with the contributions from the N (1680) 5/2+ resonances at
Q2 ≈ 4 GeV2.

The behavior of the FL structure function in Fig. 4 in
the third resonance region is determined mostly by the
�(1700) 3/2− and N ′(1720) 3/2+ resonances. As was the
case for F2, the new N ′(1720) 3/2+ state also plays an impor-
tant role in the resonant contributions to FL in this region, and
the contribution from �(1700) 3/2− dominates the resonant
part at Q2 ≈ 4 GeV2. This behavior of the �(1700) 3/2−
resonance, for both the F2 and FL structure functions, sug-
gests that further insight can be gained into its structure in
the range of high Q2 > 4 GeV2, which will be covered in
future nucleon resonance studies with the CLAS12 detector
[102,105].

As should be clear from the above discussion, the F2 and FL

structure functions are sensitive to different combinations of
contributions from individual resonances, and studies of both
F2 and FL offer complementary information on the resonant
contributions to inclusive electron-proton scattering. The res-
onant contribution to F2 in the second resonance region, for
example, decreases with Q2 much more slowly than in the
first and third resonance regions. The reason for this is the
rather flat Q2 dependence of the transverse electrocoupling of
the N (1535)1/2− in comparison with other resonances, which
leads to significant resonant contributions even at large Q2.
Such behavior is not reflected in the longitudinal FL structure
function (see Fig. 4), for which the resonance contributions
are associated with the longitudinal electrocouplings. Instead,
here one observes that the third resonant peak becomes domi-
nant as Q2 increases.

The effect of the interference between different resonances
can be seen in Figs. 3 and 4 as the differences between
resonant contributions computed within the coherent and in-
coherent Ansätze, as described in Sec. III. With the exception
of the third resonance region, the interference effects are
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FIG. 4. Proton FL structure function at fixed values of Q2 corresponding to the data bins in Ref. [54]: (a) Q2 = 1.75 GeV2, (b) Q2 =
2.5 GeV2, (c) Q2 = 3.75 GeV2. The experimental data are from Refs. [54] (filled black circles) and [55] (open black circles). The data are
compared with the various curves, as described in Fig. 3.

almost negligible, with most vanishing in inclusive observ-
ables. However, the interference effects are clearly seen in the
third resonance region in the W dependence of both F2 and
FL, mostly due to the interference between the N ′(1720) 3/2+
and N (1720) 3/2+ resonant amplitudes, but also with a con-
tribution from the interference between the N (1535) 1/2− and
N (1650) 1/2− states. Since the transverse electrocouplings
AR

1/2 and AR
3/2 of these pairs of resonances have the same

signs, the interference leads to an enhancement of the resonant
contribution to F2. In contrast, the longitudinal electrocou-
plings SR

1/2 of the N ′(1720) 3/2+ and N (1720) 3/2+ states
have opposite signs, leading to destructive interference and
suppression of the resonant contributions to FL.

B. Q2 evolution of resonant contributions

In order to study the evolution of the resonance struc-
ture with Q2, we evaluate the ratios between the resonant
contributions to the F2 and FL structure functions and the
total inclusive structure functions, F R

2 /F2 and F R
L /FL, at

three representative W values corresponding to the first,
second and third resonance regions. In Fig. 5 the Q2 depen-
dence of the ratios is shown between Q2 = 1 and roughly
5 GeV2 (or up to where data are available), together with
a linear fit to the ratios for Q2 > 2 GeV2. The resonant

contributions to F2 and FL remain significant over the entire
Q2 range considered, accounting for 40%–50% in the first
and third resonance regions, even up to Q2 ≈ 4 GeV2, and
around 75% in the second resonance region. Analyses of
exclusive meson electroproduction data from Jefferson Lab
Hall B [98–101,112] demonstrated that the γ ∗ pN∗ can be
extracted with an accuracy better than 15%, when the reso-
nant contributions to the exclusive meson electroproduction
cross sections are above 10%. Therefore, the considerable
relative size of the resonance contributions to the inclu-
sive structure functions observed in our analysis at Q2 up
to 4–5 GeV2, suggests promising prospects for extracting
the γ ∗ pN∗ from the future exclusive meson electropro-
duction data with the CLAS12 detector at Q2 > 4 GeV2

[102,105].
Interestingly, the ratios F R

2 /F2 in the first and third res-
onance regions are observed to decrease with Q2, and at
Q2 > 2 GeV2 their evolution with Q2 is well described by
linear functions with similar slope values, of the order of
−0.1 GeV−2. In contrast, the F R

2 /F2 ratio in the second reso-
nance region remains nearly Q2 independent at Q2 > 2 GeV2,
suggesting that both resonant and nonresonant contributions
here decrease with Q2 at the same rate. Furthermore, the lead-
ing N (1535) 1/2− and N (1520) 3/2− contributions are also
mostly independent of Q2 for Q2 > 2 GeV2, revealing that
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FIG. 5. Q2 evolution of ratios of the resonant contributions to the total inclusive structure function, F R
2 /F2 (left) and F R

L /FL (right), in (a),
(b) the first (W = 1.23 GeV), (c), (d) the second (W = 1.52 GeV), and (e), (f) third (W = 1.71 GeV) resonance regions. In the second and third
resonance regions, the ratios are also shown for individual resonances with the largest contributions. The ratios are fitted by linear functions
(solid lines) for Q2 > 2 GeV2.

contributions from both these resonances decrease with Q2 at
the same rate as the nonresonant contributions. The underly-
ing cause for these correlations between the Q2 dependence
of the resonances in the second resonance region remains an
interesting question.

The large contribution from the new baryon state,
N ′(1720) 3/2+, at Q2 > 2 GeV2 represents the driving feature
in the Q2 evolution of the F R

2 /F2 ratio in the third resonance
region. Future studies with CLAS12 [102] of the resonances
in the third resonance region will elucidate the particular

structural features of the new N ′(1720) 3/2+ resonance whose
contribution underlies a less pronounced decrease with Q2

than that of the regular N (1720)3/2+.
As for the longitudinal structure function ratio F R

L /FL, in
the first resonance region we fit the ratio only for data with
2 < Q2 < 3.9 GeV2, since the bins with larger Q2 have very
large uncertainties and we do not consider them reliable.
There is only a very mild dependence of the ratio in the
first resonance region with Q2, with mean value ≈0.6 GeV2.
More accurate data on the F R

L /FL ratio are needed to shed

025201-9



A. N. HILLER BLIN et al. PHYSICAL REVIEW C 104, 025201 (2021)

light on the Q2 evolution of the competition between the
resonant and nonresonant contributions to FL in the first
resonance region. In the second resonance region, F R

L /FL

remains Q2 independent for Q2 > 2 GeV2, around 0.6 − 0.7.
There are two leading contributions to FL in this region: the
N (1535) 1/2− resonance, and the tail of the �(1700) 3/2−
state from the third resonance region. While the contribution
from N (1535) 1/2− to F R

L /FL decreases with Q2, the contri-
bution from the tail of �(1700) 3/2− grows with Q2. The
opposing trends in the Q2 evolution of these two resonances
result in a nearly Q2 independent F R

L /FL ratio in the second
resonance region.

In the third resonance region, the interplay of contributions
from four individual resonances gives rise to a ratio F R

L /FL

that decreases with Q2. In particular, the contributions from
the N ′(1720) 3/2+ and �(1700) 3/2− states, which decrease
and increase with Q2, respectively, define the Q2 dependence
of F R

L /FL. Interestingly, the longitudinal contribution from the
�(1700) 3/2− resonance reveals a less pronounced fall-off
with Q2 than the nonresonant contributions to the inclusive FL.
Whether the same trend for this state persists at Q2 > 4 GeV2

represents an interesting open question for the CLAS12 pro-
gram.

V. QUARK-HADRON DUALITY

The availability of the results on electrocouplings from
the CLAS electroproduction data, along with the separated
inclusive F2 and FL structure functions, allows us to delve fur-
ther into the quark hadron duality from comparison between
the structure functions in the resonance and DIS regions. As
observed half a century ago in the early SLAC experiments
by Bloom and Gilman [49], and confirmed recently in high
precision measurements at Jefferson Lab [52,56,57,59,63],
the average of the proton structure function measured in the
resonance region bears a striking resemblance to the structure
function extracted from higher-W (lower-x) data and extrapo-
lated to lower W . In this section we first present a quantitative
study of Bloom-Gilman duality for the proton F2 and FL

structure functions using extrapolations from several differ-
ent global QCD parametrizations, and then examine the Q2

evolution of the truncated moments of the structure functions
relative to the experimental data.

A. Local quark-hadron duality

To explore the details of the duality between the resonance
region structure functions and the functions extrapolated from
the high-W region, we compare in Fig. 6 the interpolated
inclusive F2 structure function data from CLAS [62] with
F2 computed from PDF parametrizations fitted to DIS region
data and extrapolated to the resonance region. The structure
functions are shown versus W at fixed values of Q2 between
Q2 ≈ 1 and 4 GeV2.

For the PDF-based calculations, we compute the F2 struc-
ture function from next-to-leading order PDF parametriza-
tions from the CJ15 [5] and JAM19 [6] global QCD analyses.
Both of these analyses use similar high-energy scattering
data sets, including DIS, Drell-Yan, and weak vector bo-

son production. The CJ15 analysis [5] includes in addition
data at relatively low values of W , W 2 > 3 GeV2, which
requires finite-Q2 corrections, such as target mass correc-
tions (TMCs) and higher twist effects, to be taken into
account. In contrast, the JAM19 analysis [6] applies more
conservative cuts that exclude lower-W data, taking W 2 >

10 GeV2. Moreover, since the implementation of the TMCs
is not unique [47,48,114], the CJ15 analysis adopts the OPE
based prescription of Georgi and Politzer [113], while the
JAM19 fit employs the collinear factorization (CF) framework
throughout, for which the TMCs were evaluated by Aivazis,
Olness, and Tung (AOT) [115]. The CJ15 parametrization
also fitted the higher twist, power-suppressed correction to
F2 (see the Appendix), while the JAM19 [6] analysis was
not sensitive to these effects because of the higher-W cuts
imposed.

The comparison between the resonance region data, aver-
aged between the resonance peaks and valleys, and the leading
twist structure functions, for both the CJ15 and JAM19 PDF
parametrizations, shows that overall the extrapolated func-
tions underestimate the data. After including the TMC effects,
the values of F2 generally increase, with the exception of
the lowest Q2 value, and show much better agreement with
the data, with the differences between F2 with and without
the TMCs also decreasing with W across all Q2 bins. This
remains true for both the CJ15 (OPE TMCs) and JAM19
(CF TMCs) results. For the CJ15 calculation, including the
additional higher twist contribution to the structure function,
the values of F2 further increase and improve the overall
agreement with the data in the resonance region. An exception
is the first resonance region, which is generally overestimated
for Q2 � 2 GeV2.

This behavior suggests the intriguing possibility of uti-
lizing resonance region data at Q2 � 2 GeV2 to provide
constraints for nucleon PDFs, something which has been
speculated about previously [87] but never implemented in
practice. At Q2 � 2 GeV2, the different PDF parametrizations
and the TMC prescriptions result in a more substantial spread
in the predicted behavior of F2 in the resonance region, which
cautions that either quark-hadron duality or the perturbative
expansion may not be valid here.

For the longitudinal structure function FL in Fig. 7, the
comparison between the resonance region data and the PDF-
based extrapolations shows a much greater dependence on
the finite-Q2 prescriptions. While the leading twist part of
FL is almost identical for the CJ15 and JAM19 analyses, the
OPE implementation of TMCs in the former gives a stronger
effect than in the CF implementation, which JAM19 uses.
These differences can be understood from Eqs. (A2) and (A5)
and, in particular for the OPE formulation, the target mass
corrected FL structure function receives a contribution at order
x2M2/Q2 which is proportional to an integral over the (large)
F2 structure function. Such a contribution is not present in
the CF formulation, (A2), so that the TMC effect in the OPE
prescription is considerably larger. For the CJ15 analysis, the
addition of the higher twist component increases FL, but does
not affect the general features.

This comparison suggests that FL is dominated by resonant
contributions and the interference between the resonant and
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FIG. 6. Comparison between interpolated F2 structure function data from CLAS [62] (filled black circles) and F2 computed from PDF
parametrizations fitted to higher-W data and extrapolated to the resonance region, versus W at fixed values of Q2: (a) Q2 = 1.025 GeV2,
(b) Q2 = 2.025 GeV2, (c) Q2 = 3.025 GeV2, (d) Q2 = 4.025 GeV2. The DIS-based calculations are derived from the CJ15 [5] (red lines) and
JAM19 [6] (green lines) PDF parametrizations using leading twist (LT) contributions only (dotted lines), including target mass corrections
(TMC) [OPE [113] for CJ15 and CF for JAM19] (dashed lines), and higher twist (HT) contributions [for CJ15 only] (solid line).

nonresonant components in the entire range of Q2 � 4 GeV2

covered in our analysis. Improvements in the empirical de-
termination of the separated FL would be helpful in further
clarifying the role of the subleading contributions.

While the similarity of the average resonance region data
with the structure functions extrapolated from higher W sug-
gests hints for a deeper connection between nonperturbative
resonance and partonic physics, in order to establish whether
this can be utilized in practice to learn about PDFs from
resonance region data requires this relation to be established at
a more quantitative level. In the next section we discuss how
one may better assess the degree to which the duality holds
using a quantitative framework based on truncated moments
of structure functions.

B. Truncated moments of structure functions

Since a smooth, perturbative QCD-based function cannot
hope to describe the detailed structures of resonance peaks
and valleys, any manifestation of duality in electron-proton
scattering must involve some averaging over resonances or in-
tervals in W in the resonance region. Formally, in the language
of the OPE, the appearance of duality can be understood in

terms of suppression of higher twist contributions to moments
of the structure functions, integrating over the entire range of
x from 0 to 1 [71,72]. A practical limitation of this is that the
computation of full moments can only ever be approximated
by inclusion of extrapolations into unmeasured regions of x
or W .

To avoid introducing uncontrolled assumptions into the
analysis, it may be preferable to quantify duality by con-
sidering truncated moments, whose evaluation can then be
entirely data driven [78]. We define the lowest truncated
moments of the F2 and FL structure functions in an interval
�x ≡ xmax − xmin at a fixed Q2 value by

M2,L(xmin, xmax; Q2) =
∫ xmax

xmin

dx F2,L(x, Q2). (18)

The truncated moments are evaluated from the pion pro-
duction threshold, Wπ = M + mπ , to the maximal W value
of 1.75 GeV where the results on the γ ∗ pN∗ electrocou-
plings are currently available [102], as well as in the W
intervals Wπ < W < 1.38 GeV, 1.38 < W < 1.58 GeV, and
1.58 < W < 1.75 GeV, corresponding to the first, second, and
third resonance regions. The integration limits in Eq. (18)
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FIG. 7. As in Fig. 6, but for the proton FL structure function evaluated at (a) Q2 = 1.75 GeV2, (b) Q2 = 2.5 GeV2, (c) Q2 = 3.75 GeV2,
with the data (open circles) taken from Ref. [55].

[xmin, xmax] correspond to these W intervals at a given value
of Q2.

For the truncated moments of the interpolated experimental
data on F2,L [62], we evaluate these as discrete sums over
bins i:

Mexp
2,L =

∑
i

dxi F i
2,L(xi, Q2), (19)

where i runs over all the bins for which xmin � xi � xmax, F i
2,L

is the value of the structure function in that bin, and dxi is the
size of the bin. To quantify the degree to which duality holds
for the individual regions of W , we compare the empirical
moments with the moments of structure functions computed
from the CJ15 [5] and JAM19 [6] PDFs extrapolated from
higher W . Note that the CJ15 results include TMCs (using
the OPE prescription) and parametrized higher twist contri-
butions as in the Appendix, Section A 2, while the JAM19
results include TMCs (from the CF prescription) only. The
differences between the truncated moments calculated from
the CJ15 and JAM19 parametrizations can be interpreted as
reflecting the systematic theoretical uncertainties associated
with the extrapolations from high W to low W .

The results for the M2 and ML truncated moments are
shown in Figs. 8 and 9, respectively, for Q2 between 1 and
3.5 GeV2. For the M2 moments evaluated for the entire
resonance region, Wπ < W < 1.75 GeV, there is reasonable

agreement, within systematic theoretical uncertainties shown
as a yellow band, between the experimental data and the
extrapolations from the DIS region for Q2 � 2 GeV2. A sim-
ilar agreement is observed in the second resonance region in
Fig. 8, down to even smaller Q2 values, Q2 � 1.5 GeV2. In
the third resonance region the extrapolated results generally
underestimate the data by ≈10%–30%, while the strongest
violation is seen in the first or �(1232) resonance region,
where the extrapolated results overestimate the data at all Q2

considered. The cancellation of the effects in the first and third
resonance regions contributes to the observation of duality for
the truncated moment of the full resonance region. Interest-
ingly, the ratio of the resonance contributions to the truncated
M2 moments relative to the total decreases with Q2 by less
than 20% across the range of photon virtualities considered in
this analysis.

A qualitatively similar behavior was observed for the dif-
ferent resonance regions in the truncated moment analysis by
Psaker et al. [78], although that work focused only on the
F2 structure function moments. The availability of the more
elusive FL data [55] makes possible to test duality also for the
truncated moments ML of the longitudinal structure function.
These are shown in Fig. 9 for the same range of kinematics as
for the M2 moments.

As observed already in Fig. 7 above, for the trun-
cated ML moments there is a much stronger dependence on
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FIG. 8. Truncated moments M2 of the F2 structure function versus Q2 for the (a) first, or �(1232), (b) second, and (c) third resonance
regions, as well as (d) the full resonance region from the pion threshold to W = 1.75 GeV. The moments from the experimental results [62]
(black circles, with uncertainties smaller than the circle sizes) are compared with the resonant contributions (blue lines) and the structure
function moments computed from the JAM19 [6] (green lines) and CJ15 [5] (red lines) PDFs, with the latter including also higher twist terms.
The yellow bands between the CJ15 and JAM19 parametrizations reflect the systematic theoretical uncertainties. Also shown beneath each
panel is the ratio of the resonant contributions to the data in each W region.

the prescription adopted for accounting for the subleading
Q2 corrections. In particular, the role of higher twist effects
is significantly greater, as the comparison between the CJ15
and JAM19 extrapolated results shows. For all kinematics the
results with leading twist PDFs supplemented with the CF
TMCs in the JAM19 case lie significantly below the data.
However, even with the numerically more important OPE
TMCs implemented in the CJ15 analysis, together with the
higher twist contributions, the results for the truncated mo-
ments of the longitudinal function extrapolated from higher
W generally underestimate the data across all W regions (with
the exception of the �(1232) region at low Q2, where the
CJ15 result lies above the data).

The conclusion to be drawn from this comparison is that
either duality is strongly violated in the longitudinal channel,
or a better understanding of the leading twist and higher
twist contributions to FL is needed. Ideally, one would like
to perform a simultaneous analysis of the DIS and resonance
regions, using a combination of perturbative QCD and phe-
nomenological tools for the most self-consistent analysis.

As for the M2 moments case, the ratio of the resonance
contributions to the truncated ML moments relative to the

total varies weakly with Q2 for Q2 � 2 GeV2. This suggests
a similar Q2 behavior of the resonant and nonresonant back-
ground contributions to the structure function. The result also
makes it promising to study the nucleon resonance γ ∗ pN∗ at
Q2 � 4 GeV2 with CLAS12 [102,105].

VI. SUMMARY AND OUTLOOK

To summarize the results presented in this paper, we have
computed the nucleon resonance contributions to the inclu-
sive proton F2 and FL structure functions from the resonance
electroexcitation amplitudes available from exclusive meson
electroproduction data with CLAS [102,104]. This has en-
abled us to systematically study the Q2 dependence of the
resonance contributions in the mass range up to 1.75 GeV
and quantify the phenomenon of quark-hadron duality in in-
clusive electron-proton scattering. The resonant contributions
to the structure functions is evaluated using an update of
the Ansatz in Ref. [104], which allows interference effects
from different nucleon resonances to be taken into account.
The experimental results on the inclusive structure functions
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FIG. 9. As in Fig. 8, but for the truncated moments ML of the FL structure function. The data (black circles) are extracted from the
experimental CLAS results [62] and the Hall C RLT ratios [55].

have also been updated by employing empirical RLT results
obtained in the resonance region from the measurements in
Hall C at Jefferson Lab [54,55].

We found that each of the three resonance peaks ob-
served in the W dependence of F2 is reproduced by the
contributions from several excited states of the nucleon.
The �(1232) 3/2+ resonance is the dominant contribu-
tion to the peak in the first resonance region, while the
contributions from the N (1520) 3/2− and N (1535) 1/2− res-
onances combined dominate the resonance structure in the
second resonance region. The peak in the third resonance
region is predominantly a combination of the N (1680) 5/2+,
N (1720) 3/2+, and N ′(1720) 3/2+ resonances. For Q2 >

3 GeV2 the contribution from the �(1700) 3/2− state also be-
comes sizable, while the contribution from the N (1720) 3/2+
diminishes.

As Q2 increases, in each of the three prominent resonance
regions the contributions from the tails of the resonances lo-
cated in other resonance regions, and particularly those with
large widths, become more pronounced. The first resonance
region is affected by the tails from the N (1440) 1/2+ state,
while the second resonance region receives contributions from
tails of the N (1440) 1/2+ and resonances in the third reso-
nance region. The resonance structure in the third resonance
region is affected by the tails mainly from the N (1440) 1/2+

and N (1535) 1/2− states. This observation emphasizes the
need to account for contributions from all prominent reso-
nances in the extraction of the γ ∗ pN∗ electrocouplings from
exclusive meson electroproduction data.

The data on FL offer information on the resonant contri-
butions complementary to F2. Since FL is sensitive to the
resonance electroexcitation by longitudinally polarized virtual
photons, the resonant contributions are generated by different
combinations of resonance electrocouplings than those in F2.
In particular, the peak in the second resonance region is gener-
ated by the leading contribution from N (1535) 1/2−, and we
observe a transition to the leading contribution from the tail
of �(1700) 3/2− as Q2 increases. Data on both F2 and FL are
therefore of particular importance in gaining insight into the
resonant contributions to inclusive electron scattering.

The results on the Q2 evolution of the resonant contribu-
tions to F2 in the first, second, and third resonance regions
demonstrate that the resonant part remains sizable, from
≈40% to 80%, even at the highest photon virtualities in our
analysis, Q2 ≈ 4 GeV2. They suggest promising prospects for
the experimental exploration of nucleon resonance electroex-
citation at Q2 > 4 GeV2, which is already under way with
CLAS12 at Jefferson Lab [102,105]. In the second resonance
region, at Q2 > 2 GeV2 the resonant contribution to F2 re-
mains approximately Q2 independent, suggesting that both
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the resonant and nonresonant contributions are characterized
by a similar rate of falloff with Q2. Gaining insight into the
strong interaction dynamics that underlie these correlations in
the second resonance region represents an important goal in
the exploration of the quark-hadron transition [105]. The Q2

evolution of the resonant part in the third resonance region
finds the largest contribution from the new N ′(1720) 3/2+
resonance, suggesting interesting possibilities for gaining
insight into the structure of new, previously “missing”
resonances.

We also analyze the transition of the inclusive structure
functions from the resonance region at Q2 < 2 GeV2,
dominated by nonperturbative, long-distance multiquark
correlations, to the resonance and DIS regions at high Q2

where the structure functions are more efficiently described
through single parton processes via leading twist PDFs. In an
effort to shed light onto the workings of quark-hadron duality
in a quantitative way, we compared the W dependence of
the empirical F2 and FL structure functions in the resonance
region with those computed from nucleon PDFs. For the latter,
the parameters are fitted to the high-W DIS region data, and
the functional forms are then extrapolated to the resonance
region. We considered different PDF parametrizations and
theoretical approaches for taking into account the TMCs,
studying also the effects of higher twist corrections to the
QCD factorization.

Our analysis shows that at Q2 > 2 GeV2 the W dependence
of F2 determined from the DIS region data and extrapolated to
the resonant region is broadly consistent with the behavior of
F2 measured in the resonance region, which generally oscil-
lates around it. Quantitative agreement does depend, however,
on the specific treatment of TMCs adopted and inclusion
of phenomenological higher twist effects. This is especially
relevant for the FL structure function, where the specific im-
plementation of TMCs has a much greater impact.

To better quantify the relation between the resonance struc-
ture functions and those extrapolated from the DIS region,
we considered specific truncated moments of the F2 and FL

structure functions. In particular, we evaluated the contribu-
tions to the truncated moments from the first, second, and
third resonance regions, along with the total resonance region
up to W < 1.75 GeV, and tracked their Q2 evolution up to
Q2 ≈ 3.5 GeV2. Within the systematic uncertainties associ-
ated with the extrapolation of the leading twist functions into
the resonance region, we found general agreement between
the truncated moments computed from the data and from the
extrapolated functions for the full W < 1.75 GeV region at
Q2 � 2 GeV2. More pronounced manifestation of local dual-
ity was observed in the second and third resonance regions at
Q2 � 1 GeV2 and Q2 � 3 GeV2, respectively, suggesting that
the resonant contributions to M2 decrease with Q2 at nearly
the same rate as the moments from the full F2.

Definitive conclusions about the longitudinal truncated
moments are more difficult to draw, on account of the greater
systematic uncertainties associated with the experimental data
extraction, and the TMC prescriptions and higher twist con-
tributions to FL. However, the resonance region data were
generally found to be underestimated by the extrapolated
structure function moments, especially at larger Q2 values, in-

dicating either stronger violation of duality in the longitudinal
channel, or incomplete understanding of the leading twist and
higher twist contributions to FL.

One avenue to pursue in future will be to simultane-
ously describe the inclusive data in the resonance and DIS
regions, merging the global QCD analysis of PDFs with
the phenomenological fits to the resonance structures, and
minimizing the systematic uncertainties associated with iden-
tifying resonance versus background contributions. This may
provide further insight into the relationship between the
physics of PDFs and nucleon resonances, and how the latter
could be used to provide stronger constraints of PDFs at large
values of x.

On the experimental side, our results motivate extensions
of the inclusive electron scattering studies in the resonance
region towards Q2 > 4 GeV2, as well as the extraction of
the γ ∗ pN∗ electrocouplings at high photon virtualities from
the exclusive meson electroproduction data [105]. Beyond
this, a further extension of this work would explore the spin
dependence of the exclusive-inclusive duality, applying the
methodology developed here to the case of the spin-dependent
g1 and g2 structure functions of the nucleon. In this case
no additional information on the electrocouplings would be
needed above that required for the spin-averaged structure
functions, and the role of interference effects should be more
clearly revealed.
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APPENDIX: FINITE-Q2 CORRECTIONS

In this Appendix we summarize the main formulas used in
this analysis for target mass corrections, based on the OPE and
CF approaches, and the higher twist parametrization of the F p

2
structure function from the CJ15 global QCD analysis [5].

1. Target mass corrections

Within the standard collinear QCD factorization [8], and in
the high energy limit where the nucleon mass M2 	 Q2, the
inclusive structure functions can be computed from convolu-
tions of nucleon PDFs fi(ξ ) (with parton momentum fraction
0 < ξ < 1) and hard scattering functions, summed over all
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parton flavors i:

F1(x, Q2) =
∑

i

∫ 1

x

dξ

ξ
F̂ i

1(x/ξ, Q2) fi(ξ ), (A1a)

F2(x, Q2) =
∑

i

∫ 1

x
dξ F̂ i

2(x/ξ, Q2) fi(ξ ), (A1b)

FL(x, Q2) =
∑

i

∫ 1

x
dξ F̂ i

L(x/ξ, Q2) fi(ξ ), (A1c)

where the kernels F̂ i
j ( j = 1, 2, L) are computed pertur-

batively to a given order in the strong coupling constant

αs [116]. Corrections to Eqs. (A1) appear in the form of
power suppressed corrections, O(�2/Q2). Note that both
the PDFs fi and the kernels F̂ i

j depend on the renor-
malization scale, which for ease of notation has been
suppressed.

At finite values of Q2, corrections of the order O(M2/Q2)
appear, modifying the massless results in Eqs. (A1) with ad-
ditional kinematical factors. These were derived by Aivazis,
Olness, and Tung (AOT) [115], and further elaborated more
recently by Moffat et al. [47]. In analogy with Eqs. (A1), the
target mass corrected structure functions in the CF approach
become

F CF
1 (x, Q2) =

∑
i

∫ 1

xN

dξ

ξ
F̂ i

1(xN/ξ, Q2) fi(ξ ), (A2a)

F CF
2 (x, Q2) = (1 + ρ)

2ρ2

∑
i

∫ 1

xN

dξ F̂ i
2(xN/ξ, Q2) fi(ξ ), (A2b)

F CF
L (x, Q2) = (1 + ρ)

2

∑
i

∫ 1

xN

dξ F̂ i
L(xN/ξ, Q2) fi(ξ ), (A2c)

where xN is the Nachtmann scaling variable,

xN = 2x

1 + ρ
, (A3)

with

ρ2 = 1 + 4x2M2

Q2
. (A4)

In the massless limit, x2M2/Q2 → 0, so that ρ → 1, and the Nachtmann variable approaches the Bjorken scaling variable,
xN → x. Historically, even before the formulation of the QCD factorization theorems, TMCs were computed in the framework
of the OPE by Georgi and Politzer [113]. Here the target mass corrected structure functions can be written in terms of the
massless limit structure functions evaluated at xN rather than at x:

F OPE
1 (x, Q2) = (1 + ρ)

2ρ
F1(xN , Q2) + ρ2 − 1

4ρ2

[
h2(xN , Q2) + ρ2 − 1

2xρ
g2(xN , Q2)

]
, (A5a)

F OPE
2 (x, Q2) = (1 + ρ)2

4ρ3
F2(xN , Q2) + 3x(ρ2 − 1)

2ρ4

[
h2(xN , Q2) + ρ2 − 1

2xρ
g2(xN , Q2)

]
, (A5b)

F OPE
L (x, Q2) = (1 + ρ)2

4ρ
FL(xN , Q2) + x(ρ2 − 1)

ρ2

[
h2(xN , Q2) + ρ2 − 1

2xρ
g2(xN , Q2)

]
, (A5c)

where the higher order correction terms are given by the
integrals

h2(xN , Q2) =
∫ 1

xN

du
F2(u, Q2)

u2
, (A5d)

g2(xN , Q2) =
∫ 1

xN

du (u − xN )
F2(u, Q2)

u2
. (A5e)

Note that for the F OPE
L structure function the O(M2/Q2) cor-

rection term h2 in Eq. (A5c) involves the F2 structure function.
Since one generally has F2 
 FL across most kinematics, the
TMCs for the F OPE

L structure function can be quite sizable
compared with the CF TMCs, which, as Eqs. (A2) indicate,
do not contain such large terms. This term is the main reason

for the large difference between the effects of TMCs on the FL

structure function in Fig. 7, and the corresponding moments
in Fig. 9, for the CJ15 [5] and JAM19 [6] parametrizations.

For a more detailed discussion of TMCs, see Schienbein
et al. [114]. Other TMC approaches are summarized also by
Brady et al. [48]. A discussion of the differences between the
CF and OPE approaches to TMCs can be found in Ref. [47].

2. Higher twist corrections

In addition to the TMCs, other finite-Q2 corrections that
need to be taken into account include those associated with
matrix elements of higher twist, multiparton operators, which
are typically O(�2/Q2) suppressed relative to the leading
twist contributions. These are very difficult to compute from
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first principles, or even from nonperturbative models, so are
often parametrized phenomenologically in data analyses.

In the literature the power corrections to DIS structure
functions have been fitted by using either additive [7] or
multiplicative [5] parametrizations. In the present analysis, we
use the higher twist parametrization from the CJ15 analysis,
in which the total F2 structure function is given by the multi-
plicative form [5]

F HT
2 (x, Q2) = F OPE

2 (x, Q2)

(
1 + CHT(x)

Q2

)
, (A6)

with the coefficient of the 1/Q2 term parametrized by a three-
parameter x-dependent function,

CHT(x) = h0xh1 (1 + h2x). (A7)

The numerical values for the parameters obtained in the CJ15
global analysis are fitted to be [5]

h0 = −3.2874 ± 0.26061,

h1 = +1.9274 ± 0.10524,

h2 = −2.0701 ± 0.019888. (A8)
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