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Influence of the treatment of initialization and mean-field potential on the neutron
to proton yield ratios
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In this work, we first investigate how to reproduce and how well one can reproduce the Woods-Saxon density
distribution of initial nuclei in the framework of the improved quantum molecular dynamics model. Then, we
propose a new treatment for the initialization of nuclei which is correlated with the nucleonic mean-field potential
by using the same potential energy density functional. In the mean field potential, the three-body force term
is accurately calculated. Based on the new version of the model, the influences of precise calculations of the
three-body force term, the slope of symmetry energy, the neutron-proton effective mass splitting, and the width
of the wave packet on heavy ion collision observables, such as the neutron to proton yield ratios for emitted
free nucleons [R(n/p)] and for coalescence invariant nucleons [Rci(n/p)] for 124Sn + 112Sn at the beam energy
of 200 MeV per nucleon, are discussed. Our calculations show that the spectra of neutron to proton yield ratios
[R(n/p)] can be used to probe the slope of symmetry energy (L) and the neutron-proton effective mass splitting.
In detail, the R(n/p) in the low kinetic energy region can be used to probe the slope of symmetry energy (L).
With a given L, the inclination of R(n/p) to kinetic energy (Ek) can be used to probe the effective mass splitting.
In the case where the neutron-proton effective mass splitting is fixed, R(n/p) at high kinetic energy can also be
used to learn the symmetry energy at suprasaturation density.

DOI: 10.1103/PhysRevC.104.024605

I. INTRODUCTION

The isospin asymmetric nuclear equation of state is fun-
damental for understanding the objectives of both nuclear
physics, such as the properties of neutron-rich nuclei [1–8]
and the mechanism of heavy ion collisions [9–20], and astro-
physics, such as the properties of neutron star masses, radii,
and tidal deformability [21–29]. However, the theoretical pre-
dictions present large uncertainties on the isospin asymmetric
nuclear equation of state away from normal density, especially
the density dependence of the symmetry energy. In the labora-
tory, low-intermediate energy heavy ion collisions (HICs) can
provide the constraints of symmetry energy from subnormal
density to twice the saturation density by comparing the data
of HIC observables, such as neutron to proton yield ratios
[10,14,15], triton to He3 yield ratios [30,31], isospin diffu-
sion [9,11,12], neutron excess [32], π−/π+ ratios [33,34],
collective flow [35,36], and so on, with the transport model
calculations.

Among those transport model calculations of isospin sen-
sitive HIC observables, the initialization of nuclei plays an
important role, as does the isospin dependent mean-field po-
tential. For example, consideration of the neutron skin in the
initialization can influence the prediction of π−/π+ ratios
[37,38] in peripheral HICs. In these pioneer calculations, the
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slope of symmetry energy and the thickness of neutron skin
were treated separately. However, the theoretical calculations
show that the neutron skin thickness of a heavy nucleus, which
is given by the difference between the root-mean-square
radii of neutrons and protons, i.e., �rnp = 〈r2〉1/2

n − 〈r2〉1/2
p ,

is strongly correlated to the slope of symmetry energy L
[3–5,9]. Thus, a consistent treatment of neutron skin in the
initialization and isospin dependent mean-field potential in
nucleon propagation is highly desired in the development
of transport models to reduce the uncertainties of symmetry
energy constraint caused by separately treating L and �rnp.

In the QMD type models, each nucleon is represented by a
Gaussian wave packet,

φi(r) = 1

(2πσ 2
r )3/4

exp

{
− [r − ri(t )]2

4σ 2
r

+ ir · pi(t )

}
. (1)

The initial nuclei are prepared by sampling the centroids of
wave packets ri(t = 0) in a hard sphere [39–44]. As a re-
sult, the sampled density profile of the nucleus has a larger
tail than the required density due to the finite width of the
Gaussian wave packet. This is the main difficulty in reproduc-
ing the density distribution calculated by microscopic nuclear
models. Even for the simple Woods-Saxon (WS) density dis-
tribution, which is wildly used in transport model simulations,
it is still hard to reproduce and has been discussed in the
transport model comparison project [42]. There were some
efforts to improve the description of the density profiles in
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the initialization. For example, in the ultrarelativistic quantum
molecular dynamics (UrQMD) model, the centroids of wave
packets are sampled within the radius which is reduced by half
a layer of nucleons from the original nuclear radius [43]. The
sampled density profile is similar to a Woods-Saxon density
distribution, but they have different diffuseness values. In
the parton-hadron quantum molecular dynamics (PHQMD)
[44] and Tübingen quantum molecular dynamics (TuQMD)
models [45], a small width of Gaussian wave packet is used to
well reproduce the Woods-Saxon density distribution. Thus,
an important theoretical question in the QMD type models
is how to reproduce and how well one can reproduce the
required density profile of the initial nucleus.

In this work, we investigate how to reproduce the ini-
tial density distribution of the nucleus by doing the inverse
Weierstrass transformation, and then redo the treatment of
the initialization and mean-field potential in the improved
quantum molecular dynamics (ImQMD) model with the same
Skyrme energy density functional. The symmetry energy and
neutron-proton effective mass splitting effects on the isospin
sensitive observables, such as neutron to proton yield ratios,
for the reaction of 124Sn + 112Sn at the beam energy of 200
MeV/u are examined and discussed. The new calculations
show that the spectra of neutron to proton yield ratios can
be used to probe L and the neutron-proton effective mass
splitting. In the case where the neutron-proton effective mass
splitting is fixed, neutron to proton yield ratios at kinetic en-
ergy greater than 100 MeV can be used to probe the symmetry
energy at suprasaturation density.

II. THEORETICAL APPROACHES

For describing HICs, the ImQMD model is adopted. The
treatments of nucleon-nucleon collision, Pauli blocking, etc.
are as the same as in the previous version of ImQMD. More
details about them can be found in the review paper [46]. The
improvements we made in this work are in the initialization
and nucleonic mean-field potential.

A. Nucleonic Mean-field potential

In the ImQMD model [9], the Skyrme type nucleonic po-
tential energy density without the spin-orbit term is used:

u(r)sky = α

2

ρ2

ρ0
+ β

η + 1

ρη+1

ρ
η

0

+ gsur

2ρ0
(∇ρ)2

+ gsur,iso

ρ0
[∇(ρn − ρp)]2

+ Asym
ρ2

ρ0
δ2 + Bsym

ρη+1

ρ
η

0

δ2 + umd . (2)

The α is the parameter related to the two-body term, β and
η are related to the three-body term, and Asym and Bsym are
the coefficients in the symmetry potential and come from
the two- and the three-body interaction terms. The density
ρ is obtained by integrating the Wigner phase space density

fi(r, p) = 1
(π h̄)3 e

− (r−ri )

2σ2
r

− (p−pi )2

2σ2
p in momentum space for all nu-

TABLE I. Values of the nuclear matter parameter used in the
ImQMD-L model. ρ0 is in fm−3, E0, K0, S0, L are in MeV, gsur and
gsur,iso are in MeV fm2. fI = m

m∗
s

− m
m∗

v
= −0.178.

K0 S0 E0 ρ0 m∗
v/m m∗

s /m gsur gsur,iso L

240 30 −16 0.16 0.7 0.8 24.5 −4.99 30,50,70,90,110

cleons, i.e.,

ρ(r) =
A∑

i=1

ρi(r) =
A∑

i=1

∫
fi(r, p)d3p

=
A∑

i=1

1

(2πσ 2
r )3/2

e
− (r−ri )2

2σ2
r , (3)

and δ = (ρn − ρp)/(ρn + ρp). Here, ri and pi are centroids of
distribution, and also the variational parameters of Gaussian
single-particle wave functions [46].

The Skyrme-type momentum dependent energy density
functional umd is written based on its interaction form δ(r1 −
r2)(p1 − p2)2 [47]. In the ImQMD model,

umd (r, {pi − p j})

= C0

∑
i j

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2

+ D0

∑
i j∈n

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2

+ D0

∑
i j∈p

∫
d3 pd3 p′ fi(r, p) f j (r, p′)(p − p′)2. (4)

C0, D0 are parameters related to the momentum dependent
interaction.

The parameters in Eqs. (2) and (4) can be obtained from
the standard Skyrme interaction parameters as in Refs. [9,48].
The connection between the seven parameters α, β, η, Asym,
Bsym, C0, D0 used in the ImQMD model and the seven nuclear
matter parameters—the saturation density ρ0, binding energy
at saturation density E0, incompressibility K0, symmetry en-
ergy coefficient S0, the slope of symmetry energy L, isocalar
effective mass m∗

s , and isovector effective mass m∗
v—are given

in Ref. [9]. Thus, one can alternatively use ρ0, E0, K0, S0, L,
m∗

s , m∗
v , as input to study the influence of different nuclear

matter parameters.
Based on recent constraints of nuclear matter parameters

related to symmetry energy from nuclei to neutron stars [9],
we choose K0 = 240 MeV, S0 = 30 MeV, m∗

v/m = 0.7, and
m∗

s /m = 0.8, which are also in the reasonable region for the
Skyrme type force [49]. The gsur and gsur,iso values are taken
as 24.5 and −4.99 MeV fm2, respectively. L is varied from 30
to 110 MeV to analyze the influence of L on the spectra of n/p
ratios. These values are the default parameters we used, and
are listed in Table I. In addition, the influence of S0, m∗

s , and
the neutron-proton effective mass splitting �m∗

np = m∗
n − m∗

p
on the n/p ratios are also discussed. One point we want to
mention is that �m∗

np = m∗
n − m∗

p is alternatively described by
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fI = (m/m∗
s − m/m∗

v ) = 1
2δ

(m/m∗
n − m/m∗

p) in the following
discussions, because it can be analytically incorporated into
the transport code and is independent of isospin asymmetry.

The nucleonic force acting on the ith nucleon is

Fi = ṗi = −∂U ({ri, pi})

∂ri
. (5)

In the above formula, the potential energy U ({ri, pi}) is ob-
tained by integrating the potential energy density in coordinate
space, i.e., U ({ri, pi}) = ∫

u(r)d3r, and it is a function of
ri and pi. Because the density has a Gaussian form, all the
integrals in potential energy calculations can be done ana-
lytically except for the three-body related terms with η �= 2.
When η �= 2, one has to solve it with an approximation or
numerical method. Usually, the three-body related potential
energy is approximately calculated as

β

η + 1

∫
ρη

ρ
η

0

ρd3r = β

η + 1

N∑
i=1

〈
ρη

ρ
η

0

〉
i

≈ β

η + 1

N∑
i=1

〈
ρ

ρ0

〉η

i

+ O(ρ) (6)

by omitting the higher order term [46,50–52] or adjusting the
value of σr in the three-body term [41,44]. The three-body
force acting on particle i is calculated according to the follow-
ings expression:

ṗi = −∂U3

∂ri
= − β

η + 1

∂

∂ri

N∑
j=1

〈ρ〉ηj
ρ

η

0

. (7)

In the above formula, 〈ρ〉 j = ∑
k

1
(4πσ 2

r )3/2 e
− (r j −rk )2

4σ2
r . For uni-

form matter, this approximation is good enough since the
density fluctuation is zero.

However, the density variance in intermediate energy HICs
is strong and time dependent. Thus, the influence of the higher
order term in Eq. (6) should not be neglected. In this work we
exactly calculate the three-body term by using the numerical
quadrature method. Further, the force acting on particle i
related to the three-body term is calculated as

ṗi = −∂U3

∂ri
= −βρ0

∫
ρη

ρ
η

0

ρi

ρ0

r − ri

σ 2
r

d3r. (8)

The integral in Eq. (8) is solved by using the 11-point
Gauss-Legendre quadrature method, and it gives a stronger
three-body force in ImQMD-L than in ImQMD. To distin-
guish with the previous version of the ImQMD model, we
named it ImQMD-L (L means the lattice method) in the fol-
lowing discussions.

B. Initialization of nucleus in ImQMD-L

In this section, we will introduce how to obtain the neutron
and proton Woods-Saxon density distributions of the initial
nucleus with the same Skyrme energy density functional as
in the mean-field propagation in the ImQMD-L model. Then,
we investigate the criteria for reproducing the Woods-Saxon
density distribution with a Gaussian wave packet. Then, the
influences of different widths of wave packet, which lead to
the different shapes of Woods-Saxon density distributions,

on the stability and binding energy of the initial nucleus are
discussed. Finally, we describe the method of initialization
used in the ImQMD-L model.

1. Density distribution of the initial nucleus with restricted density
variational method

In the calculations, we take the density distribution as a
Woods-Saxon density function with

ρi = ρ0i
1

1 + exp
( r−Ri

ai

) , i = n, p. (9)

Here, ρ0n, ρ0p, Rp, Rn, ap, and an are the saturation density,
radius, and diffuseness values of proton and neutron density
distributions, and they are obtained by minimizing the total
energy of the system given by,

E =
∫

H dr =
∫ {

h̄2

2m
[τn(r) + τp(r)] + usky + ucoul

}
dr,

(10)
under the condition of the conservation of particle number
in the system. This method is named the restricted density
variational (RDV) method [53].

The same semiclassical expression of the Skyrme energy
density functional as in ImQMD, i.e., usky, is applied. One
should note that umd is reduced to

umd = C0

2h̄2 ρτ + D0

2h̄2 (ρnτn + ρpτp) (11)

in the calculations of the nucleus in its ground state. The
kinetic energy density τi in the RDV method is given by

τi(r) = 3

5
(3π2)2/3ρ

5/3
i + 1

36

(∇ρi )2

ρi
+ 1

3
	ρi

+ 1

6

∇ρi∇ fi + ρi	 fi

fi
− 1

12
ρi

(∇ fi

fi

)2

+ 1

2
ρi

(
2m

h̄2

W0

2

∇(ρ + ρi )

fi

)2

, (12)

where we use the extended Thomas-Fermi (ETF) approach
including all terms up to second order (ETF2) and fourth-
order (ETF4) as in Ref. [54]. ρi denotes the proton and neutron
densities of the nucleus, and ρ = ρn + ρp. W0 is the strength
of the spin-orbit interaction, and we set it to zero in order to
use the same form of Skyrme energy density functional as in
ImQMD-L; the parameter fi(r) is the same as in Ref. [53].
The calculated results of ap, Rp, an, Rn, binding energy B, and
rms radii for neutron and proton obtained by RDV with the
Skyrme energy density functional are listed in Table II.

2. Criteria for reproducing the Woods-Saxon density distribution

Following the wave function of a nucleon used in the
quantum molecular dynamics model, the nuclear density can
be written as

ρ(r) =
A∑
i

ρi(r), (13)
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TABLE II. ap, Rp, an, Rn, binding energy B, and rms radius for
neutron and proton for 124Sn obtained with the RDV method. L and B
are in MeV, ap, Rp, an, Rn, 〈r2

p〉1/2, and 〈r2
n 〉1/2 are in fm. The values in

the bracket are the results obtained with given a′
p = a′

n = f −1(σr =
1.287), for details, see Secs. II B 2 and II B 3.

L ap(a′) Rp an(a′) Rn B(B∗) 〈r2
p〉1/2 〈r2

n 〉1/2

30 0.414 5.733 0.514 5.777 −7.971 4.700 4.865
(0.743) (0.743) (−7.306) (5.230) (5.259)

50 0.415 5.729 0.507 5.811 −8.021 4.698 4.881
(0.743) (0.743) (−7.357) (5.227) (5.281)

70 0.419 5.707 0.503 5.838 −8.073 4.687 4.893
(0.743) (0.743) (−7.420) (5.213) (5.299)

90 0.422 5.686 0.496 5.872 −8.129 4.676 4.907
(0.743) (0.743) (−7.479) (5.199) (5.321)

110 0.426 5.656 0.487 5.909 −8.191 4.659 4.922
(0.743) (0.743) (−7.539) (5.179) (5.346)

where

ρi(r) = 1(
2πσ 2

r

)3/2 exp

{
− (r − ri )2

2σ 2
r

}
. (14)

To reproduce the Woods-Saxon density profile of a nucleus,
such as ρws(r),

ρws(r) = ρ0
1

1 + exp
( |r|−R

a

) , (15)

where ρ0 is the saturation density, R is the half density ra-
dius, and a is the diffuseness parameter, by the method of
Monte-Carlo sampling, one has to know the distribution of
the centroid of the wave packet, ρ̃(ri ), which satisfies

ρws(r) =
A∑
i

∫
d3riρ̃(ri )

1(
2πσ 2

r

)3/2 e
− (r−ri )2

2σ2
r . (16)

For a spherical nucleus, the form of ρws(r) has spherical
symmetry, and thus the density distribution along the x direc-
tion can be written as

ρws(x) =
A∑
i

∫ ∞

−∞
dxiρ̃(xi )

1(
2πσ 2

r

)1/2 e
− (x−xi )2

2σ2
r

=
A∑
i

∫ ∞

−∞
dxiρ̃(xi )G(x − xi ). (17)

Equation (17) is a generalized Weierstrass transform [55] with
a kernel G(x − xi ) = 1

(2πσ 2
r )1/2 exp{− (x−xi )2

2σ 2
r

}, where xi is the
centroid of a Gaussian kernel. Thus, the key point for the
initialization of a nucleus with a Gaussian wave packet is to
do an inverse Weierstrass transform to get the solution of ρ̃(xi )
at a given Gaussian kernel G(x − xi ).

Since the centroids of nucleons are sampled randomly
within the density distribution of the nucleus, ρ̃(xi ) can be
thought as being the same for all nucleons. Thus, Eq. (17) can
be simplified as

ρws(x) = A
∫ ∞

−∞
dX ρ̃(X )G(x − X ), (18)

FIG. 1. (a) Woods-Saxon density distribution with R = 7 fm
and a = 0.5 fm (red line), and Weierstrass transformation of

(RW T − r) with different σr at R=7 fm (black lines); (b) χ 2 =
1
N

∑N
i=1 (ρW T

i − ρW S
i )2 as a function of σr and RW T .

with one-dimensional distribution ρ̃(xi ) = ρ̃(X ), and where
A is the number of nucleons. Principally, the distribution of
the centroid of a Gaussian, i.e., ρ̃(X ), should be obtained
by doing the inverse Weierstrass transformation. However,
it cannot be obtained analytically. We approximate the so-
lution by using the form of ρ̃(X ) = ρ0
(RW T − X ), where

(RW T − X ) is a Heaviside step function. By best fitting
ρW T (x) = ∫

ρ̃(X )G(x − X )dX to the required density profile
ρws(x), the parameter RW T and the σr in G(x − X ) are ob-
tained.

In Fig. 1(a), a Woods-Saxon density distribution with R =
7 fm and a = 0.5 fm is plotted as the red line. The black
dashed line and dash-dotted line in panel (a) are the results
obtained with different σr at RW T = R = 7 fm. The results
with σr ≈ 0.87 fm are close to the Woods-Saxon distribution.
Figure 1(b) shows the χ2 of fitting ρW T to ρws on RW T and
the σr plane. At χ2 = 2.5 × 10−5, we obtain that RW T = R,
σr = 0.87 fm. More generally, for reproducing the required
Woods-Saxon distribution, two criteria should be fulfulled: (a)
the radius of the hard sphere is equal to half the density radius
R, i.e., RW T = R, and (b) σr is related to a according to the
relationship

σr = f (a) = ka + c, R � 4.4a, (19)

where k = 1.71217 ± 0.01548 and c = 0.01564 ± 0.01047
fm should be fulfilled. For the Woods-Saxon distributions in
three-dimensional space, the above criteria are also approxi-
mately available.

3. Stability of initial nucleus with different σr

In the QMD approach, the widths of the wave packets are
time independent and are the same for the proton and neutron.
Thus, one cannot exactly reproduce the density profile within
the current framework of ImQMD due to the following points.
First, the diffuseness parameters of the density distribution of
sampled nuclei have an = ap, which is not the same as in the
distribution obtained with RDV where an �= ap. Second, the
commonly used values of σr in the QMD type models are
larger than the values extracted based on Eq. (19). For exam-
ple, σr = 1.414 fm is usually used in the QMD calculations
for Au+Au, but in the case of fitting the density distribution
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FIG. 2. Root mean square of 124Sn as a function of time. Panels
(a), (b), and (c) are for σr = 1.1, 1.29, 1.4 fm, respectively. The
results were obtained with 1000 events.

obtained by RDV the values of σr for proton and neutron
are σ

p
r = 0.73 fm and σ n

r = 0.88 fm, respectively. It is found
that the small σr which can reproduce the density distribution
obtained with RDV is worse in the description of stability of
initial nuclei.

To understand the influence of σr on the stability of sam-
pled nucleus, we present the root-mean-square (rms) values of
sampled 124Sn in ImQMD-L as a function of time with three
values of σr = 1.1, 1.29, 1.4 fm in panels (a), (b), and (c),
respectively, in Fig. 2. In these calculations, the positions of
neutrons and protons are sampled within Rn and Rp, whose
values are obtained by the RDV method with the same Skyrme
energy density functional as that used in the mean-field propa-
gation. To quantify the stability of the sampled initial nucleus,
a variable named the probability of stability is used, and is
defined as

Pstab = Nstab

Ntotal
, (20)

where Nstab is the number of events which keeps the rms
variation within 20% at 200 fm/c and Ntot is the number of
total events. For σr = 1.1 fm, in panel (a), the rms values
obviously increase with time and all of them are larger than
20% of rms at t = 0 fm/c, i.e., Pstab = 0.0. The bad stability
of the initial nucleus with smaller σr is caused by a large initial
fluctuation of the density distribution which may produce a
stronger repulsive force on the particle. With the σr increas-
ing, the stability of the initial nucleus becomes better. Pstab

reaches about 87% with σr=1.29 fm as shown in panel (b),
and reaches about 100% with σr=1.4 fm as shown in panel
(c).

Consequently, the stability of the initial nucleus and
reproducing the initial density profile cannot be achieved si-
multaneously in a QMD type model. To balance the accuracy
of the reproduction of initial density distributions and stability
of the initial nucleus, we select the width of the wave packet
as σr = 1.287 fm in the following 124Sn + 112Sn calculations.

4. Initialization in ImQMD-L with L correlated Rn and Rp

In the initialization used in this work, the centroids of the
wave packet for neutrons and protons are sampled within the
half-density radii Rn and Rp, and the binding energy of the
sampled nucleus is in the range of B ± 0.2 MeV. The values
of B, Rn, and Rp are calculated based on the RDV with the
same Skyrme energy density functional as that used in the
mean-field propagation of the ImQMD-L model. In Table II,
we present the Rn, Rp, and the binding energy B of 124Sn ob-
tained based on RDV with five parameter sets characterized by
L = 30, 50, 70, 90, 110 MeV, respectively. Thus, the neutron
skin effect is correlated to the energy density functional used
in the mean-field potential in ImQMD-L. It is different from
the method used in many other QMD codes, in which the Rn

or Rp is obtained by using the formula r0A1/3 [42].
For 124Sn + 112Sn, σr = 1.287 fm is used and the sam-

pled density distribution has a corresponding diffuseness with
a′

n = a′
p = a = f −1(σr = 1.287) = 0.743 fm. If there is no

specification, σr = 1.287 fm is the default value in the cal-
culations. This a value is larger than that obtained with the
RDV method. Thus, the binding energy B of the sampled
nucleus deviates from the ground state energy. How much
deviation of the binding energy is caused by the sampled
density distribution with a = 0.743 fm? In Table II, the values
in the brackets of the sixth column are the binding energies
of 124Sn obtained with the RDV method for the Woods-Saxon
density distribution with Rn, Rp, and a = an = ap = 0.743 fm.
The binding energy per nucleon of 124Sn in the initialization
with a = 0.743 fm (or σr = 1.287 fm) is about ≈0.65 MeV
larger than its ground state energy obtained with RDV, i.e., the
binding energy deviation is about 8.2%. It means that there is
a spurious excitation in the QMD initialization.

III. RESULTS AND DISCUSSIONS

In the following studies, we perform the calculation of
124Sn + 112Sn at the beam energy of 200 MeV/u, and impact
parameter b = 2 fm. Two isospin sensitive HIC observables
will be discussed in this section. One is the neutron to proton
yield ratio, i.e., R(n/p), for emitted free nucleons,

R(n/p) = dYn

dEk

/
dYp

dEk
. (21)

This observable is sensitive to the strength of the symmetry
potential [10,16], because the symmetry potential is opposite
in sign for protons and neutrons. Another observable is the
coalescence invariant neutron to proton yield ratio proposed

in Ref. [14,16], which is defined as Rci(n/p) = dY CI
n

d (Ek/A)/
dY CI

p

d (Ek/A) ,
with

dY CI
n

d (Ek/A)
=

∑
A�16,Z�6

dY (Z, N )

d (Ek/A)
× N,

dY CI
p

d (Ek/A)
=

∑
A�16,Z�6

dY (Z, N )

d (Ek/A)
× Z. (22)

The Rci(n/p) ratio still retains sensitivity to the symmetry
energy, and it could eliminate the problem related to the ab-
solute yield of light charged particles in the transport model
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FIG. 3. Panels (a) and (b) are the neutron to proton yield ratios
for emitted free nucleons and for coalescence invariant nucleons,
respectively. Color shaded regions are the results from the new treat-
ment of three-body force, and gray lines are the results from the old
method (see text for more details).

simulations. Both R(n/p) and Rci(n/p) are constructed from
the transverse emitted nucleons and particles with an angular
cut of 70◦ � θc.m. � 110◦.

In practical calculations, the exact values of R(n/p) and
Rci(n/p) also depend on the treatment of the three-body force
in the mean-field potential. In this section, we reexamine the
sensitivity of isospin sensitive observables to the slope of the
symmetry energy (L) with the new treatment of the initializa-
tion and mean-field potential. In addition, the influences of the
physical variables, such as S0, fI , m∗

s , and model parameter σr ,
are also discussed.

A. Influences of the treatment of three-body force term and L
on the n/p ratios

Figure 3(a) shows the results of R(n/p) obtained with
ImQMD [gray lines, using Eq. (7) to calculate the three-
body force term], and ImQMD-L [color shaded region, using
Eq. (8) to calculate the three-body force]. Three different
symmetry energy cases, i.e., L = 30 MeV (gray solid lines,
blue shaded region), 70 MeV (gray dashed lines, green shaded
region), 110 MeV (gray dash-dotted lines, red shaded region),
are presented.

As shown in panel (a), the R(n/p) values of emitted free
nucleons with Ek < 80 MeV are greater for the soft sym-
metry energy case than for the stiff symmetry energy case,
and R(n/p)L=30 > R(n/p)L=70 > R(n/p)L=110. This is be-
cause the emitted nucleons with lower kinetic energy mainly
come from the overlap region during the expansion phase.
This region is below saturation density, where the symmetry
energy is larger for smaller L. Larger symmetry energy in
this region results in enhanced neutron emissions from the
neutron-rich system and, thus, larger values of the R(n/p) ra-
tio. This behavior has been observed in other transport model
predictions, especially for the widely studied Sn+Sn at the
beam energy of 50 MeV/u [56].

FIG. 4. The neutron to proton yield ratios for emitted free nucle-
ons; different colors are for different L. Panel (a) is for different S0,
panel (b) is for different fI , and panel (c) is for different m∗

s .

At Ek > 120 MeV, there is R(n/p)L=30 < R(n/p)L=70 <

R(n/p)L=110. It is different than we observed at the beam
energy around 50 MeV/u. This is because the emitted nucle-
ons with high kinetic energy mainly come from the overlap
region at the early stage of the expansion. During this stage,
the density in the overlapped region is above the saturation
density, where the stiff symmetry energy has larger values
than the soft symmetry energy. It results in the R(n/p) values
being greater in the stiff symmetry energy case than in the
soft symmetry energy case. The important finding is that the
sensitivity of Rn/p to L becomes clearer within the calculations
of ImQMD-L compared with the calculations of ImQMD. The
reason is that the calculations in ImQMD-L provide stronger
strength of the three-body force at high density, and thus of
the strength of the symmetry potential.

In Fig. 3(b), the Rci(n/p) are presented. The sensitivity
of Rci(n/p) to L at low kinetic energy vanishes due to the
contributions from the light particles and clusters. At high
kinetic energy, the sensitivity of Rci(n/p) to L is retained in
the calculations with ImQMD-L.

B. Influences of S0, fI , and m∗
s on the n/p ratios

As mentioned in Ref. [9], the strength of the symmetry
energy not only depends on L but also depends on the sym-
metry energy coefficient S0, isoscalar effective mass m∗

s , and
fI . However, the values of parameters S0, m∗

s , and fI also have
some uncertainties [9,49], and it is worthwhile to understand
their influence on R(n/p).

The results of R(n/p) obtained with S0 = 34 MeV are
presented as solid shaded regions in panel (a) of Fig. 4. All the
other parameters are kept the same as in the default parameter
sets. The different colors correspond to the results obtained
with L = 30, 70, 110 MeV. When a larger S0 is adopted
in the calculations, the curves of R(n/p) shift up by <8%
owing to the enhanced symmetry energy in all density regions.
However, the sensitivity of R(n/p) to L is not dramatically
changed.

Another important ingredient that can influence R(n/p) is
the neutron-proton effective mass splitting, i.e., m∗

n > m∗
p or

m∗
n < m∗

p [57]. In panel (b) of the Fig. 4, the solid shaded
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FIG. 5. The inclination of R(n/p) to Ek as a function of L at K0 =
240 MeV, S0 = 30 MeV, and m∗

s = 0.8m. Black solid symbols are for
fI = 0.178, and open symbols are for fI = −0.178.

regions are the results obtained with m∗
n < m∗

p, i.e., fI =
0.178, and different colors represent different L. For the given
sets with m∗

n < m∗
p, i.e., fI = 0.178, the sensitivity of R(n/p)

to L at lower kinetic energy region is similar to that obtained
with default parameter sets where fI = −0.178 (m∗

n > m∗
p).

Thus, the R(n/p) at Ek � 80 MeV can help us to determine
the values of L.

In the high kinetic energy region, the sensitivity of R(n/p)
to L becomes complicated if the neutron-proton effective mass
splitting is not well fixed. For example, the values of R(n/p)
at Ek > 100 MeV obtained with fI = 0.178 and L = 30 MeV
are close to that obtained with fI = −0.178 and L = 70 MeV.
This is because the sets with fI = 0.178 (m∗

n < m∗
p) have the

strong lane potential as described in Ref. [57], and it enhances
the values of R(n/p). To distinguish it, the inclination of
R(n/p) to Ek , which is calculated with the values of R(n/p)
obtained at E (1)

k = 50 MeV and E (2)
k = 150 MeV, i.e.,

REk = �R(n/p)

�Ek
, (23)

where �R(n/p) = R(n/p)(E (1)
k ) − R(n/p)(E (2)

k ) and �Ek =
E (1)

k − E (2)
k , can be adopted. The results of �R/�Ek for dif-

ferent fI at K0 = 240 MeV, S0 = 30 MeV, and m∗
s = 0.8m are

presented Fig. 5, and the calculations with larger fI predict
larger inclination.

Based on the above discussions, one can expect that the
spectra of R(n/p) can be used to obtain information on L and
fI simultaneously, if one does the analysis on the L and fI

parameter space.
The influence of m∗

s on R(n/p) is also investigated in
the case where other parameters are kept the same as in
Table I. The values of R(n/p) obtained with m∗

s = 0.65m
are presented as solid shaded region in panel (c) of Fig. 4.
Different colors are the results obtained with different L.
For L = 70 and 110 MeV, reducing the isoscalar effective
mass m∗

s /m to 0.65 changes the R(n/p) weakly. For L = 30
MeV, obvious differences of R(n/p) are observed between

FIG. 6. Panels (a)–(d) are the neutron to proton yield ratios for
emitted free nucleons obtained with different L and different fI at
σr = 1.0 fm.

the set with m∗
s = 0.65m and the default parameter set. The

R(n/p) obtained with m∗
s /m = 0.65 are largely enhanced in

the lower kinetic energy region and are obviously suppressed
in the high kinetic energy region. This is because the set with
L = 30 MeV and m∗

s /m = 0.65 have strong symmetry energy
at low density and strong momentum dependent interaction,
both providing a stronger repulsive force than other parameter
sets and worsening the stability of the initial nucleus in the
ImQMD-L simulations.

C. Influence of σr on the n/p ratios

The width of wave packet σr is an important model pa-
rameter in the QMD type models, and one can expect that
the different values of σr may influence the results. Thus,
investigating the influence of σr on the R(n/p) within the
ImQMD-L model can help us to understand the robustness
of model calculations. In this work, the test calculations are
performed with the value of σr = 1.0 fm, which is not really
used in low-intermediate energy HIC simulations.

Figure 6(a) shows the R(n/p) obtained with different L at
σr = 1.0 fm. In the calculations with σr = 1.0 fm, the values
of R(n/p) still depend on the slope of symmetry energy, and
the behavior is similar to that with σr = 1.287 fm. However,
the sensitivity becomes weaker in both low and high kinetic
energy regions than that with σr = 1.287 fm. The reason
is that the initial nuclei obtained with σr = 1.0 fm in the
ImQMD-L model have stronger initial fluctuation and worse
stability than that with σr = 1.287 fm. It increases spurious
emission of nucleons with low kinetic energy. For example,
for L = 30 MeV, 22% (18%) more protons (neutrons) are
emitted for the case of σr = 1.0 fm than that with σr = 1.287
fm. Consequently, the R(n/p) obtained with σr = 1.0 fm is
smaller than that with σr = 1.287 fm at lower kinetic en-
ergy. For L = 110 MeV, 6% (6.7%) more protons (neutrons)
are emitted for the case with σr = 1.0 fm than that with
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σr = 1.287 fm, and thus the R(n/p) obtained with σr = 1.0
fm is enhanced in the low kinetic energy region. Due to
the conservation of nucleon number in the reaction system,
R(n/p) obtained with σr = 1.0 fm is enhanced at high kinetic
energy region for L = 30 MeV, and suppressed for L = 110
MeV. Thus, the effects of symmetry energy become relatively
weak in the case of σr = 1.0 fm. However, the sensitivity of
R(n/p) to L is still large enough to distinguish the stiffness of
symmetry energy.

Figures 6(b), 6(c), and 6(d) show the results of R(n/p)
obtained with fI = −0.178 (m∗

n > m∗
p) and fI = 0.178 (m∗

n <

m∗
p) at L = 30, 70, 110 MeV, respectively. As we discussed

previously, the values of R(n/p) in the high kinetic energy
region obtained with fI = 0.178 (m∗

n < m∗
p) are greater than

that obtained with fI = −0.178 (m∗
n > m∗

p) at given L. The
finding is similar to the results obtained with σr = 1.287 fm,
and it demonstrates that the small value of σr = 1 fm do not
dramatically change the sensitivity of R(n/p) to the effective
mass splitting.

IV. SUMMARY AND OUTLOOK

In summary, we have investigated the issues of how to
reproduce and how well to reproduce the Woods-Saxon den-
sity distribution with a Gaussian wave function. Based on
the inverse Weierstrass transformation, we obtain two cri-
teria for reproducing the Woods-Saxon density profile: one
is that the centroid of the Gaussian wave packet should be
sampled within a hard sphere with a radius approximately
equal to the half density radius of the Woods-Saxon den-
sity distribution. Another is that the width of the Gaussian
wave packet should be taken based on the parameter a, i.e.
σr = 0.01564 + 1.71217a. The second condition requires a
smaller width of Gaussian wave packet than the commonly
used values in the quantum molecular dynamics model, and
it causes initial nuclei to have bad stability due to the strong
initial fluctuation. To balance the stability of initial nuclei and
the requirement of initial density profile, the width of the
Gaussian wave packet is taken as the one that can give the
probability of stability greater than 85% in this work.

To correlate the initialization and mean-field potential with
the same energy density functional in the improved quantum
molecular dynamics, we incorporate the RDV method into the
ImQMD model. First, we calculate the half density radius of
Rn, Rp, and the binding energy B of the initial nuclei with
the RDV method by using the same energy density functional

as in the mean-field propagation. Then, the initial nuclei are
sampled by using the obtained values of Rn, Rp, and binding
energy B. In the mean-field part, we precisely calculate the
three-body related term by using the 11-point Gauss-Legendre
quadrature method at the expense of 50 times longer CPU
times. These methods improve the theoretical reliability of
the transport model and reduce the uncertainties of theoreti-
cal predictions owing to the consideration of the correlation
between the initialization and the mean-field potential.

Based on the new version of the model in this work, we
study the influence of the slope of symmetry energy, effective
mass splitting on the heavy ion collision observables, such as
the neutron to proton yield ratios for emitted free nucleons
and for coalescence invariant nucleon yield, for 124Sn + 112Sn
at the beam energy of 200 MeV per nucleon. Our calculations
show that the R(n/p) at low kinetic energy region is sensitive
to the slope of symmetry energy, and the R(n/p) at high
kinetic energy depends on the slope of symmetry energy and
neutron-proton effective mass splitting. With a given L, the
inclination of R(n/p) to kinetic energy (Ek) can be used to
probe the effective mass splitting. On the other hand, if the
neutron-proton effective mass splitting is fixed, the values of
R(n/p) in the high kinetic energy region increase with L,
which also implies that the R(n/p) in the high kinetic energy
region can be used to probe the symmetry energy above the
saturation density. Varying the width of wave packet parame-
ter σr in a reasonable region does not dramatically change our
conclusions. The current calculations show that the analysis of
spectra of R(n/p) on the L and fI parameter space is necessary
in future to tightly constrain the symmetry energy.
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