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Coulomb dynamical polarization potential and the electric dipole polarizability
for weakly bound and neutron-rich light nuclei

H. M. Maridi * and K. Rusek †

Heavy Ion Laboratory, University of Warsaw, ulica Pasteura 5a, 02-093, Warsaw, Poland

N. Keeley‡

National Centre for Nuclear Research, ulica Andrzeja Sołtana 7, 05-400 Otwock, Poland

(Received 12 April 2021; revised 6 July 2021; accepted 11 August 2021; published 24 August 2021)

In this paper, we present a method to determine the dipole polarizability of light exotic nuclei with a two-body
deuteronlike cluster structure. Using the adiabatic approximation, we solve the Schrödinger equation for the
internal motion of the exotic projectile incident on a heavy target nucleus and express the resulting Coulomb
dynamical polarization potential (CDPP) in terms of regular and irregular Coulomb functions. We then obtain a
new expression for the dipole polarizability (α0) by equating the real part of this CDPP to the classical expression
for the polarization potential. The α0 values for many weakly bound light nuclei are calculated and where values
are available were found to be in good agreement with those obtained in previous studies using various other
methods.
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I. INTRODUCTION

When two nuclei interact at energies below the Coulomb
barrier the deviation from Rutherford scattering may be rep-
resented by a short-range nuclear potential. However, at low
energies the lighter colliding partner—usually the projectile—
may become polarized by the electric field of the heavier,
thus distorting its charge distribution and inducing an addi-
tional interaction which influences the elastic scattering. This
additional interaction is often referred to as the Coulomb
dynamical polarization potential (CDPP). If the projectile is
weakly bound this polarization effect may become large, giv-
ing rise to a strong Coulomb dipole excitation mode. In the
case of halo nuclei where the breakup threshold energy is less
than 1 MeV, dipole excitation to the low-lying continuum can
be particularly important, see, for example, Ref. [1].

A weakly bound neutron-rich nucleus will be easily dis-
torted if it moves in an electric field where the valence
neutron(s) moves in the opposite direction to the charged core.
This phenomenon is known as the dipole polarizability [2]
(although it is not restricted to nuclei of this class). Usually,
the nuclear dipole polarizability is neglected for stable nuclei
where the B(E1) strength distribution peaks at relatively high
excitation energies. However, a weakly bound projectile with
low breakup threshold can break up and become polarized due
to a strong external Coulomb field with significant probability,
leading to a reduction in the elastic-scattering cross section.
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This dipole polarization can be represented by the electric
dipole polarizability, α0, which may be calculated from first
principles or derived from the B(E1) strength distribution as
follows:

α0 = 8π

9

∫
1

ε

dB(E1, ε)

dε
dε. (1)

Recently, a method has been developed to extract such B(E1)
distributions for weakly bound nuclei from Coulomb disso-
ciation data using continuum-discretized coupled channels
(CDCC) calculations [3].

If the incident energy is sufficiently low such that nuclear
effects may be neglected (and any Coulomb excitation of the
heavy target nucleus is small enough to be ignored), i.e., the
Sommerfeld parameter η � 1, the classical approximation is
valid, and the following expression for the purely real classical
CDPP in terms of the dipole polarizability α0 is obtained [4]

δVR = −1

2
α0

Z2
T e2

R4
. (2)

Under these conditions the dipole polarizability may be
extracted from the measured elastic-scattering angular distri-
bution by adding the term (2) to the usual diagonal Coulomb
potential and adjusting the value of α0 to fit the small deviation
from Rutherford scattering [5].

In recent years this approach has been extended to include
breakup of a weakly bound deuteronlike projectile in addition
to the polarization induced by the Coulomb field of a heavy
target nucleus, for example, the work of Borowska et al. [6]
which uses a semiclassical adiabatic formalism. The internal
motion of the valence neutrons is treated adiabatically, and
the projectile as a whole is assumed to follow a classical
Rutherford trajectory. In order to obtain an analytic expression
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for the CDPP a quasiclassical approach is additionally applied
to the internal motion of the projectile, resulting in a complex
CDPP, the imaginary part representing the effects of breakup.
In this adiabatic approximation, the relative motion is slow
compared with the time of the excitation h̄/Ex, where Ex is
the excitation energy, and the resulting CDPP is local and
independent of the scattering energy [7].

The CDPP may be extracted from CDCC calculations by
means of the trivially equivalent method [8], for example,
and the so-called trivially equivalent local potential (TELP)
can represent the dynamical effect well for scattering from
heavy targets. Such CDCC calculations can be time consum-
ing and difficult to perform, however, so that alternative means
of calculating the CDPP, such as that of Borowska et al.
[6] which can be used to describe coupling to large sets of
states, such as the continuum of breakup states, can be useful
tools for the planning and interpretation of experiments. The
large dipole transition strength close to the breakup thresh-
old in halo nuclei [9–11] often leads to significant coupling
effects on the elastic-scattering angular distribution, partic-
ularly in the case of neutron halo nuclei. In addition, most
Coulomb-excitation experiments can extract information on
the electromagnetic properties of nuclear transitions with rel-
evance to nuclear structure as well as nuclear astrophysics,
and Coulomb dissociation can be used to determine the abso-
lute astrophysical S(E ) factor for radiative capture reactions
b(x, γ )a by studying the reverse photodisintegration process
where the Coulomb field of a heavy target nucleus is used as a
source of virtual photons [12]. Thus, a means of estimating the
dipole polarizability α0 for different possible configurations of
such nuclei would also be of value.

In the present paper we derive a new expression for the
CDPP of a weakly bound projectile with a two-body deuteron-
like cluster structure moving in the strong Coulomb field of a
heavy target. By equating the real part of this complex CDPP
with the purely real classical expression we present a new
method to evaluate the dipole polarizability α0. Values of α0

are obtained for many light exotic nuclei and compared with
previous determinations using other methods where available.
The sensitivity of α0 to the separation energy is also investi-
gated.

II. THEORY

We follow the procedure of Borowska et al. [6] up to
and including their Eq. (15), our Eq. (32). We differ in our
subsequent handling of the Eq. (32), which must be solved
to obtain the CDPP. We do not approximate the Coulomb
functions as in Borowska et al. where the WKB expressions
are used for these quantities.

A. Derivation of the Coulomb polarization potential

Let us consider the scattering problem of a weakly bound
projectile (P) moving in the Coulomb field of a heavy target
(T ) with charge ZT and mass mT (see Fig. 1). The projectile
has mass mp and is considered to be a two-body composite
object, made up of a charged core (c) (with mass mc and
charge Zc = Zp) and valence neutron(s) (v) with mass mv =

FIG. 1. Coordinates describing the elastic scattering of a projec-
tile (P) in the Coulomb field of a target (T ). The weakly bound
projectile is considered to have a two-body cluster structure with
a charged core (C) and weakly bound neutron(s) (ν). See text for
further details.

nmn (where n is the number of valence neutrons and mn is the
mass of the neutron). In this paper we confine our attention to
systems where the valence particle is a neutron or cluster of
neutrons in order to avoid the complications associated with
the Coulomb interaction between the valence particle and the
core and the valence particle and the target for the case of
charged valence clusters. The internal structures of the core of
the projectile and the target nucleus are not taken into account
and their excitations are neglected.

The total system is described by a position vector R
which represents the coordinate of the projectile center-of-
mass relative to the target with a system reduced mass of
μ = mpmT /(mp + mT ) ≈ mp and a kinetic-energy operator
TR = −h̄2	R/2μ; rc and rv are the position vectors of the
two projectile clusters [charged core and valence neutron(s)],
respectively. The internal system of the projectile is described
by a position vector r representing the relative coordinate of
the valence neutron(s) with respect to the core with a kinetic-
energy operator Tr = −h̄2	r/2μp. The coordinates may then
be written as

r = rv − rc, mpR = mvrv + mcrc, (3)

and using the projectile reduced mass μp = mcmv/mp in
Eq. (3) we get

rc = R − μp

mc
r. (4)

The motion of the weakly bound projectile with wave-
function 
(r, R) in the nuclear and Coulomb fields of the
heavy target can be described by the Schrödinger equation,

H
(r, R) = E
(r, R), (5)

where the total energy E = Ep + ε0 is the sum of the (asymp-
totic) projectile kinetic-energy Ep and the binding energy ε0,
the separation energy of the valence neutron(s) from the pro-
jectile. The Hamiltonian of the system is given by

H = TR + Tr + VC (rc) + Vvc(r), (6)
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where VC is the Coulomb potential and Vvc(r) is the nuclear
potential of the weakly bound projectile neutron(s) relative to
the projectile core.

The Coulomb potential between the charged projectile core
and the target VC (rc) can be considered to consist of two parts:
one for the Coulomb scattering of the projectile in the field of
the heavy target VC (R) and a second part 	VC (r, R), which
describes deviations from pure Coulomb scattering due to the
internal structure of the projectile (i.e., Coulomb excitation)
as follows:

VC (rc) = VC (R) − 	VC (r, R), (7)

and the total Hamiltonian then becomes

H = TR + Tr + VC (R) − 	VC (r, R) + Vvc(r)

= H0 − 	VC (r, R). (8)

Since the internal motion of the weakly bound neutron(s)
is faster than the total projectile motion in the target field we
can use the adiabatic Born-Oppenheimer approximation for
the wave function as in Refs. [13–15],


(r, R) = χ (R)φ(r, R), (9)

where χ (R) refers to the wave function of the center of mass
and φ(r, R) refers to that of the relative motion of the projec-
tile.

Using separation of variables, the Schrödinger equation (5)
can be written as [6]

[TR + VC (R)]χ (R) = {E − [ε0 + δV (R)]}χ (R), (10)

[Tr − 	VC (r, R) + Vvc(r)]φ(r, R) = [ε0 + δV (R)]φ(r, R).

(11)

In addition to polarization of the mass and charge distri-
butions of the weakly bound projectile, the Coulomb field of
the target may also lead to its breakup into the charged core
and the weakly bound neutron(s). To take account of these
effects the binding energy of the valence neutron(s) to the
charged core of the projectile is modified by the addition of
a small complex potential δV (R) [6,14,16], often referred to
as the CDPP. It parametrically depends on the center-of-mass
coordinate R due to the fact that the projectile internal motion
is fast compared with its motion through the Coulomb field of
the target. In addition, the projectile breakup is determined by
the imaginary part of the CDPP. The internal wave function
describing the interaction between the core and the valence
neutron(s) is usually given as [14,17]

φ0(r) =
√

α

2π

e−αr

r
, (12)

where

α =
√−2μpε0

h̄2 . (13)

In principle, the nucleons inside the core have some spatial
distribution, and the interaction between the nucleons also
has a finite range. At low energies, the range of the potential
between the core and the valence neutrons is much smaller

than the wavelength of the projectile and can be neglected, so
we can make use of the zero-range approximation [18]. This is
suitable for systems involving light-ion projectiles with small
threshold energies [19]. In addition, making the zero-range
approximation enables Eq. (11) to be solved. Before doing so
we test the effect of using a finite-range potential, for example,
the Hulthén interaction with a range of 1/μ0 [20],

Vvc(r) = −h̄2

2μp
μ0(μ0 + α)

e−μ0r

1 − e−μ0r
, (14)

which corresponds to the following form for the exact wave
function of the projectile,

φ0(r) = 1√
4π

√
2α(μ0 + α)(μ0 + 2α)

μ2
0

e−αr

r
(1 − e−μ0r ),

(15)
which tends to (12) as μ0 → ∞, and we obtain the form factor
as [21]

F
(
q2

v

) = 〈
φv

0 (r)
∣∣Vvc(r)|φ0(r)〉

= − V0√
4π

(μ0 + α)1/2(μ0 + 2α)3/2

(μ0 + α)2 + q2
v

(16)

where V0 = √
8παh̄2/2μp, φv

0 = e−iqvrv denote the valence
plane wave [21]. For low projectile energies where qv is
small, and at small threshold energies (small α) we have
F (q2

v ) ≈ − V0√
4π

[15,22], and, therefore, the modification due
to the finite-range of the core-valence interaction is very small
and this gives us confidence in using the zero-range approxi-
mation.

The effective two-body potential between the valence par-
ticle and core of the projectile Vvc(r) can be approximated by
the zero-range expression [15,21,22],

Vvc(r)φ(r, R) = V0δ(r) = −2π h̄2

μp

√
α

2π
δ(r). (17)

Equation (11) can then be written as

[Tr − 	VC (r, R) − ε0 − δV (R)]φ(r, R) = 2π h̄2

μp

√
α

2π
δ(r),

(18)

in which φ(r, R)
r→0−−→∝ ( 1

r − α) [23] and then obeys the
usual condition [16,23],

lim
r→0

∂

∂r
ln[rφ(r, R)] = −α. (19)

The possibility of projectile breakup means that φ(r, R) de-
scribes the (quasi) stationary state of the projectile while
moving along the Rutherford trajectory.

We now transform from (r, R) to (rc, R) coordinates,

r = mc

μp
(R − rc), δ(r) =

(
mc

μp

)−3

δ(R − rc),

	r =
(

mc

μp

)−2

	rc , Tr = μp

mc

−h̄2

2mc
	rc = μp

mc
Trc , (20)
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and then Eq. (18) can be written as(
μp

mc
Trc + VC (rc) − [VC (R) + ε0 + δV (R)]

)
φ(rc, R)

= 2π h̄2

μp

√
α

2π

(
mc

μp

)−3

δ(R − rc). (21)

Let us introduce

Ec(R) = mc

μp
[VC (R) + ε0 + δV (R)] = h̄2k2

2mc
, (22)

which denotes the energy of the projectile moving in the
Coulomb potential VC (rc), and k is the wave number of the
charged core in the field of the target. Equation (21) then
becomes(

Trc + mc

μp
VC (rc) − Ec

)
mc

μp

mc

2π h̄2

√
2π

α
φ(rc, R)

= δ(R − rc). (23)

Taking the usual expression for the Coulomb potential,

VC (rc) = ZpZT e2

rc
, (24)

it is easy to show that the Coulomb Green’s function
GC[Ec(R); rc, R] is the solution of Eq. (23) in which

GC[Ec(R); rc, R] = mc

μp

mc

2π h̄2

√
2π

α
φ(rc, R), (25)

which can be written as [24]

GC[Ec(R); rc, R] = 2μp

h̄2

�(1 + iη)

2π i|R − rc|
[

∂

∂ρ+
− ∂

∂ρ−

]
×W−iη,1/2(−2iρ+)M−iη,1/2(−2iρ−),

(26)

where W−iη,1/2 and M−iη,1/2 are the Whittaker functions, � is

the γ function, η = ( m2
c

μp
)ZpZT e2/h̄2k(R) denotes the Sommer-

feld parameter and

ρ± = 1

2
k(R)(R + rc ± |R − rc|)

= 1

2
k(R)

(
R + rc ± μp

mc
|r|

)
, (27)

in which limr→0ρ± = ρ = k(R)R.
By using the relations between Whittaker functions and

Coulomb functions (Fl and H+
l = Gl + iFl ) [25,26],

Fl (η, ρ) = Cl (η)2−l−1(∓i)l+1M±iη,l+1/2(±2iρ),

H+
l (η, ρ) = (−i)l e(πη/2)+iσl (η)W−iη,l+1/2(−2iρ),

Cl (η) = 2l e−πη/2|�(l + 1 + iη)|
(2l + 1)!

,

σl (η) = Ph �(l + 1 + iη), (28)

we can obtain

GC[Ec(R); rc, R] = 2μp

h̄2

1

4π |R − rc|
[

∂

∂ρ+
− ∂

∂ρ−

]

×H+
0 (ρ+)F0(ρ−), (29)

where H+
0 = G0 + iF0, F0, and G0 are the regular and irregu-

lar Coulomb wave functions.
From Eq. (27),

∂

∂r
= μpk

2mc

(
∂

∂ρ+
− ∂

∂ρ−

)
. (30)

Now, by applying the condition (19) by taking the limit r → 0
and by using the properties of the Coulomb functions,

H+′′
0 (ρ) =

(
2η

ρ
− 1

)
H+

0 (ρ),

F ′′
0 (ρ) =

(
2η

ρ
− 1

)
F0(ρ), (31)

F0G′
0 − F ′

0G0 = 1,

one can obtain [6,16]

μp

mc
k(R)

{
H+′

0 (ρ)F ′
0 (ρ) −

(
2η

ρ
− 1

)
H+

0 (ρ)F0(ρ)

}
= −α,

(32)
where

k(R) =
√

2m2
c

μph̄2 [VC (R) + ε0 + δV (R)], (33)

(
2η

ρ
− 1

)
=

2
(m2

c
μp

)
ZpZT e2

h̄2k2(R)R
− 1

= VC (R)

VC (R) + ε0 + δV (R)
− 1, (34)

and we get

H+′
0 (ρ)F ′

0 (ρ) + ε0 + δV (R)

VC (R) + ε0 + δV (R)
H+

0 (ρ)F0(ρ)

= mc

μp

−α√
2m2

c

μph̄2 [VC (R) + ε0 + δV (R)]

= −
√ −ε0

[VC (R) + ε0 + δV (R)]
. (35)

By multiplying by [VC (R) + ε0 + δV (R)]/ε0 and introducing
the quantity Q(R),

Q(R) =
√

VC (R) + ε0 + δV (R)

−ε0
= μp

mc

k(R)

α
, (36)

we obtain(
1 + δV (R)

ε0

)
H+

0 (ρ)F0(ρ) − Q2(R)H+′
0 (ρ)F ′

0 (ρ) = Q(R).

(37)

δV (R) is very small compared with the Coulomb potential
at all distances, so this equation can be solved by assuming
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(a) (b)

FIG. 2. (a) The real and imaginary CDPP for 6He + 208Pb at
14 MeV compared with the TELP extracted from a CDCC calcu-
lation. (b) Angular distribution of 6He + 208Pb elastic scattering at 14
MeV calculated with CDCC and the optical model using the CDPP
compared with the data of Ref. [27].

δV (R) � VC (R) such that

Q(R) ≈
√

VC (R) + ε0

−ε0
=

√
ZpZT e2

−ε0R
− 1. (38)

By taking the real and imaginary parts of the quantities in
Eq. (37) the CDPP δV (R) can be written as

δVR(R) = ε0

[
QG0F0 + Q2G0F0G′

0F ′
0 + Q2F 2

0 F ′2
0

F 4
0 + G2

0F 2
0

− 1

]

δVI (R) = ε0

[
Q2F0F ′

0 − QF 2
0

F 4
0 + G2

0F 2
0

]
. (39)

The root-mean-square (rms) radii of the real and imaginary
parts of the CDPP are given by

R(δVR(I ) ) = 〈R2〉1/2
R(I ) =

∫
dr 4πR4δVR(I )(R)∫
dr 4πR2δVR(I )(R)

. (40)

B. Application to 6He + 208Pb at 14 MeV

In order to check how well the CDPP derived from Eq. (39)
is able to describe experimental data, we investigated the
6He + 208Pb elastic scattering measured at an incident energy
of 14 MeV, well below the Coulomb barrier [27]. The CDPP
was calculated for this system [solid curves in Fig. 2(a)]
and included in an optical model (OM) calculation where
the OM potential consisted of the standard Coulomb central
potential plus the CDPP with no nuclear interaction. CDCC
calculations, including only E1 excitations to the continuum,
were also performed. The CDCC calculations employed the
dineutron model of 6He [28]. This model reproduces reason-
ably well the B(E1) transition strength for the 6He. Thus,
the CDPP extracted from these calculations by means of the
trivially equivalent method [8], the so-called TELP (trivially
equivalent local potential), should serve as a realistic test of
the method presented in this paper.

In Fig. 2(a) we compare the CDPP calculated using
Eq. (39), the solid curves, with the TELP extracted from the
CDCC calculations, the dashed curves. The real part of the
CDPP coincides very well with the real part of the TELP

for projectile-target separations larger than 20 fm whereas
the imaginary part is more absorptive. This means that the
reaction cross section (essentially the 6He Coulomb breakup
cross section in this context) of the CDCC calculation will be
smaller than the OM result obtained using the CDPP since this
quantity depends mostly on the imaginary part of the poten-
tial, whereas the dipole polarizability of 6He, which depends
solely on the real part, should be correctly represented by the
CDPP calculated using Eq. (39).

The problem of the large imaginary part of the CDPP is
well illustrated when the model calculations are compared
with the data for 6He + 208Pb elastic scattering, see Fig. 2(b).
Both models underpredict the measured cross sections at
backward angles, the OM calculation using the CDPP signifi-
cantly more so than the CDCC calculation due to the stronger
imaginary potential. In the case of the CDCC calculations the
underprediction can be partly accounted for by including E2
excitations in addition to the E1 as demonstrated in Ref. [29]
and discussed in Ref. [27]. A comparison of the curves in
Fig. 2(b) labeled “CDCC E1” and “CDCC E1 + E2” shows
the size of the effect in this case. Also plotted in Fig. 2(b) is the
result of an OM calculation where the imaginary part of the
CDPP was multiplied by a factor of 0.5 to match the imaginary
part of the TELP obtained from the CDCC calculation, see
Fig. 2(a). It matches the CDCC E1’ result rather closely,
confirming that the real part of the CDPP realistically reflects
the dipole polarizability. Since the imaginary part of the CDPP
is produced by the breakup, these comparisons suggest that
the too large absorption of the CDPP is partly due to the
omission of the E2 couplings and partly due to the simpli-
fications inherent in the handling of the E1 breakup effects,
for example, the condition on the internal wave-function (19)
which assumes the limit as a real value only.

To summarize, the real part of the CDPP derived in this
paper compares well with that generated by the CDCC cal-
culation and is used in the next section to obtain the dipole
polarizability.

C. Dipole polarizability from the CDPP

If the long-range attractive part of the CDPP (39) is fitted
by the classical expression (2), one can obtain a value for the
dipole polarizability α0. At large R (larger than the rms radius)
ρ = kR is also large, thus, F0 and F ′

0 are much smaller than G0

and G′
0, and Eq. (39) may be approximated as

δVR(R) ≈ ε0

[
Q + Q2G′

0F ′
0

G0F0
− 1

]
,

δVI (R) ≈ ε0

[
Q2F ′

0 − QF0

G2
0F0

]
. (41)

Introducing this into Eq. (2) we obtain the following result for
what we will term the polarizability function α0(R):

α0(R) = −2ε0R4

Z2
T e2

δVR(R)

= −2ε0R4

Z2
T e2

Q + Q2G′
0F ′

0 − G0F0

G0F0
. (42)
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FIG. 3. The polarizability functions α0(R) for
2H, 6He, 8He, 11Li, and 11Be + 208Pb at energies near
the Coulomb barrier, calculated using Eq. (44). αmax

0 =
0.43, 1.5, 0.22, 5.76, 2.5 fm3 located at 15.5, 28.6, 12.9, 52.4,
39.7 fm for 2H, 6He, 8He, 11Li, and 11Be, respectively.

FIG. 4. CDPPs for 2H, 6He, 11Li, and 11Be + 208Pb on linear
and logarithmic scales. The solid lines denote the real CDPP cal-
culated in this paper [Eq. (39)] and the dashed lines represent the
CDPP calculated using the semiclassical formula (2) with α0 tuned
to give the best match to our CDPP.

TABLE I. The dipole polarizability α0 (in fm3) of weakly bound
light nuclei extracted from the fitting of the CDPP to the classical
expression (as in Fig. 4) using Eq. (44). The separation energies (ε0,
in MeV) are taken from the recent atomic mass evaluation [30].

Projectile Configuration −ε0 αmax
0 R0 Fitted α0

2H 1H +n 2.225 0.428 15.45 0.375
6He 4He +2n 0.975 1.505 28.55 1.316
6He 5He +1n 1.710 0.196 14.95 0.171
7He 5He +2n 1.301 0.580 20.95 0.508
8He 4He +4n 3.10 0.223 12.90 0.195
8He 6He +2n 2.125 0.159 13.35 0.139
8He 7He +n 2.535 0.048 9.55 0.042
9He 7He +2n 1.280 0.334 18.45 0.291
6Li 5Li +n 5.660 0.040 7.45 0.035
7Li 6Li +n 7.251 0.018 5.70 0.015
8Li 7Li +n 2.033 0.167 13.95 0.146
9Li 8Li +n 4.062 0.033 7.75 0.028
10Li 8Li +2n 4.036 0.059 9.00 0.052
11Li 9Li +2n 0.369 5.766 52.40 5.026
11Li 10Li +n 0.396 2.254 40.90 1.964
12Li 10Li +2n 0.190 17.96 82.70 15.64
13Li 12Li +n 0.100 24.96 106.1 21.90
9Be 8Be +n 1.665 0.346 17.75 0.302
10Be 9Be +n 6.812 0.017 5.80 0.014
11Be 10Be +n 0.502 2.498 39.65 2.173
12Be 11Be +n 3.171 0.052 9.40 0.045
12Be 10Be +2n 3.672 0.085 10.20 0.074
13Be 11Be +2n 2.661 0.136 12.45 0.119
14Be 13Be +n 1.780 0.120 13.45 0.104
14Be 12Be +2n 1.270 0.510 21.00 0.444
16Be 15Be +n 0.450 1.424 35.55 1.240
12B 11B +n 3.370 0.072 10.10 0.063
14B 13B +n 0.970 0.631 23.85 0.550
15B 14B +n 2.778 0.067 10.40 0.058
16B 14B +2n 2.690 0.133 12.45 0.116
17B 16B +n 1.470 0.184 15.80 0.160
17B 15B +2n 1.380 0.445 19.95 0.388
18B 16B +2n 1.460 0.352 18.55 0.307
19B 18B +n 0.090 39.07 122.5 34.09
19B 17B +2n 0.090 82.72 147.4 72.01
15C 14C +n 1.218 0.500 21.30 0.435
17C 16C +n 0.734 1.063 29.25 0.925
19C 18C +n 0.580 1.354 33.00 1.178
22C 21C +n 0.100 33.74 115.1 29.36
22C 20C +2n 0.035 578.47 304.6 503.27
18N 17N +n 2.828 0.087 11.10 0.075
20N 19N +n 2.160 0.120 12.90 0.104
22N 21N +n 1.540 0.193 15.90 0.169
23O 22O +n 2.730 0.073 10.80 0.064
26O 25O +n 0.739 0.780 27.15 0.679
26F 25F +n 0.730 1.012 29.10 0.881
27F 26F +n 1.610 0.193 15.70 0.168
27F 25F +2n 2.340 0.190 14.25 0.165
28F 26F +2n 1.410 0.484 20.45 0.422
29F 28F+n 1.320 0.248 17.65 0.216
29F 27F +2n 1.130 0.701 23.75 0.610
27Ne 26Ne+n 1.500 0.274 17.50 0.238
29Ne 28Ne +n 0.970 0.567 23.45 0.493
31Ne 30Ne +n 0.170 16.12 83.90 14.02
34Na 33Na +n 0.170 16.16 84.00 14.06
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TABLE I. (Continued.)

Projectile Configuration −ε0 αmax
0 R0 Fitted α0

35Mg 34Mg +n 0.750 0.932 28.35 0.811
37Mg 36Mg +n 0.240 8.130 64.95 7.083

The function α0(R) reaches a maximum value (αmax
0 ) at a

definite distance R0,

αmax
0 = max[α0(R)]

= max

[−2ε0R4

Z2
T e2

Q + Q2G′
0F ′

0 − G0F0

G0F0

]
. (43)

The function α0(R) completely saturates [[dα0(R)/dR ≈ 0] at
large distances R > 2R0 as shown in Fig. 3. At these distances
the CDPP (39) is proportional to 1/R4 and matches exactly the
classical formula (2). One may then extract the electric dipole
polarizability as follows:

α0 ≈ α0(R > 2R0) at which
dα0(R)

dR
≈ 0, (44)

thus obviating the need for the fitting procedure. Fig-
ure 4 presents our real CDPP from Eq. (39) compared to
the fitted classical expression for four different systems,
2H + 208Pb, 6He + 208Pb, 11Li + 208Pb, and 11Be + 208Pb.
We compare fits to the CDPP with both αmax

0 and α0. It is clear
that α0 fits the CDPP well at large distances whereas αmax

0 fits
it only at distances around R0.

III. APPLICATION TO WEAKLY BOUND
LIGHT EXOTIC NUCLEI

As discussed in Sec. II C, the dipole polarizability can be
determined by fitting the calculated CDPP with the classical
formula using Eq. (44). The results obtained for many weakly
bound and neutron-rich nuclei are listed in Table I.

It should be recalled that the CDPP derived in this paper
is predicated upon a two-body deuteronlike structure of the
projectile (i.e., a charged core plus a neutron or cluster of
neutrons). In producing Table I it has, therefore, been nec-
essary to assume a cluster structure of this type for the nuclei
considered. In some cases this will not cover the most favored
or likely clustering configuration, or there may be more than
one equally likely configuration of this type. We thus do not
necessarily advocate these configurations as being the most
physically realistic, but we give the values of α0 obtained

under the various clustering assumptions in order to obtain
a systematic of the variation of α0 with different physical
parameters and, in the case of some of the more exotic nu-
clei considered, as a potential aid in probing possible cluster
structures. In Table II we compare our results for α0 (mean
value of the two methods from Table I) with values from the
literature for nuclei which are known to exhibit pronounced
deuteronlike clustering. We also compare with polarizability
values extracted from the available dB(E1, ε)/dε data using
Eq. (1). These cases provide a realistic test of the current
procedure for determining α0, and our results are in good
agreement with the previous studies.

Table I shows a considerable variation of α0 for a given
nucleus according to the assumed cluster configuration. For
nuclei with well-known dominant configurations these sup-
port our results. For example, in the case of 6He we see from
Table I that the α0 value for the 4He +2n configuration is
much larger than for an assumed 5He +n structure, in agree-
ment with the known 2n halo nature of this nucleus. The same
applies to the 9Li +2n and 10Li +n configurations of 11Li. We
also note that for some of the more exotic nuclei we predict
large values of α0 for certain configurations which it would
be of interest to confirm experimentally. In particular, if a
20C +2n cluster configuration is assumed for the exotic carbon
isotope 22C, the predicted value of α0 is truly enormous at
about 500 fm3. Although we do not claim that this value is
completely realistic, particularly in light of the uncertainty
in the S2n value for 22C (see below), it strongly suggests
that if this nucleus does indeed exhibit a 2n halo structure a
measurement of its near-barrier elastic scattering from a heavy
target such as 208Pb would prove interesting.

Figure 5 plots the average dependence of the polarizability,
taken from Table I, on the threshold energy for a wide range
of nuclei. It is clear that the polarizability value depends
inversely on the square of the threshold energy.

It was found from Table I that the dipole polarizability α0

is about 0.87 (≈√
2π2/16) of αmax

0 so we redefine the dipole
polarizability as

α0 ≈
√

2π2

16
max[α0(R)]

≈ max

[−2
√

2π2

16

ε0R4

Z2
T e2

(
Q + Q2G′

0F ′
0 − G0F0

G0F0

)]
. (45)

Also, by fitting the values from Table I and other values for
all possible configurations for these projectiles the following

TABLE II. Comparison between our values for the dipole polarizability α0 (in fm3) and values from the literature for selected nuclei.

−ε0 Dipole polarizability α0

Projectile Configuration MeV Our paper Previous

2H 1H +n 2.225 0.38 0.32 [31], 0.42,0.62 [14], 0.56 [32,33], 0.7 [5]
6He 4He +2n 0.975 1.32 1.00 ± 14 [46], 1.2 [34], 1.3 [35], 1.88 [36], 1.99 ± 40 [37], 1.07a [9]
11Li 9Li +2n 0.369 5.03 5.7 [35], 5.18a [11]
11Be 10Be +n 0.502 2.17 2.5 [38], 2.6a [10]

aFrom Eq. (1).
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FIG. 5. The dependence of the dipole polarizability on ε0 for
different weakly bound light nuclei taken from Table I.

expression was obtained:

αmax
0 = 1√

2π2

h̄2

μp

(
NvZpe

Ap

)2 1

ε2
0

= 1√
2π2

h̄2μp

m2
c

(Zpe)2

ε2
0

, (46)

where Nv is the number of neutrons in the valence cluster of
the projectile. So that we may write

α0 =
√

2π2

16
αmax

0 = 1

16

h̄2

μp

(
NvZpe

Ap

)2 1

ε2
0

, (47)

which is the formula given in Ref. [47]. The same expression
may also be extracted by applying Eq. (1) for dB(E1, ε)/dε

given in Ref. [48],

dB(E1, ε)

dε
= 3h̄2

π2μ

(
NvZpe

Ap

)2 √
ε0(ε − ε0)3/2

ε4
, (48)

so that

α0 = 8π

9

∫ ∞

ε0

1

ε

dB(E1, ε)

dε
dε

= 1

16

h̄2

μp

(
NvZpe

Ap

)2 1

ε2
0

. (49)

FIG. 6. The dependence of the root-mean-square radius of the
real part of the CDPP and R0 on the dipole polarizability for different
weakly bound light nuclei considered in Table I.

TABLE III. Calculated dipole polarizability values for 11Be (as
10Be +n) incident on different targets.

Target αmax
0 R0 Fitted α0 [Eq. (44)]

1H 2.441 3.75 2.155
4He 2.456 5.55 2.164
12C 2.475 10.15 2.168
64Zn 2.490 23.65 2.172
120Sn 2.492 30.75 2.172
208Pb 2.495 39.65 2.173

This gives us confidence that our expression for the CDPP
yields the correct dipole polarizability. Furthermore, the
quadrupole and octupole polarizabilities could also be ex-
tracted from the CDPP, although we leave this for future work.

Closer inspection of Table I reveals a dependence of
the root-mean-square radius of the real part of the CDPP,
Eq. (40), and R0 on the dipole polarizability. This depen-
dence is shown in Fig. 6. There is a clear linear relation
between the logarithm of α0 and these radii. R0 is now
easily given by R0 = 28.05(αmax

0 )0.389 = 29.58(α0)0.389, and
R(δVR(I ) ) = 30.83(αmax

0 )0.392 = 32.51(α0)0.392. Thus, we have
another method for determining the polarizability from the
real part of the CDPP.

The methods presented here for the determination of the
dipole polarizability from the real part of the CDPP are
independent of the target. We have calculated the dipole po-
larizability according to Eq. (44) and by fitting the real parts
of the CDPPs for 11Be scattered from a range of target nuclei.
The results are presented in Table III. Although the values of
R0 obviously vary, the polarizability values are not affected
by the choice of target. For some exotic light nuclei the
threshold energy is not well known. For example, for 11Li
there are many two-neutron separation energies derived from
various mass measurements: CERN [39]; TOFI-LANL [40];
KEK [41]; MSU [42]; MISTRAL [43]; TITAN [44]. These are
listed in Table IV. The real part of the CDPP and the dipole
polarizability were calculated using these values to investigate
the sensitivity of α0 to the value of the two-neutron separa-
tion energy. The results are presented in Table IV. It is seen
that the value of α0 dramatically depends on the two-neutron
separation energy and satisfies the expression (47). Note that

TABLE IV. The sensitivity of the dipole polarizability α0 for 11Li
(with an assumed 9Li +2n configuration) extracted from the CDPP
for the 11Li + 208Pb system to different values of the 2n separation
energy ε0.

ε0 = S2n (KeV) Reference αmax
0 R0 Fitted α0 [Eq. (44)]

170 ± 80 [39] 27.184 94.20 23.684
247 ± 80 [45] 12.872 71.00 11.218
295 ± 35 [42] 9.023 62.20 7.864
320 ± 120 [40] 7.668 58.45 6.683
340 ± 50 [41] 6.792 55.80 5.920
369 ± 65 [44] 5.756 52.40 5.018
378 ± 5 [43] 5.494 51.60 4.789
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TABLE V. The sensitivity of ε0 on dipole polarizability values of
11Be + 208Pb (as 10Be +n with ε0 = −0.502 MeV).

αmax
0 R0 Fitted α0 [Eq. (44)]

ε0 − 10% = 0.452 MeV 3.077 42.90 2.680
ε0 = 0.502 MeV 2.495 39.65 2.173
ε0 + 10% = 0.552 MeV 2.062 36.90 1.797

the most recent measurement of the separation energy (0.369
MeV) [44], used to calculate the value of α0 for 11Li in
Table I, gives the result closest to the determination from
dB(E1, ε)/dε data [11] by applying Eq. (1), see Table II.

A similar exercise was carried out for 11Be (with an
assumed 10Be +n configuration), probing the effect of a hy-
pothetical ±10% variation in ε0 on the value of α0 obtained.
The results presented in Table V show a variation in α0 of ap-
proximately ±20%, suggesting that calculations of α0 might
be useful as an additional constraint on binding energies for
some of the more exotic neutron rich light nuclei.

IV. SUMMARY AND CONCLUSION

The dynamical polarization for weakly bound projectiles
moving in the Coulomb field of a heavy target was analyzed
and the related CDPP derived by solving the Schrödinger
equation using the adiabatic approximation and a new expres-
sion for the CDPP presented in terms of separation energies
and regular and irregular Coulomb functions. From a compar-
ison of the real part of our CDPP with the classical formula we
extract a new expression for the electric dipole polarizability
(α0). The α0 values for a wide range of weakly bound nuclei
were determined and compared with available experimental

and theoretical values. Uncertainties in the separation energy
(for example, the different values for 11Li) affect strongly the
calculated polarizability.

The present CDPP was applied to an optical model cal-
culation of the sub-barrier elastic scattering of 6He + 208Pb
and compared with a CDCC calculation. The real part of our
CDPP was found to agree very well with the real part of the
TELP DPP derived from the CDCC calculations, confirming
the accuracy of the method for systems where Coulomb dipole
excitation is dominant, although the imaginary part was too
strong, leading to too great an absorption when used to calcu-
late the sub-barrier elastic scattering.

Values of α0 were calculated for several weakly bound
neutron-rich exotic nuclei with various assumed clustering
configurations. These values provide predictions for nuclei
where the near-barrier elastic scattering from heavy targets
should prove of interest, i.e., those with large α0. The vari-
ation of α0 as a function of the binding energy for different
cluster configurations and of the binding energy itself for a
given configuration for systems where the masses are not well
known suggest that our method for calculating α0 may provide
a useful further constraint on the masses of some of the more
exotic neutron-rich nuclei as well as an indication of which
clustering mode or modes will be dominant in nuclei where
several such possibilities exist.
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