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Halo effects in the 11Li(p, t ) 9Li reaction
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I investigate the 11Li(p, t ) 9Li two-neutron transfer reaction at Elab = 33 MeV within the distorted wave Born
approximation (DWBA). The 11Li and 3H nuclei are described in the hyperspherical formalism, as 9Li + n + n
and p + n + n configurations, respectively. The calculation of the cross section is shown to be much more
complicated than in one-neutron transfer reactions, owing to the three-body structure of 11Li. The 11Li + p
and 9Li + t scattering wave functions are determined with the continuum discretized coupled channel (CDCC)
method. Approximations derived from equivalent local potentials are used to compute the transfer cross section
at the DWBA. The model reproduces experimental data reasonably well, considering that there is no adjustable
parameter. I show that the cross section is fairly sensitive to the long-range part of the 11Li wave function, and
therefore to its halo structure.
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I. INTRODUCTION

The study of halo nuclei is one of the main issues in modern
nuclear physics [1]. In loosely bound nuclei, the neutron (or,
in some cases, the proton) density extends far beyond the
range encountered in tightly bound nuclei. This long-range
density leads to specific properties of halo nuclei, such as an
anomalously large radius [2]. A typical example is the 11Li
nucleus, which is considered as a 9Li core surrounded by
two neutrons with a separation energy of 0.378 MeV [3]. The
11Li experimental radius is 3.16 ± 0.11 fm [4], which is much
larger than the 9Li radius (2.43 fm [5]).

The 11Li nucleus has been studied in many experimental
and theoretical works (see, for example, Ref. [6] and refer-
ences therein). Owing to its short lifetime (8.6 ms), however,
experimental data can be obtained through radioactive beams
only. Consequently, the experimental information is gener-
ally deduced from reaction models. Typical examples are
11Li elastic scattering on heavy targets [7] or on protons [8].
Breakup data are also widely used to assess 11Li models [9].

The use of the 11Li(p, t ) 9Li two-neutron transfer reaction
is more recent [10]. Two-neutron transfer cross sections were
used in the past to investigate the structure of heavy nuclei
(see, for example, Refs. [11–13]). Since the 11Li nucleus is
known to present a marked 9Li + n + n structure, this transfer
reaction should be sensitive to the long-range part of the wave
function. Reference [10] concludes that these data may give
new insight on the halo structure of 11Li, but that further
studies are necessary.

The 11Li + p elastic scattering was recently studied [14] in
the framework of the continuum discretized coupled channel
(CDCC) method [15,16]. Elastic cross sections obtained at
Elab = 66 MeV (Ec.m. = 5.5 MeV) [8] were nicely reproduced
by the CDCC approach, provided that 11Li breakup effects
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are properly taken into account. The CDCC formalism was
originally developed to describe d + A reactions by including
p + n continuum states [15]. The continuum is simulated by
positive-energy eigenvalues of the p + n system, referred to
as pseudostates. The application of the CDCC formalism to
three-body projectiles is more recent [17,18]. It raises im-
portant numerical difficulties owing to the large number of
pseudostates and to the long range of the coupling potentials.
These issues can be solved nowadays with modern computer
facilities and efficient numerical techniques.

The goal of the present work is to address the 11Li(p, t ) 9Li
reaction with CDCC scattering wave functions. Of course, the
transfer process is treated at the distorted wave Born approxi-
mation (DWBA; see Ref. [19]). The formalism is well known,
even with CDCC wave functions [20], but the application to
two-particle transfer is much more involved than to single-
nucleon transfer reactions, such as (d, p) [21]. I describe 11Li
and 3H in a three-body model (9Li + n + n and p + n + n,
respectively), and these wave functions are used to compute
the transfer cross section at the DWBA. It is then possible to
investigate the role of the 11Li wave function, and in particular
of its long-range part, in the transfer process.

The paper is organized as follows. In Sec. II, I briefly
present the three-body model used to describe 11Li and t . I
also give a short outline of the CDCC method. Section III
is more specifically devoted to the calculation of the two-
neutron transfer cross section at the DWBA. The application
to 11Li(p, t ) 9Li is presented in Sec. IV, where I discuss halo
effects in the transfer cross section. The conclusion and out-
look are presented in Sec. V.

II. BOUND-STATE AND SCATTERING WAVE FUNCTIONS

A. Three-body model of 11Li and 3H

In the 11Li(p, t ) 9Li reaction, the 11Li and 3H nuclei are
consistently described by a three-body model (9Li + n + n
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and p + n + n, respectively). Their use in scattering calcula-
tions will be discussed in the next sections.

Let me consider the Hamiltonian of a three-body system

H3 =
3∑

i=1

ti +
∑
i< j

vi j (ri − r j ), (1)

where r1, r2, r3 are the coordinates of the particles (I take r1

as the core coordinate), and where vi j are three interactions.
An efficient technique to solve the Schrödinger equation as-
sociated with (1) is the hyperspherical formalism [22]. This
method is well known in nuclear and in atomic physics, and
I only outline the main principles. The reader is referred to
Refs. [22–24] for more detail.

From the three coordinates ri, I define scaled Jacobi coor-
dinates as

x = 1√
2

rx, y =
√

2A1

A1 + 2
ry, (2)

with

rx = r3 − r2, ry = r1 − r2 + r3

2
. (3)

I assume a core nucleus with mass A1, and two surrounding
nucleons. The hyper-radius and hyperangle are defined as

ρ2 = x2 + y2, α = arctan
y

x
. (4)

After removal of the center-of-mass coordinate, the three-
body system is therefore described by five angles �5 =
(�x,�y, α) and one hyper-radius ρ. Angular functions are
defined, for a three-body system with total spin j, by

Y jm
γ K (�5) = [

Y L
�x�y

(�x,�y) ⊗ χS
S23

] jm
�

�x�y

K (α), (5)

where index γ stands for γ = (�x, �y, L, S23, S) and where K
is the hypermoment (the parity is implied in j). In Eq. (5),
I define

Y LML
�x�y

(�x,�y) = [
Y�x (�x ) ⊗ Y�y (�y)

]LML
,

χ
SMS
S23

= [
χS1 ⊗ [

χS2 ⊗ χS3

]S23
]SMS

, (6)

where χSi are spinors associated with the three particles. Func-
tions �

�x�y

K (α) are defined, for example, in Ref. [24].
The total wave function of the three-body system is

expanded as

	
jm
3 = ρ−5/2

∑
γ K

χ
j
γ K (ρ)Y jm

γ K (�5), (7)

where the series over K is, in practice, truncated at some
maximum value Kmax. Notice that the number of (γ K ) val-
ues increases rapidly with Kmax and with j. The hyper-radial
functions χ

j
γ K (ρ) are obtained from a coupled-channel system

(see Ref. [24]), which is solved by expanding the hyper-radial
functions over a set of N basis functions ui(ρ) as

χ
j
γ K (ρ) =

N∑
i=1

c j
γ Kiui(ρ). (8)

I choose ui(ρ) as Lagrange functions [24,25], which permit
a simple and accurate calculation of the matrix elements. In
practical applications, the number of γ K values (or, in other
words, of “channels”) may reach 200–300 depending on j and
on Kmax. The number of basis functions N is typically 30–40.

The potentials used to describe 11Li are those adopted
in Refs. [14,26]. The 9Li + n potential has a Woods-Saxon
shape and contains a spin-orbit term [27] (the spin of the 9Li
core is neglected). The n-n interaction is taken as the central
part of the Minnesota potential with the standard admixture
parameter u = 1. The 9Li + n interaction is slightly renormal-
ized (by a factor 1.0051) to reproduce the experimental [3]
two-neutron binding energy EB = 0.378 MeV. The rms radius
of 11Li is 3.12 fm, which agrees fairly well with experiment
(3.16 ± 0.11 fm) [4]. The main components of the j = 0+
wave function are obtained for �x = �y = S = 0 (61.4%) and
for �x = �y = S = 1 (35.4%).

For 3H, I use the n-n and p-n Minnesota potentials as
in Ref. [28]. The binding energy is EB = 8.38 MeV which
is close to the experimental value 8.48 MeV. Since there is
no tensor force, only S = 1/2 is present ( j = 1/2+). The
dominant component is found for �x = �y = 0 (97.4%) with
small components in �x = �y = 2 (1.2%) and in �x = �y = 1
(1.3%). The radius is 1.70 fm (neglecting the nucleon radius).

In Fig. 1, I present the 11Li and 3H wave functions in two
ways. Figures 1(a) and 1(b) represent the dominant hyper-
spherical functions (7). As expected from the low binding
energy, the 11Li wave function slowly decreases at large
ρ values. The main components are obtained for (S = 0,

K = 0, 2) and for (S = 1, K = 2). The asymptotic behavior
of the hyper-radial wave function is

χ
j
γ K (ρ) −→ Aj

γ K (κρ)1/2KK+2(κρ), (9)

where κ = (2mN EB/h̄2)1/2, Kn(x) is a modified Bessel func-
tion, and Aj

γ K is an asymptotic normalization coefficient [29].
The asymptotic form (9) is reached beyond ρ ≈ 25 fm.

The situation of 3H is different since the binding energy
is large and since the radial wave functions present a fast
decrease. As the 11Li(p, t ) 9Li cross section involves some
overlap between the 11Li and 3H wave functions, it is, how-
ever, important to pay attention to the long-distance behavior
of 3H.

Figures 1(c) and 1(d) provide a complementary view of the
wave functions, with density probabilities defined by

P j (rx, ry) =
∫

d�xd�y|	 j (rx, ry)|2. (10)

Whereas 3H presents a maximum at small (rx, ry) values,
the 11Li wave function is maximum near rx = 2.8 fm and
ry = 3.1 fm, and extends to large distances. These values are
consistent with a large radius and with the well-established
halo picture of 11Li.

B. 11Li + p elastic scattering

The 11Li three-body wave functions are used in a CDCC
calculation of 11Li(p, t ) 9Li scattering. The 11Li(p, t ) 9Li data
of Ref. [10] are obtained at Elab = 33 MeV, which corresponds
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(a)

(c)

(b) (d)

FIG. 1. 11Li and 3H three-body wave functions. Panels (a) and (b) display the hyperspherical functions defined in Eqs. (7) and (8), whereas
panels (c) and (d) present the wave functions as contour plots [see Eq. (10)]. The steps between two contour lines in panels (c) and (d) are 0.01
and 0.05, respectively.

to a center-of-mass energy Ec.m. = 2.75 MeV. I follow the
technique presented in Ref. [14].

The Hamiltonian of the 11Li + p system reads

H = H3 + TR +
3∑

i=1

vpi(|R − ri|), (11)

where H3 is the 11Li Hamiltonian (1), vpi(S) are optical po-
tentials between the proton and the constituents of 11Li and
where the relative kinetic energy is given by

TR = − h̄2

2μ
�R, (12)

with R being the relative coordinate between 11Li and p and
μ being the reduced mass. In the CDCC formalism, the total
wave function in partial wave Jπ is expanded as

	JMπ = 1

R

∑
cLI

uJπ
cLI (R) ϕJMπ

cLI (�R, x, y), (13)

where the channel functions ϕJMπ
cLI are defined from

ϕJMπ
cLI (�R, x, y) = [[

	
j
3k (x, y) ⊗ χp

]I ⊗ YL(�R)
]JM

. (14)

In these definitions, k is the excitation level of 11Li, χp is a
spin-1/2 spinor, and index c stands for c = ( j, k). As I neglect
the spin of the 9Li core, ( j = 0+, k = 1) represents the ground
state. Other ( j, k) values correspond to positive-energy states,
and are therefore associated with pseudostates. In the CDCC
theory, pseudostates are used to simulate breakup effects [16].
Individually, they depend on the choice of the basis, but the

expansion (13) does not depend on the basis provided it is
large enough.

The radial functions uJπ
cLI (R) are obtained from a coupled-

channel system which is solved by the R-matrix method
[30,31]. This technique provides the scattering matrices for
all J values, and therefore the elastic-scattering cross sections.
Further details can be obtained in Ref. [30], for example.

The conditions of the calculation are similar to those of
Ref. [14]. Typical values for the channel radius a and number
of basis functions N are a = 25 fm and N = 50. Small vari-
ations around these values provide stable scattering matrices
and cross sections. I include j = 0+, 1−, 2+, 3− for 11Li with
pseudostates up to Emax = 10 MeV, which guarantees the
convergence of the CDCC expansion. The p + n and p + 9Li
potentials are taken as the Minnesota interaction [32] and as
the Koning-Delaroche parametrization [33], respectively. This
model nicely reproduces the elastic cross section at Ec.m. =
5.5 MeV, where data are available [8]. It should be reliable at
the present energy, Ec.m. = 2.75 MeV, which has been used in
the 11Li(p, t ) 9Li experiment.

I present in Fig. 2 the elastic cross section in the single-
channel approximation (“gs”) and in the full CDCC model
(“full”). As shown in Ref. [14], breakup channels have a
significant effect, even if most of the corresponding channels
are closed. A measurement of elastic cross sections, in parallel
with other cross sections such as (p, t ) would provide useful
tests of the model.

At convergence, the number of channels [i.e., the num-
ber of (cLI ) values in Eq. (13)] is very large (see Fig. 3
of Ref. [14]). In these conditions, the calculation of the
11Li(p, t ) 9Li cross section is extremely time-consuming.
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FIG. 2. 11Li + p elastic cross section (divided by the Rutherford
cross section) at Ec.m. = 2.75 MeV. The solid lines correspond to
the full CDCC calculation (black) and to the single-channel approx-
imation (blue). The dashed curve is obtained with the equivalent
potential (see text).

To reduce the computer times, I have derived an equivalent
potential from the CDCC results. This technique, proposed in
Ref. [34], was adopted in several works, and in particular in
the CDCC calculation of the 11Li + p cross section [14]. The
idea is to replace the multichannel wave function (13) by a
single-channel approximation

	JMπ ≈ 1

R
uJπ

0 (R)	0+
3 (x, y)[χp ⊗ YL(�R)]JM, (15)

where the radial function uJπ
0 (R) is obtained from[

− h̄2

2μ

(
d2

dR2
− L(L + 1)

R2

)
+ Veq(R) − E

]
uJπ

0 (R) = 0.

(16)

In (16), Veq(R) is a (complex) equivalent potential, derived
from the multichannel problem (see details in Refs. [34,35]).
This J-independent potential does not reproduce exactly the
CDCC cross section. However, in most cases, it provides
an excellent approximation. It is illustrated in Fig. 2 for the
present system (dashed line). The main advantage of this tech-
nique is to provide a simpler single-channel approximation
(15) which can be used in further applications. The equiv-
alent potential at Ec.m. = 2.75 MeV is similar to the one at
Ec.m. = 5.5 MeV, and I therefore refer to Ref. [14] [Fig. 6(a)]
for further detail.

C. 9Li + t elastic scattering

There are no experimental data on 9Li + t elastic scat-
tering. Consequently, and to be consistent with 11Li + p, I
determine the 9Li + t cross sections with the CDCC method.
The technique is equivalent to the method presented in
Sec. II B. The Hamiltonian involves the triton, described by
a p + n + n structure, and 9Li + p and 9Li + n optical poten-
tials, taken from Ref. [33]. The CDCC elastic cross section
is shown in Fig. 3(a) at a center-of-mass energy of Ec.m. =
10.8 MeV, which corresponds to the experimental conditions
of Ref. [10]. As expected, breakup effects are small. I there-
fore neglect them in further calculations.

To test the sensitivity of the 9Li + t cross section in differ-
ent conditions, I have also used the compilation of Pang et al.

FIG. 3. (a) 9Li + t elastic cross section (divided by the Ruther-
ford cross section) at Ec.m. = 10.8 MeV. (b) Equivalent 9Li + t
potentials. In both panels, the solid lines correspond to the CDCC
calculation, and the dashed lines are obtained with the optical poten-
tial of Pang et al. [36].

[36]. The results are presented in Fig. 3(a) as a dashed line.
Up to θ ≈ 60◦, both approaches provide quite similar cross
sections, but they differ at larger angles. The corresponding
scattering wave functions will be used in the study of the
11Li(p, t ) 9Li reaction.

As for 11Li + p, I determine the 9Li + t equivalent poten-
tial, which is shown in Fig. 3(b). The potential deduced from
the CDCC calculation is close to the global parametrization of
Pang et al. [36].

III. DESCRIPTION OF THE 11Li(p, t ) 9Li TRANSFER

Here I use the 11Li + p and 9Li + t wave functions defined
in Sec. II. At the DWBA, the transfer scattering matrix in
partial wave Jπ can be written as

U Jπ
i f = − i

h̄

〈
	

JMπ (−)
f

∣∣�V + Vrem

∣∣	JMπ (+)
i

〉
, (17)

where 	
JMπ (+)
i and 	

JMπ (−)
f are the 11Li + p and 9Li + t

scattering wave functions [19]. The residual interaction �V
and the remnant term are defined as

�V = Vp+n1 + Vp+n2 ,

Vrem = V9Li + p − V11Li + p (18)

for the prior form, and by

�V = V9Li + n1
+ V9Li + n2

,

Vrem = V9Li + p − V9Li + t (19)
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FIG. 4. Coordinates used in the present model. Two neutrons
from 11Li are transferred to the proton.

for the post form. All potentials depend on the various
coordinates (R, rx, ry, R′, r′

x, r′
y), as shown in Fig. 4. The in-

tegrals involved in definition (17) are performed, either over
(R, rx, ry) or over (R′, r′

x, r′
y). In practice, however, they are

replaced by integrals over (rx, R, R′) with

r′
x = rx,

ry = A1 + 2

3A1 + 4
(3R′ − R),

r′
y = 3

3A1 + 4
(2R′ − (A1 + 2)R). (20)

As long as the scattering wave functions 	
JMπ (+)
i and

	
JMπ (−)
f are exact, the post and prior forms are equivalent.

The comparison of the cross sections obtained with both forms
provides an excellent test of the calculation. Depending on
the reaction, the remnant term may be negligible in one of
the forms. For example, in the A(d, p)A′ transfer reaction
(with A′ = A + 1), the remnant term in the prior form is
Vrem = Vp+A − Vd+A whereas it is Vrem = Vp+A − Vp+A′ in the
post form. It is clear that, for large A, Vp+A ≈ Vp+A′ and the
remnant term can be neglected in the post form. In the present
(p, t ) reaction, I expect a smaller remnant term in the prior
form.

The scattering matrix (17) can be reformulated as

U Jπ
i f = − i

h̄

∫
uJπ

Li
(R)KJπ

LiL f
(R, R′) uJπ

L f
(R′)dRdR′, (21)

where uJπ
Li

(R) and uJπ
L f

(R′) are the relative wave functions of

the 11Li + p and 9Li + t systems. As I use the CDCC equiv-
alent potentials, the scattering wave functions only contain
one channel with I = 1/2, L = J ± 1/2. The transfer kernel
KJπ

LiL f
(R, R′) is defined by

KJπ
LiL f

(R, R′) = J 〈[
	

1/2+
3(t ) (r′

x, r′
y) ⊗ YL f (�R′ )

]J

|�V + Vrem|	0+
3(Li)(rx, ry)

[
YLi (�R) ⊗ χp

]J 〉
,

(22)

where J is the Jacobian, and 	0+
3(Li) and 	

1/2+
3(t ) are the 11Li

and 3H three-body wave functions, defined in Sec. II A.
The calculation is presented in the Appendix. Although the

FIG. 5. (a) 11Li(p, t ) 9Li cross section with the full CDCC model
(solid black) and with the single-channel approximation (solid blue).
The dashed line is obtained with the 9Li + t optical potential of
Ref. [36]. The data are taken from Ref. [10]. (b) CDCC calculations
with and without the remnant term. The solid lines correspond to the
prior form and the dashed lines to the post form.

general formulation (21) is common, the calculation of the
kernels is more complicated than in standard DWBA calcula-
tions, where a single particle is transferred (see, for example,
Ref. [37]). The use of three-body wave functions for 11Li and
3H makes the calculations more difficult since more variables
are involved. A similar, though simplified, calculation has
been performed in Ref. [38] for the 6He(p, t )α reaction.

IV. THE 11Li(p, t ) 9Li REACTION

A. Cross sections

The transfer cross section is computed from the scattering
matrices (17) up to Jmax = 15/2 and is presented in Fig. 5. Let
me stress that there is no adjustable parameter in the model.
A first calculation is performed with the 11Li ground state
only [blue line in Fig. 5(a)]. At small angles, it overestimates
the experimental data of Ref. [10]. Although the theoretical
description is not perfect, the presence of breakup channels in
the full CDCC calculation reduces the cross section, except
near the minimum around θ ≈ 90◦.

As the 9Li + t scattering wave functions cannot be tested
through experimental cross sections, I have also used the
potential of Pang et al. [36] instead of the 9Li + t four-body
CDCC model. The results [dashed line in Fig. 5(a)] show that
the difference is small.

In Fig. 5(b), I display the 11Li(p, t ) 9Li cross section with
and without the remnant term. When the remnant term is
included, the cross sections in both forms are almost in-
distinguishable. As expected, the prior form gives a better
approximation than the post form when the remnant term
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FIG. 6. Integrated cross section (23) for the 11Li(p, t ) 9Li reaction.

is neglected. However, an accurate calculation requires the
introduction of the remnant term in any form. This term is
included in all transfer calculations.

The integrated cross section is presented Fig. 6 for c.m.
energies up to 20 MeV. The integrated cross section is
defined as

σ (E ) = π

2k2

∑
Jπ

(2J + 1)
∣∣U Jπ

L

∣∣2
, (23)

where the scattering matrices (17) are used. Figure 6 suggests
that a maximum is obtained near Ec.m. = 2.5 MeV, which
nearly corresponds to the energy considered in the experiment
of Ref. [10].

In order to have a better insight on the J dependence of
the cross section, I plot in Fig. 7 the quantity (2J + 1)|U Jπ

L |2,
which is involved in the integrated cross section, as a function
of L. At Ec.m. = 2.75 MeV, the maximum is obtained for
L = 1. Owing to the low incident energy, only low L values
are involved. Partial waves beyond L = 4 are negligible.

B. Halo effects

The 11Li nucleus is well known to present a marked halo
structure, with two neutrons located far from the 9Li core. In
order to highlight this halo effect in the 11Li(p, t ) 9Li reaction,
I have set an upper value, denoted as ρmax on the hyper-radius.
This means that, in the calculation of the Nλ

cc′ (R, R′) functions
[see Eq. (A12)] the hyper-radial functions χ

jπ
γ K (ρ) have been

set to zero for ρ � ρmax. This method, although indirect, pro-
vides information on the role of large distances in 11Li, and
therefore on its halo structure.

FIG. 7. Square modulus of the transfer scattering matrix [times
(2J + 1)] as a function of the initial angular momentum L.

FIG. 8. Influence of ρmax on the 11Li(p, t ) 9Li transfer (see text).
(a) Real part of the 3/2− and 5/2+ scattering matrices as a function
of ρmax. (b) Differential cross section for various ρmax values (labels).

The influence of ρmax is shown in Fig. 8, where I plot the
real part of the scattering matrix for two typical partial waves,
J = 3/2− and J = 5/2+. Clearly, large ρ values are necessary
to reach convergence. This could be expected from the 11Li
wave function [Fig. 1(a)], which decreases slowly at large
distances. The same conclusion can be drawn from Fig. 8(b),
where the cross section is plotted for various ρmax values. This
figure confirms the strong sensitivity to the long-range part of
the 11Li wave function.

In Fig. 9, I plot the integrand of the transfer scattering
matrix (17) (real part) for J = 3/2−, which is the dominant
partial wave. As expected, this integrand is dominant for
R ≈ R′. Of course, the transfer kernel KJπ (R, R′) is significant
at short distances only, but the initial and final scattering wave
functions make this integrand quite complicated, with positive
and negative values. The double integral in Eq. (17) must

FIG. 9. Integrand of the scattering matrix (17) (real part) for J =
3/2−. The units are arbitrary.
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be performed up to R, R′ ≈ 15 fm to get accurate scattering
matrices.

V. CONCLUSION

I have presented a CDCC calculation of the 11Li(p, t ) 9Li
transfer cross section, which has been measured at Elab = 33
MeV [10]. The three-body structure of 11Li is taken into
account through a 9Li + n + n model which reproduces fairly
well the experimental rms radius (the two-neutron separation
energy is adjusted by a scaling factor applied to the 9Li + n
potential, but this factor is very close to 1). The breakup of
11Li is simulated by including pseudostates. In Ref. [14], this
approach provided an excellent description of 11Li + p elastic
scattering at Elab = 66 MeV.

Since two neutrons are transferred from 11Li, a consistent
description of 3H requires a p + n + n three-nucleon model.
In the 9Li + t elastic scattering, however, breakup effects play
a minor role. I have developed the formalism of two-neutron
transfer at the DWBA. It represents an extension of the more
frequent one-neutron transfer, but the calculations are much
more involved. To decrease the computer times, I have de-
termined 11Li + p and 9Li + t equivalent potentials, which
reduces the DWBA calculation to a single-channel problem.

The 11Li(p, t ) 9Li cross section is in reasonable agreement
with experiment, considering that there is no adjustable pa-
rameter. At small angles, the angular distribution is reduced by
11Li breakup effects, which is supported by the experimental
data. A possible improvement would be to introduce the core
excitation in the 11Li description, but this would make the
calculation even more difficult. In addition, this extension
would involve various potentials (9Li

� + n, 9Li
� + p), which

are poorly known or even unknown.
I have shown that the transfer process is sensitive to the

halo structure of 11Li since the cross section sensitively de-
pends on the large distance contribution. This approach seems
therefore promising to test the long-range structure of halo
nuclei. Experimental data at higher energies would be wel-
come to further test the models, for scattering as well as for
spectroscopy. In addition, a measurement of 11Li + p elastic
scattering is also an important constraint for the theory and,
if possible, should be studied in parallel with the transfer
reaction.
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APPENDIX: CALCULATION OF THE TWO-NEUTRON
TRANSFER KERNEL

In this Appendix, I give technical information on the trans-
fer kernel (22). The various potentials in (18) depend on
coordinates (R, rx, ry, R′, r′

x, r′
y), and the integrals in (22) are

performed over rx (or r′
x), �R, and �R′ . Let me discuss the

prior form (18). The potential V9Li + p only depends on R′

and r′
y, whereas V11Li + p depends on R′. The Vp+n1 and Vp+n2

potentials are more complicated since they depend on r′
x and

r′
y. It is, however, possible to replace these terms by using the

three-body Eq. (1) for 3H. In the hyperspherical expansion, I
have (

Vp+n1 + Vp+n2

)
χ

jπ
γ K = (

E3 − T − Vn1+n2

)
χ

jπ
γ K , (A1)

where E3 is the 3H binding energy, and T is the kinetic-energy
operator defined by

T χ
jπ
γ K = − h̄2

2mN

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
χ

jπ
γ K , (A2)

where mN is the nucleon mass. The advantage of Eq. (A1) is
that the Vn1+n2 potential depends on rx only. This permits a
significant simplification of the calculations.

The next step is to write the 11Li wave functions as

	
jm
3(Li)(rx, ry) =

∑
c

�
j
11,c(rx, ry)ϕ jm

11,c(�x,�y), (A3)

where index c stands for c = (�x, S12, jx, �y) and where the
angular part reads

ϕ
jm
11,c(�x,�y) = [[

Y�x (�x ) ⊗ S12
] jx ⊗ Y�y (�y)

] jm
. (A4)

The radial components are given by

�
j
11,c(rx, ry) =

∑
K

χ
jπ

cK (ρ)��x�y

K (α), (A5)

where ρ and α are related to (rx, ry) with Eqs. (2) and (4). The
11Li + p scattering wave function (13) is then rewritten as

	JMπ
i =

∑
cLiIi

�
j
11,c(rx, ry)

[[
ϕ

j
11,c(�x,�y) ⊗ S3

]Ii ⊗YLi (�R)
]JM

.

(A6)

Similarly, the 3H wave function is written as

	
j′m′
3(t ) (r′

x, r′
y) =

∑
c′

�
j′
3,c(r′

x, r′
y)ϕ j′m′

3,c′ (�′
x,�

′
y), (A7)

with

ϕ
j′m′
3,c′ (�′

x,�
′
y) = [[

Y�′
x
(�′

x ) ⊗ S12
] j′x ⊗ [

Y�′
y
(�′

y) ⊗ S3
] j′y] j′m′

.

(A8)

The 9Li + t scattering wave function in the final state is there-
fore given by

	JMπ
f =

∑
c′L f

�
j′
3,c(r′

x, r′
y)

[
ϕ

j′
3,c′ (�′

x,�
′
y) ⊗ YL f (�′

R)
]JM

,

(A9)

since the 9Li spin is neglected.
The calculation of the transfer kernel (21) is done by fac-

torizing the radial and angular parts. The main issue is that ry

and r′
y must be expressed as functions of R and of R′. This is

done with Eqs. (20) and with the expansion

SLY M
L (�S ) =

∑
k

CL
k (αr1)k (βr2)L−k[Yk (�1) ⊗ YL−k (�2)]LM,

(A10)
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where

S = αr1 + βr2,

CL
k =

(
4π (2L + 1)!

(2k + 1)!(2L − 2k + 1)!

)1/2

. (A11)

For the radial part of the transfer kernel, I expand∫
�

j
11,c(rx, ry)

r�y+1
y

(�V + Vrem )
�

j′
3,c′ (r′

x, r′
y)

r
�′

y+1
y′

r2
xdrx

=
∑

λ

Nλ
cc′ (R, R′) Pλ(cos θ ), (A12)

where Eqs. (A1) and (A2) are used, and where θ is the angle
between R and R′. As Vn1+n2 does not depend on �x′ , the inte-
gration over rx = r′

x can easily be done numerically (through
a Gauss-Laguerre quadrature).

The kernel for a two-neutron transfer can be generalized
from the one-neutron transfer kernel (see, for example, Eq. (8)
of Ref. [37]) as

KJπ
LiL f

=
∑

k1k2λcc′
F Jπ

LiL f ,k1k2λcc′Ik1k2λcc′ (R, R′), (A13)

where functions Ik1k2λcc′ (R, R′) are given by

Ik1k2λcc′ (R, R′) = C
�y

k1
C

�′
y

k2
(αR)k1 (βR′)�y−k1 (γ R)k2

× (δR′)�
′
y−k2 Nλ

cc′ (R, R′). (A14)

They only depend on the internal wave functions of 11Li
and of 3H, but not on the total spin J and on the relative
angular momenta Li and L f . The coefficients F Jπ

LiL f ,k1k2λcc′ can
be calculated analytically from the matrix elements between
the angular components of (A6) and (A9) as

F Jπ
LiL f ,k1k2λcc′ = 〈ψ f |Pλ|ψi〉, (A15)

where ψi and ψ f are shorthand notations for

ψi = [[[
Y jx

�xS12
(�x ) ⊗ Y

�y

k1�y−k1
(�R,�′

R)
] j ⊗ S3

]Ii

⊗ YLi (�R)
]JM

,

ψ f = [[
Y j′x

�′
xS12

(�′
x ) ⊗ [

Y
�′

y

k2�′
y−k2

(�R,�′
R) ⊗ S3

] j′y] j′

⊗ YL f (�′
R)

]JM
. (A16)

In these equations, I define

Y jm
�S12

(�x ) = [Y�(�x ) ⊗ S12] jm,

Y �m
�a�b

(�R,�′
R) = [

Y�a (�R) ⊗ Y�b (�′
R)

]�m
. (A17)

The calculation of the angular matrix elements (A15) involves
many coupling coefficients, but can be performed analytically.
Again, this definition represents a generalization of a one-
nucleon transfer (see Eq. (A10) of Ref. [37]).
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