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Deuteron-deuteron correlation function in nucleus-nucleus collisions
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A formula of the D-D correlation function is derived. The deuterons are treated either as elementary particles
or as neutron-proton bound states. In the first case the deuterons are directly emitted from a source and in the
second case the deuteron formation is a final-state process simultaneous with a generation of D-D correlation.
The source radius of deuterons formed due to final-state interactions is bigger by the factor of

√
2 than that

of directly emitted deuterons. To check how sizable is the effect we compute the D-D correlation function
taking into the Bose-Einstein statistics of deuterons, the s-wave scattering due to the strong interaction and
Coulomb repulsion. The correlation function is shown to be sensitive to the source radius for sources which are
sufficiently small with rms radii smaller than 3.5 fm. Otherwise, the correlation function is dominated by the
Coulomb repulsion and weakly depends on the source radius. Measurements which can make use of our finding
are discussed.
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I. INTRODUCTION

Deuterons are copiously produced in nucleus-nucleus col-
lisions over a broad range of collision energies. They come
mainly from nucleons that make up the initial nuclei; some
of them are simply fragments of colliding nuclei. However,
there are also genuine production processes if a generation
of nucleon-antinucleon pairs is energetically possible. For
this reason a production of deuterons and antideuterons is
observed even in proton-proton collisions at sufficiently high
energies [1–4].

If the excitation energy per nucleon of matter produced in
nucleus-nucleus collisions much exceeds the nuclear binding
energy, one expects that deuterons are formed due to final-
state interactions of nucleons emitted from the particle source.
This is the coalescence mechanism of deuteron production
proposed long ago [5,6], see also Refs. [7,8]. If the excita-
tion energy of produced matter is of the order of the nuclear
binding energy, deuterons are mostly directly emitted from
the interaction zone or they come from decays of heavier
fragments. The coalescence of emitted nucleons is also pos-
sible. Small excitation energies of produced matter occur in
low-energy nucleus-nucleus collisions and in the projectile
and target fragmentation domains of high-energy collisions.

Recently it has been argued that deuterons and other light
nuclei are directly emitted not only from weakly excited
nuclear matter but also from the extremely excited fireballs
created in nucleus-nucleus collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC). Specifically, the thermodynamical model has been
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found to predict very well the yields not only of hadron
species measured at RHIC and the LHC but also of light
nuclei and hypernuclei [9–11]. Since the yields are computed
at the fireball freeze-out temperature, the agreement with ex-
perimental data suggests that the nuclei are directly emitted
from the fireball. The result is very puzzling as one would not
expect that loosely bound nuclei exist in the hot and dense fire-
ball environment. Proponents of the thermal model speculate
[11] that nuclei are produced as colorless droplets of quarks
and gluons with quantum numbers that match those of the
final-state nuclei. In any case it is argued that the coalescence
is not responsible for production of light nuclei.

Mechanisms of deuteron production are under debate and,
as reviewed in Ref. [12], some methods to resolve the prob-
lem experimentally have been proposed. Correlation functions
of two hadrons with small relative momenta are particularly
useful here as the functions are known to carry informa-
tion about a space-time structure of hadron sources; see the
review [13]. We have shown very recently [14] that a hadron-
deuteron correlation function can tell us whether deuterons
are directly emitted from the fireball or are formed afterwards
due to final-state interactions. In the former case, the radius
of the source of deuterons coincides with that of nucleons.
In the latter case, the deuteron source radius is bigger by
the factor of

√
4/3 because of a space-time extension of the

deuteron formation process. The difference can be inferred
from precisely measured proton-proton and proton-deuteron
correlation functions.

In this paper we derive a formula of the deuteron-deuteron
correlation function. In the beginning, in Sec. II, deuterons are
treated as elementary particles directly emitted from a source.
Further on, in Sec. III, we assume that deuterons, which are
explicitly treated as neutron-proton bound states, are formed
only after nucleons are emitted from the source. The deuteron
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formation is thus simultaneous with a generation of deuteron-
deuteron correlation. The main result of our analysis is that,
if deuterons are formed due final-state interactions, the source
radius is bigger by the factor

√
2 than that of directly emitted

deuterons.
In Sec. IV we compute the D-D correlation function to

check whether the enlargement of the source radius is a
measurable effect. We take into account an indistinguishabil-
ity of the two deuterons, their s-wave scattering due to the
strong interaction and Coulomb repulsion. We first compute
the correlation functions for three spin states S = 0, 1, 2 of
the deuteron pair and the final correlation function is found as
the average over the spin states. It is shown that the D-D corre-
lation function is sensitive to the source radius for rather small
sources. For bigger ones the correlation function is dominated
by the Coulomb repulsion and becomes almost independent
of the source radius.

We are not aware of published results on the D-D correla-
tion function in high-energy collisions. However, the function
was successfully measured in nucleus-nucleus collisions at
the energy of a few tens of MeV per nucleon [15–17] and in
proton-nucleus collisions at 500 MeV [18], see also the review
[19] and references therein. In Sec. IV we briefly discuss our
results in the context of existing experimental data and we
consider measurements that could make use of our findings.

We summarize our study and draw conclusions in Sec. V.
Throughout the paper we use natural units with h̄ = c = 1.

II. DEUTERONS TREATED AS ELEMENTARY PARTICLES

The D-D correlation function R(p1, p2) is defined as

dPDD

d3 p1d3 p2
= R(p1, p2)

dPD

d3 p1

dPD

d3 p2
, (1)

where dPD
d3 p is the probability density to observe a final-state

deuteron with momentum p and dPDD
d3 p1d3 p2

is the probability
density to observe a final-state pair of deuterons with mo-
menta p1 and p2.

If we are interested in the correlations of deuterons with
the relative momentum q, which is much smaller than the
momenta of each deuteron, that is q � p1 and q � p2, and
the deuterons are treated as elementary particles, then the
correlation function is given by the well-know formula (see
e.g., the review [13])

R(q) =
∫

d3r1d3r2D(r1)D(r2)|ψ (r1, r2)|2, (2)

where ψ (r1, r2) is the wave function of two deuterons with
relative momentum q and D(r) is the probability distribu-
tion of emission points of the deuterons normalized to unity∫

d3rD(r) = 1.
The formula (2) is written as for the instantaneous emission

of two deuterons as the source function is time independent.
However, the time duration of the emission process τ can be
easily incorporated [20]. Then, one shows that in case of the
isotropic source function we use the formula (2) still holds but
the source radius is effectively enlarged due to the finite τ , as
discussed in detail in Ref. [21].

The source function usually depends on the momenta of
emitted particles, see e.g., Refs. [22,23]. We do not show the
dependence but it is understood that the formula (2) holds for
a limited interval of momenta of deuterons.

We consider the deuteron-deuteron correlations in the
center-of-mass frame of the pair and we treat the formula (2)
as nonrelativistic even though the deuterons can be relativistic
in both the rest frame of the source and in the laboratory
frame. However, the correlation function significantly differs
from unity only for small relative momenta. Therefore, the
relative motion can be treated as nonrelativistic and the cor-
responding wave function is a solution of the Schrödinger
equation. The source function, which is usually defined in the
source rest frame, needs to be transformed to the center-of-
mass frame of the pair. The problem is elaborated in detail in
Ref. [21].

Since we work in the center-of-mass frame of the
deuterons, where their motion is assumed to be nonrelativistic,
we separate the center of mass and relative motion in the
nonrelativistic manner. Using the variables

R ≡ 1
2 (r1 + r2),

r ≡ r1 − r2,

P ≡ p1 + p2,

q ≡ 1
2 (p1 − p2),

(3)

and writing down the wave function as

ψ (r1, r2) = eiPRφq(r), (4)

where φq(r) is the wave function of relative motion of the two
deuterons, the correlation function (2) becomes

R(q) =
∫

d3rDr (r)|φq(r)|2, (5)

with the “relative” source function given as

Dr (r) ≡
∫

d3RD

(
R − 1

2
r
)

D

(
R + 1

2
r
)

. (6)

If the single-particle source is Gaussian,

D(r) =
(

1

2πR2
s

)3/2

e
− r2

2R2
s , (7)

the root-mean-square (rms) radius of the source is
√

3Rs, and
the relative source equals

Dr (r) =
(

1

4πR2
s

)3/2

e
− r2

4R2
s . (8)

The relative source is obviously normalized to unity; that is,∫
d3rDr (r) = 1.

III. DEUTERONS TREATED AS PROTON-NEUTRON
BOUND STATES

If a deuteron is treated as a neutron-proton bound state
created due to final-state interactions similarly to the D-D
correlation, the correlation function R(p1, p2) is defined as

dPDD

d3 p1d3 p2
= 2R(p1, p2)A2

(
dPp

d3 pp

)2( dPn

d3 pn

)2

, (9)
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where pn = pp ≈ p1/2 ≈ p2/2. The deuteron formation rate
A is determined by the relation

dPD

d3 p
= A dPp

d3(p/2)

dPn

d3(p/2)
. (10)

The factor of two occurs on the right-hand-side of Eq. (9)
for the following reason: When we have one neutron-proton
pair, the probability to create a deuteron is given by Eq. (10).
When we have two protons (p1, p2) and two neutrons (n3, n4),
the probability to have two deuterons is a product of two
expressions (10) multiplied by the factor two because the two
deuterons can be built in two ways: D(p1, n3) & D(p2, n4) and
D(p1, n4) & D(p2, n3).

The deuteron formation rate is given as (see e.g., Ref. [24])

A = 3

4
(2π )3

∫
d3rDr (r)|ϕD(r)|2, (11)

where ϕD(r) is the wave function of relative motion of the
neutron and proton which form the deuteron. The nucleons are
assumed to be unpolarized and the spin factor 3/4 takes into
account that there are three spin states of a spin-one deuteron
and 4 spin states of a nucleon pair. The factor (2π )3 results
from the natural units with h̄ = 1 we use. If we used h = 1,
the factor would be absent.

The correlation function of two deuterons with relative
momentum q is determined by the equation

2R(q)A2 = 32

42
(2π )6

2∑
i=1

∫
d3r1d3r2d3r3d3r4D(r1)D(r2)

× D(r3)D(r4)|ψi(r1, r2, r3, r4)|2. (12)

The spin factor 3/4 in Eq. (12) has the same origin as that
in Eq. (11). The protons and neutrons are labeled with the
indices 1, 2 and 3, 4, respectively; ψ1(r1, r2, r3, r4) is the
wave function of two deuterons with the nucleon content
D(p1, n3) & D(p2, n4) and ψ2(r1, r2, r3, r4) is the wave func-
tion of D(p1, n4) & D(p2, n3). In principle, one should sum
up the functions ψ1 and ψ2 and take the modulus squared.
Then, the interference term of the wave functions shows up.
We have not found a way to compute analytically the term,
which is expected to be small. So equation (12) neglects the
term. As we explain below Eq. (17), the final formula of the
correlation function would be very complicated if one took
into account the interference term.

We note that our comments about the time dependence of
the source function and the reference frame we use, which are
formulated in the context of formula (2), apply equally to the
deuteron formation rate (11) and Eq. (12). In short, the source
function effectively takes into account the time duration of
the emission processes and we work in the center-of-mass
frame of the four-nucleon system where the motion of the
nucleons is nonrelativistic.

The formation time of a deuteron, which is of the order of
the inverse deuteron binding energy, is roughly 100 fm/c and
it is much bigger than the space-time extension of particles’
sources in high-energy collisions. One asks whether the long
formation time of a deuteron influences the source radii in-
ferred from the deuteron formation rate or the D-D correlation

function. The answer is negative—the formation time plays
no role here. The point is that, once the neutron-proton pair
becomes an isolated system after its emission from the fireball
or at the moment of the fireball freeze-out, the temporal evo-
lution of the neutron-proton wave packet does not change the
probability that the pair is in the deuteron energy eigenstate.
The same holds for the four-nucleon system—after the fireball
freeze-out the probability that the system in a scattering state
of two deuterons is fixed. This is evident if one realizes that
the femtoscopic formulas of the deuteron formation rate and
the D-D correlation function are obtained within the quantum-
mechanical sudden approximation; see the classical textbook
[25]. The problem is discussed in more detail in the Appendix.

To compute the contribution to the correlation function
(12), which comes from ψ1, we introduce the variables

R ≡ 1
4 (r1 + r2 + r3 + r4),

r13 ≡ r1 − r3,

r24 ≡ r2 − r4,

r ≡ 1
2 (r1 + r3) − 1

2 (r2 + r4),

r1 = R + 1
2 (r + r13),

r2 = R − 1
2 (r − r24),

r3 = R + 1
2 (r − r13),

r4 = R − 1
2 (r + r24).

(13)
One checks that the Jacobian of the variable transformation
equals unity.

Writing down the wave function as

ψ1(r1, r2, r3, r4) = eiPRφq(r)ϕD(r13)ϕD(r24), (14)

and using the Gaussian source (7), the integral over the center-
of-mass position R in Eq. (12) gives∫

d3RD(r1)D(r2)D(r3)D(r4) = Dr (r13)Dr (r24)D4r (r),

(15)
where Dr (r) is again given by Eq. (8), and the source function
D4r (r) equals

D4r (r) =
(

1

2πR2
s

)3/2

e
− r2

2R2
s . (16)

The function is normalized to unity; that is,
∫

d3rD4r (r) = 1.
To compute the contribution to the correlation function

(12), which comes from ψ2, we introduce the variables anal-
ogous to (13) but r3 ↔ r4. Further calculations are the same.
Combining the contributions from ψ1 and ψ2, we find that,
due to the integration over R in the right-hand side of Eq. (12),
the square of the formation rate (11) factors out. Conse-
quently, the factor 2A2, which is also present on the left-hand
side of Eq. (12), drops out and the correlation function equals

R(q) =
∫

d3rD4r (r)|φq(r)|2. (17)

The formula (17) has the same form as (5) but the source
function differs. When deuterons are directly emitted from
the fireball as elementary particles the radius of the deuteron
source is the same as the radius of the proton source. When
deuterons are formed only after the emission of nucleons,
the source becomes effectively bigger because the deuteron
formation is a process of spatial extent. More quantitatively,
the source radius of deuterons treated as bound states is bigger
by the factor

√
2 ≈ 1.41 than that of “elementary” deuterons.
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We note that, if the interference term discussed below
Eq. (12) is not neglected, the factorization does not occur, and
the D-D correlation function is not given by Eq. (17) but gets
a complicated form. In particular, it depends on the deuteron
formation rate A.

IV. COMPUTATION OF THE CORRELATION FUNCTION

To compute the correlation function given by Eq. (5) or
Eq. (17) one needs the wave function φq(r) of the relative
motion of two deuterons.

If the Coulomb interaction is absent but there is a short-
range strong interaction, the wave function can be chosen, as
proposed in Ref. [26], in the asymptotic scattering form

φq(r) = eiqz + f (q)
eiqr

r
, (18)

where q ≡ |q| and f (q) is the s-wave (isotropic) scattering
amplitude chosen as

f (q) = −a

1 + iqa
, (19)

with a being the scattering length which in general is a com-
plex number.

In the case of the D-D correlation function we deal with a
pair of identical particles and consequently the spatial wave
function (18) has to be symmetrized or antisymmetrized. The
total spin S of a D-D pair in an s-wave can be 0, 1, or 2. The
spin wave function of the pair is symmetric with respect to
the interchange of the deuterons for S = 0, 2 and antisym-
metric for S = 1. Since the complete wave function must be
symmetric with respect to the interchange of the deuterons,
the spatial wave function must be symmetric for S = 0, 2 and
antisymmetric for S = 1. Therefore, the wave function (18)
should be replaced by

φq(r) → 1√
2

[φq(r) + (−1)Sφq(−r)]

= 1√
2

{
eiqz + (−1)Se−iqz + [1 + (−1)S] f (q)

eiqr

r

}
,

(20)

where we have taken into account that the s-wave scattering
amplitude is symmetric under the mirror reflection r → −r.
Consequently, the effect of interaction shows up for S = 0, 2
but is absent for S = 1.

Let us compute the correlation function (5) with the Gaus-
sian source (8). For S = 1 the correlation function coincides
with that of noninteracting identical fermions and it equals

R1(q) = 1 − e−4R2
s q2

. (21)

For S = 0, 2 the correlation function (5) is found as

R0,2(q) = 1 + e−4R2
s q2 + | f (q)|2

R2
s

− Im f (q)

R2
s q

(
1 − e−4R2

s q2)

+ Re f (q)

π1/2R3
s q

∫ ∞

0
dre

− r2

4R2
s sin (2qr), (22)

where the remaining integral needs to be taken numerically.

Assuming that deuterons are unpolarized, the D-D correla-
tion function should be averaged over the spin states as

R(q) = 1
9R0(q) + 3

9R1(q) + 5
9R2(q), (23)

where R0(q), R1(q), and R2(q) are the correlation functions
corresponding to S = 0, 1, 2, respectively. The weight factors
1/9, 3/9, and 5/9 reflect the numbers of spin states in the three
channels.

Since we deal with charged particles, the formula (18)
should be modified because the long-range electrostatic in-
teraction influences both the incoming and outgoing waves.
However, the Coulomb effect can be approximately taken into
account [27] by multiplying the correlation function by the
Gamow factor that equals

G(q) = 2π

aBq

1

exp
(

2π
aBq

) − 1
, (24)

where aB is the Bohr radius of the deuteron-deuteron pair.
Since a−1

B = μα with μ and α being the reduced mass of the
D-D system and the fine-structure constant aB = 28.8 fm. The
Gamow factor is the modulus squared of the exact Coulomb
wave function of two charge particles taken at zero distance.
The Gamow factor properly takes into account the Coulomb
interaction as long as aB is much bigger that the source radius.
We identify the latter quantity with the rms radius which is√

3Rs. So, the condition of applicability of the Gamow factor
is Rs � 16.6 fm.

We are not aware of experimentally obtained scattering
lengths of the D-D system, but there are rather reliable calcu-
lations [28,29], see also Ref. [30]. We have used the following
values of the scattering lengths in the singlet (S = 0) and
quintet (S = 2) states:

a0 = (10.2 + 0.2i) fm, a2 = 7.5 fm, (25)

obtained in Refs. [28,29]. Unfortunately, an uncertainty of the
theoretical results is not given. The quintet scattering length
is also found in Ref. [30] as 7.8 ± 0.3 fm. However, the
computation scheme is different than in Refs. [28,29] and the
scattering length of the S = 0 channel is not given. Assuming
that the uncertainty of the scattering lengths is 0.3 fm the com-
puted correlation functions remain almost unchanged when
the scattering lengths are varied within the errors.

Using the numbers (25) and the deuteron mass mD = 1876
MeV, we have calculated according to Eq. (5) the correlation
functions R0(q), R1(q), R2(q) and the spin-averaged R(q)
for Rs = 1.00, 1.41, 2.00, and 2.83 fm. The results are shown
in Figs. 1–4, respectively. The correlation functions presented
in the figures take into account the strong interaction and
Coulomb repulsion together with the effect of indistinguisha-
bility of deuterons.

The source radii are chosen in such a way that Rs = 2.83 =√
2 × 2 = (

√
2)2 × 1.41 = (

√
2)3 × 1.00 fm. Therefore, the

scenarios of deuterons directly emitted from the fireball and
of deuterons formed due to final-state interactions correspond
to each pair of neighboring curves in Figs. 1–4. One has to
experimentally distinguish the two curves to distinguish the
two mechanisms of deuteron production.
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FIG. 1. The D-D correlation function of S = 0 for four values
of Rs.

As mentioned in the introduction, the D-D correlation
function was measured in nucleus-nucleus collisions at the
energy of a few tens of MeV per nucleon [15–17] and in
proton-nucleus collisions at 500 MeV [18], see also the review
[19] and references therein. The D-D correlation functions
we computed approximately agree with those measured in the
low-energy nucleus-nucleus collisions. However, the compar-
ison is not critical. The point is that the source radii obtained
in these measurements are rather large, corresponding to our
Rs from the interval 3–7 fm. Then, the correlation function
is dominated by the Coulomb repulsion, which is taken into
account in our calculations by means of the Gamow factor.
As explained below Eq. (24), the method is accurate for Rs �
16.6 fm. So, our calculations are not very precise for the radii
which satisfy the condition with a small margin. However, the
correlation functions measured for big sources are not relevant
for our proposal; in such a case the functions weakly depend
of the source radius Rs and it is difficult to distinguish Rs

from
√

2Rs.
Let us also note that in agreement with our expectations

it was found in Ref. [15] that the source radius inferred
from the p-p correlation function is smaller by factor 1.5–
2.0 than that from the D-D correlation function. However, in

FIG. 2. The D-D correlation function of S = 1 for four values
of Rs.

FIG. 3. The D-D correlation function of S = 2 for four values
of Rs.

the low-energy collisions there are several factors which can
contribute to the source-size difference.

We are particularly interested in deuterons produced at
midrapidity at the LHC because their origin is under debate.
The radius of the proton source measured at the LHC varies
from Rs ≈ 1.1 fm in p-p collisions [23,31] to Rs ≈ 4.0 fm
in central Pb-Pb collisions [22]. So, we are in the domain
of source sizes where, as Fig. 4 shows, the D-D correlation
function is sensitive to the source radius. Consequently, it can
be precisely measured. Then, a systematic measurement of
p-p, p-D, and D-D correlation functions can tell us whether
the deuterons are directly emitted from the fireball or are
formed due to final-state interactions. The p-p correlation
function has been already measured with a high accuracy
[22,23,31], and a measurement of the p-D function is feasible
[32], but it is a real challenge to obtain the D-D correlation
function. Since a production of 4He is observed at midrapidity
in Pb-Pb collisions at the LHC [33], D-D pairs certainly occur.
However, it will be difficult to collect a sufficient statistics of
the pairs to obtain the D-D correlation function.

FIG. 4. The spin-averaged D-D correlation function for four val-
ues of Rs.
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Our findings remain relevant for relativistic nucleus-
nucleus collisions at the energies of a few GeV in the center
of mass of nucleon-nucleon pairs. Then, nucleons and light
nuclei are abundantly produced at midrapidity but the excita-
tion energy per baryon of the fireball significantly exceeds the
nuclear binding energy. Since the direct emission of deuterons
from the fireball is suppressed if not excluded at all, we
expect that the source radius inferred from the D-D correlation
function is bigger by the factor of

√
2 than that obtained from

the p-p correlation function. By performing the measurements
for noncentral collisions, we can deal with relatively small
particle sources when the D-D correlation function strongly
depends on the source radius.

It would also be interesting to use our formulas in a situa-
tion where deuterons, as protons, are expected to be directly
emitted from a source. Such a situation presumably occurs in
the fragmentation domain of relativistic heavy-ion collisions,
that is, for deuterons with rapidities close to that of the pro-
jectile or target. Then, the deuterons come from the spectator
parts of colliding nuclei which are much less excited than
the participant parts. The proposed measurement is difficult,
if possible at all, in collider experiments but it is certainly
feasible in fixed-target experiments.

V. SUMMARY AND CONCLUSIONS

We have derived a formula of the D-D correlation func-
tion in two ways. At the beginning the deuterons have been
treated as elementary particles and further on as neutron-
proton bound states. In the first case the deuterons are directly
emitted from the source and in the second case the deuterons
are formed only after the nucleons are emitted from the
source. Then, the deuteron formation is simultaneous with
a generation of D-D correlations. We have found that the
source radius of deuterons formed due to final-state interac-
tions is bigger by the factor of

√
2 than that of directly emitted

deuterons. Previously we found the analogous result for the
p-D correlation function but the effect of enlargement of the
source radius, which happens due to the space-time extension
of the deuteron formation process, was by the smaller factor
of

√
4/3 [14].

To check whether the enlargement of the source radius is
a measurable effect we have computed the D-D correlation
function. The Bose-Einstein statistics of deuterons and the
s-wave scattering due the strong interaction and the Coulomb
repulsion have been taken into account. The correlation func-
tion is sensitive to the source radius for sufficiently small
sources with the rms radii smaller than 3.5 fm. Otherwise the
correlation function is dominated by the Coulomb repulsion
and weakly depends on the source radius.

We have discussed our findings in the context of exist-
ing data from low-energy nuclear collisions and have also
considered measurements which can clarify a mechanism of
deuteron production making use of our findings.
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APPENDIX: DEUTERON FORMATION TIME

The formation time of a deuteron, which is of order 100
fm/c, plays an important role when multiple interactions of a
deuteron are considered. The two interaction processes can-
not be treated as independent from each other if they are
not separated by a time interval which is much longer than
the formation time. We explain here why the formation time
does not influence the source radii inferred from the deuteron
formation rate or the D-D correlation function.

Let us first discuss the case of a single deuteron. One could
argue that the deuteron formation rate is determined by the
relative distance of the neutron and proton not at the moment
of the fireball freeze-out, as given by Eq. (11), but at a later
time which includes the deuteron formation time. Since the
formation time is much longer than the space-time radius of
the source, the effect could be sizable. However, this is not the
case, as follows from the derivation of the deuteron formation
rate formula (11), which relies on the quantum-mechanical
sudden approximation, see the classical textbook [25].

A rather detailed derivation of the deuteron formation rate
is given in the old paper by one of us [7]. Here we discuss
only the sudden approximation aspect of the derivation. The
fireball freezes out or decays at the time t f , which is identified
with a sudden change of the system’s Hamiltonian. For t < t f

a neutron-proton pair interacts with fireball constituents and
for t > t f the pair is an isolated system. According to the
sudden approximation, the probability that the neutron-proton
pair, which is described by the wave function ψ (t, r), is in a
deuteron energy eigenstate ψD(t, r) equals

P =
∣∣∣∣
∫

d3rψ∗(t f , r)ψD(t f , r)

∣∣∣∣
2

=
∫

d3rd3r′ψ∗(t f , r)ψ (t f , r′)ψD(t f , r)ψ∗
D(t f , r′). (A1)

To simplify the discussion we consider here only the relative
motion of the neutron and proton, and consequently the wave
functions ψ (t, r) and ψD(t, r) describe only the relative mo-
tion.

Since ψD(t, r) is the energy eigenstate of the eigenvalue E
it is of the form

ψD(t, r) = e−iEtφD(r), (A2)

which when substituted in the probability expression gives

P =
∫

d3rd3r′ψ∗(t f , r)ψ (t f , r′)φD(r)φ∗
D(r′). (A3)

As one observes, the time dependence of the deuteron wave
function disappears.

Since the neutron-proton pair in a fireball is a part of a
bigger system it should be described not by the wave function
ψ (t, r) but rather by the density matrix ρ(t, r, r′). So, we
replace ψ∗(t f , r)ψ (t f , r′) by ρ(t f , r, r′) and the probability
becomes

P =
∫

d3rd3r′ρ(t f , r, r′)φD(r)φ∗
D(r′). (A4)

As explained in Ref. [7], the assumption, which leads to the
final deuteron formation rate formula (11), is equivalent to the
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assumption that the density matrix is diagonal; that is,

ρ(t f , r, r′) ∼ δ(3)(r − r′)D(r), (A5)

where D(r) is the source function being the probability distri-
bution of neutron-proton relative distance at freeze-out. Thus,
one finds

P ∼
∫

d3rD(r)|φD(r)|2, (A6)

which is up the spin and normalization factors our Eq. (11).
The neutron-proton wave function ψ (t, r) obviously

evolves beyond the freeze-out time t f . However, the prob-
ability that the pair is in a deuteron energy eigenstate is
determined at the freeze-out when the system’s Hamiltonian
suddenly changes and the pair becomes isolated. Further
evolution of the wave function ψ (t, r) does not change the
probability because the function can be expressed as a super-
position of the energy eigenfunctions with time-independent

coefficients. Consequently, the projection of the wave packet
ψ (t, r) on the deuteron energy eigenfunction equals the cor-
responding coefficient.

We note that an accuracy of the sudden approximation,
which is discussed in detail in the textbook [25], depends
on how fast the system’s Hamiltonian changes but not on the
timescale of the evolution of ψ (t, r).

When one deals not with one but with two deuterons in a
scattering state the situation is very similar. The femtoscopic
formula of the D-D correlation function is obtained by pro-
jecting the four-nucleon state at the moment of freeze-out
onto the wave function of two deuterons in a scattering state.
The wave-packet of four nucleons evolves after the freeze-out
time but once the four-nucleon system becomes isolated the
probability that the four nucleons are in the energy eigenstate
of two deuterons does not change in time. Consequently, the
deuteron formation time does not influence the source radius
inferred from the femtoscopic correlation function.
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