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Effect of initial 3α cluster configurations in 12C on the direct decay of its Hoyle state
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We investigate the implications of initial 3α configurations in 12C corresponding to different decay modes
of its Hoyle state on the penetrability ratios. Considering the second 2+ (10.03 MeV) state to be a collective
excitation of the Hoyle state, the direct 3α decay width for the Hoyle state has been calculated using the ratio of
the barrier penetration probability of the Hoyle state to the 2+ state. Semiclassical Wentzel–Kramers–Brillouin
(WKB) approximation has been employed to determine the penetrability ratio, resulting in an upper limit on the
branching ratio of the direct decay of the Hoyle state in “equal phase-space” (DDφ) mode as �3α

�
< 3.1 × 10−6.

However, this limit for “linear chain” (DDL) decay is �3α

�
< 2.6 × 10−7, which is one order of magnitude smaller

than the DDφ decay and the limit for “equal energy” (DDE) decay is �3α

�
< 1.5 × 10−5, which is greater than

both DDφ and DDL decays. It implies that the limit on direct decay probability is strongly dependent on the
initial configuration of the 3α cluster. A further probe using a bent-arm-like 3α initial configuration shows that
the direct decay probability is maximum when the angle of the bent arm is ≈120◦, an important ingredient for
understanding the Hoyle-state structure.

DOI: 10.1103/PhysRevC.104.024601

I. INTRODUCTION

The study of Hoyle state of 12C at 7.65 MeV is a topic
of continued interest because of its importance in describing
the 12C abundance in our universe. The structure and decay
properties of the Hoyle state play key roles in the stellar
nuclear synthesis. In the helium-burning phase of stars, 12C
is produced through a 3α capture process in which first two
α particles are fused to produce 8Be which further captures
another α to form a 12C. This capture when proceeded via
s-wave resonance can boost the carbon production by a factor
of 10–100 million [1]. To explain the abundance of 12C, Hoyle
predicted a resonant state near 7.65 MeV, just above the 3α

breakup threshold of 12C (7.27 MeV) [1], and subsequently
its existence was confirmed experimentally [2,3].

There are ambiguities with respect to the structure of the
Hoyle state where different theories have come up with dif-
ferent answers. Algebraic cluster model predicts the Hoyle
state to be an equilateral triangle made up of 3α [4]. An-
tisymmetrized molecular dynamics and fermionic molecular
dynamics calculations predict a triangular 8Be +α configura-
tion [5,6]. There is also a Bose-Einstein condensation theory
which extends the idea of happening condensation in molec-
ular systems to a nuclear system, which suggests if the 3α

density is low, it can show condensation [7,8]. Recently ab
initio nuclear lattice simulations using chiral effective field
theory [9,10] has concluded that the Hoyle state may have
a bent-arm-like structure. All these models have successfully
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reproduced various observational parameters of the Hoyle
state. Using Faddeev equations in a 3α continuum it has been
shown [11,12] that the change in structure from small to large
distances from the decay of the Hoyle state is very small, and
therefore the final state distribution in this case indeed can be
taken as a rather direct probe of its α-cluster structure.

Raduta et al. [13] argue that a linear chain structure of the
Hoyle-state should result in the center of the three α particles
to be at rest and the other two sharing the total energy equally
get emitted in opposite direction along the linear chain (DDL
mode), while a “Bose-Einstein condensate” structure of the
Hoyle state should decay into three equal energy α particles
emitted at an angle of 120◦ relative to each other (DDE mode).
However, in DDφ (decay in equal phase-space) mode, the
three α particles are emitted in such a way that they fill the
entire phase space available to them. Schematic representa-
tions of the initial 3α cluster configurations corresponding to
the above three direct decay modes are shown in Fig. 1.

In recent years, quite a few experiments have been per-
formed to quantify this direct decay component of the Hoyle
state which is supposed to throw new light on the structure. An
upper limit of 0.019% was put by T. Rana et al. [14] which is
actually the upper limit of DDφ decay, for DDL decay they
put an upper limit of 0.004% and for DDE decay the same is
0.012%.

Although the Hoyle state is at the center of all attention,
quite fascinating is the second 2+ (10.03-MeV) state [15]
which is believed to be a collective excitation of the Hoyle
state itself which is also supported by the observation of a ro-
tational band and reduced α decay width [4,16]. This implies
that we can infer features of Hoyle state by observing the 2+
state alternatively. For example, by observing the direct decay
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FIG. 1. Initial 3α cluster configurations for direct decay modes
in linear chain (DDL), equal energy (DDE), and equal phase space
(DDφ).

component of the 2+ state we can find out information about
the direct decay component of the Hoyle state.

More recently, R. Smith et al. [11] have given an upper
limit of the direct decay branch invoking R-matrix properties
of the 2+ state and concluded that �3α

�
< 5.7 × 10−6 for DDφ

but did not take into account the initial configuration of the 3α

cluster, which as suggested before carries the signature of the
structure. In the present work, we have done a detailed anal-
ysis following a similar approach and also two additional ap-
proaches leading to very different results as described below.

II. ANALYSIS FRAMEWORK

The present analysis is built around the framework adopted
by Smith et al. [11] though with a few important modifica-
tions. Monte Carlo simulation has been performed to find out
the barrier penetrability ratio of the direct decay of Hoyle state
to the direct decay of 2+ state. The 2+ state can undergo
decay into 3α in three different ways: (i) sequential decay
through α +8 Beg.s., (ii) sequential decay through α +8 Be2+ ,
and (iii) direct decay into 3α. The first decay channel which
contributes more than 98% of the total decay of 2+ have been
clearly identified by Zimmerman et al. [15]. So the remaining
contribution which is less than 2% comes from the second and
third channels. The total decay width, obtained from R-matrix
fit to the experimental decay data, is 1.60(13) MeV [17].
Thus, the sum of the decay widths of the other two α decay
channels (which could not be separated experimentally) will
be equal to ≈ 32 (4) keV. Hence, the decay width of only the
direct decay will have an upper limit of 32 keV, i.e., �2+

3α <

32 keV, the information which is used as an input to the
present simulation.

According to the R-matrix theory [18,19] the partial width
of a state is given by

�i = 2Piγ
2
i , (1)

where Pi is the penetrability factor and γ 2
i is the reduced

channel width. The ratio of reduced channel width to Wigner
limit is given by θ2

i and defined as

γ 2
i = θ2

i

3

2

h̄2

MR2
. (2)

Since the 2+ state is considered to be a collective excitation
of the Hoyle state [20], one can assume that, θ2

DD(Hoyle) =
θ2

DD(2+), implying γ 2
DD(Hoyle) = γ 2

DD(2+).
Combining the above equality with Eq. (1), one can obtain

�DD(Hoyle) = �DD(2+)
PDD(Hoyle)

PDD(2+)
. (3)

The decay dynamics of 12C into three α particles can be
described by following the hyperspherical coordinate formal-
ism [21,22], where one can express the Coulomb, centrifugal
and nuclear potentials of the three-body system as functions
of the hyper-radius “ρ” of the system which is given by [21]

ρ2 ≡ 1

mM

∑
i<k

mimkr2
ik, r2

ik = (ri − rk )2, (4)

where M = ∑
mi and m is an arbitrary normalization mass.

The probability of decay can be calculated by the Wentzel–
Kramers–Brillouin (WKB) approximation for a hyper-radial
potential as

T = 1

1 + exp(2S)
(5)

and S is given by

S = 1

h̄

∫ ρ2

ρ1

dρ
√

2m[V (ρ) − E ], (6)

where E is the kinetic energy of the particles after separation
and ρ1,2 are the classical turning points with V (ρ1,2) = E .
The total potential V (ρ) consists of Coulomb, centrifugal, and
nuclear terms.

The Coulomb potential in terms of the scaling factors (sik)
is expressed as

VCoulomb(ρ) =
∑
i<k

ZiZke2

rik
= 1

ρ

∑
i<k

ZiZke2

sik
, (7)

where

s2
ik = r2

ik

ρ2
. (8)

The values of sik and ρ0 (the hyper-radius corresponding
to the initial configuration of the system) are different for
different modes. For a particular mode, the rik values can be
obtained from initial configurations shown in Fig. 1 and used
in Eq. (4) to determine ρ which in turn used in Eq. (8) to
determine sik . These scaling factors, sik , determine the decay
path and remain constant throughout [21].

The centrifugal potential takes the form as

VCentrifugal(ρ) = h̄2(K + 3/2)(K + 5/2)

2mρ2
, (9)

where K is the hypermomentum of the system. For direct
decay, the lowest value of hypermomentum is given by Kmin =
l12,3 + l12, where l12,3 and l12 correspond to the angular mo-
mentum associated with the relative two-body motion of the
decay particles. For the present study, the value of K is taken
to be “zero” for the Hoyle state and “2” for the first excited
state of the Hoyle state.

The nuclear potential is considered to be of Woods-Saxon
volume form with parameters taken from Ref. [23]. The total
potential V consisting of Coulomb (VC) and centrifugal (Vl )
terms and then with additional nuclear term (VN ) calculated
for DDL and DDE decay modes independently are shown
in Fig. 2(a). The presence of centrifugal term increases the
barrier height for 2+ state as shown in Fig. 2(b). No potential
is shown for DDφ mode as it does not correspond to a single
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FIG. 2. Sum of the Coulomb (VC) and centrifugal potentials (Vl )
with and without the nuclear term (VN ) for DDL and DDE modes of
direct decay. Dotted and dot-dot-dashed horizontal lines represent the
energies of Hoyle state and 2+ state above the 3α breakup threshold
correspond to 0.38 and 2.756 MeV, respectively.

structure. From Fig. 2, one can find that the potentials corre-
sponding to two decay modes are not identical and giving rise
to different values of ρ1 and ρ2.

With the available code “PETA” [24], one can obtain only
the decay width for the DDφ mode, i.e., the decay in equal
phase space where three α particles are emitted in such a
way that they fill the entire phase space available to them.
But the direct decay is known to have other possible decay
modes like DDL and DDE. In order to describe all the above
three decay modes a new Monte Carlo code “BPP” based
on FORTRAN language has been developed recently [25],
which is an enhanced version of “PETA.” The important char-
acteristics of this code is that it includes the effect of initial
configuration on barrier penetrability and has a much im-
proved phase-space sampling algorithm for better consistency.
It also has the provision of including the nuclear interaction in
addition to Coulomb and centrifugal terms. The code samples
the kinematically available phase space for the three-body
system and calculates the barrier penetration probability using
the Eqs. (4)–(9). The new “BPP” code has been used to obtain
the barrier penetration probabilities which interestingly are
found to be substantially different for different decay modes.
Importantly, the ratios of penetrabilities of the Hoyle state to
2+ state for DDL, DDE, and DDφ decay modes and their
respective decay widths, as given in Table I, have also been
found to be very different. Due to the uncertainties in the nu-
clear potential, an error on the above ratios has been estimated
to be ≈ 10%. The large variation in the above ratios observed
from one mode of decay to the other indicates the importance
of the role played by the initial configuration of 12C.

From Fig. 2, we see that the addition of nuclear term
modifies the Coulomb+centrifugal potential only at ρ < 15
fm and ρ1 is very close to ρ0. So one can simplify the above
calculations by neglecting the nuclear term and replacing
ρ1 by ρ0. The uncertainties created due to the exclusion of
nuclear potential can be simulated by calculating the barrier
penetration probabilities for different values of ρ0 with radius
parameter r0 (in the range of 0.85–1.60 fm), where the radius
R = r0A1/3 with A = 4 being the atomic mass number of α.
The experimental value of r0 for α is 1.05 fm [26], however,

TABLE I. Ratio of “Penetrability” and “Width” for different
decay modes using the 3α interaction including and excluding the
nuclear term, obtained from the “first approach.”

Decay modes PDD(Hoyle)
PDD(2+ )

�DD(Hoyle)
�(Hoyle)

(V = VC + Vl + VN )
DDφ (1.5 ± 0.2) × 10−11 <5.7 × 10−8

DDL (3.2 ± 0.3) × 10−11 <1.2 × 10−7

DDE (2.1 ± 0.2) × 10−9 <7.8 × 10−6

(V = VC + Vl )
DDφ (4.8 − 7.3) × 10−10 <3.1 × 10−6

DDL (2.9 − 6.2) × 10−11 <2.6 × 10−7

DDE (2.1 − 3.6) × 10−9 <1.5 × 10−5

an R-matrix fit to the 2+ resonance curve measured using
the 12C(γ , α0)8Be(g.s.) reaction provides a large value of
r0 = 1.60 fm [17] hinting at an extended structure. Though the
penetration probability is highly sensitive to the radius param-
eter r0, the ratio of the penetrability for any particular mode
of decay is not so sensitive. The results on the probability
ratios of individual decay modes obtained for r0 in the range
of 0.85–1.60 fm have been listed in the lower half of Table I
which are in close agreement with the ones obtained from the
potential including nuclear term. Most importantly, the huge
difference found in the penetrability ratios for different decay
modes obtained using either of the two potentials confirms
the dependence of direct decay probabilities on the initial 3α

configuration inside 12C.
Using Eq. (3) and the known width of the Hoyle state,

�(Hoyle) = 8.5(1) eV, one can obtain the upper limits on the
branching ratios for different direct decay modes. The upper
limits for DDφ, DDL, and DDE modes of breakup, using
V = VC + Vl , are found to be 3.1 × 10−6, 2.6 × 10−7, and
1.5 × 10−5, respectively. It is quite clear that the ratio varies
quite substantially depending on the mode of breakup. So it
is very crucial to mention the mode of breakup before giving
any upper limit for the branching ratio. This seems to be due
to the consideration of initial structure for various phase-space
points. Also, the value on the upper limit for DDφ decay is
found to be smaller than what is reported by Smith et al. [11]
where a single initial structure for all the phase-space points
has been considered. It may be noted that the above limits
may slightly increase by a common factor of 1.33 if θ2

α0
for 0+

and 2+ states are unequal and considered to be 2.0 and 1.5,
respectively, as given in Refs. [27–29].

A. Second approach

A “second approach,” similar to that of Zheng et al. [30],
has also been employed to compute the ratio of the � width,
which is conceptually not too different from the one discussed
so far, but provides different results. In this approach, it is
assumed that the reduced decay width for the direct decay
of Hoyle state and its sequential decay are equal. Using
Eq. (1), one can obtain the ratio of the decay widths of the
two modes to be equal to the ratio of their respective barrier
penetration probabilities. Recalling Eq. (4), one can assume
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TABLE II. Branching ratios for different direct decay modes
of the Hoyle state obtained from the “second approach” using the
potential with and without nuclear term.

Decay Modes �DD
�

(≈ PDD
PSeq.

) �DD
�

(≈ PDD
PSeq.

)

(V = VC + Vl + VN ) (V = VC + Vl )
DDφ (6.2 ± 0.6) × 10−7 (0.41–5.06) × 10−7

DDL (1.6 ± 0.2) × 10−7 (0.33–6.83) × 10−8

DDE (1.4 ± 0.1) × 10−6 (0.41–4.47) × 10−6

θ2
DD(Hoyle) = θ2

Seq.(Hoyle), and hence,

γ 2
DD(Hoyle) = γ 2

Seq.(Hoyle), (10)

which leads to

�DD(Hoyle)

�Seq.(Hoyle)
= PDD(Hoyle)

PSeq.(Hoyle)
. (11)

Since, �Seq.(Hoyle) ≈ �(Hoyle), we have

�DD(Hoyle)

�(Hoyle)
≈ PDD(Hoyle)

PSeq.(Hoyle)
. (12)

So the branching ratio for the direct decay is equal to the
penetrability ratio of direct decay to the sequential decay.
Using a different module of the BPP code [25], the penetra-
bilities for the sequential decay have been calculated using
the interaction with and without the nuclear term [31]. The
values of the penetrability ratios or the branching ratios with
uncertainties thus obtained are listed in Table II. The results
show that the branching ratios for all the three decay modes
are slightly different from those obtained from the “first ap-
proach.” So, accordingly, one gets different values of upper
bounds compared to the “first approach.” The reason for this
discrepancy between the two approaches may be due to the
assumption regarding the reduced width. However, a deeper
understanding of the R-matrix theory in conjunction with the
reduced width of the cluster states is essential to establish the
effectiveness of either approach.

B. Third approach

Finally, a “third approach” is considered in which we ex-
plore the conclusions given by Epelbaum et al. [10], where
the Hoyle state has been assumed to have a bent-arm-like
structure. However, in the present work, the angle of the bent
arm has been kept as a variable and the simulations made
for angles in the range of 0–180◦. Separate calculations have
been performed using each of the formalisms of the above two
techniques. Barrier penetration probabilities for direct decay
are calculated assuming the bent-arm structure for both Hoyle
state as well as its 2+ state. Using Eq. (3), the branching ratio
is obtained as a function of angle of bent arm as shown in
Fig. 3(a). A maximum observed at ≈120◦ implies that the
branching ratio of the direct to total decay is the highest when
the angle of the bent arm is 120◦. Whether this configura-
tion is favored or not is a question and raises some debate

FIG. 3. Penetrability ratio as a function of the angle of the
bent arm (a) Pbent−arm

DD (Hoyle)/Pbent−arm
DD (2+) from “first approach”

(b) Pbent−arm
DD (Hoyle)/Pbent−arm

Seq. (Hoyle) from “second approach.”

but it clearly differs from the results obtained by Epelbaum
et al. [10].

The calculation is repeated following the “second ap-
proach,” where one calculates the penetrability for a sequen-
tial decay considering the bent-arm structure and again finds
out the branching ratio as a function of the angle of bent arm
using Eq. (12), as shown in Fig. 3(b). A maximum around
120◦, the result similar to the one obtained from the first
technique, has been observed. The results look very interest-
ing because, for both the approaches (“first” and “second”)
considered, a maximum is observed in the branching ratio
at around 120◦ meaning the structure to be a obtuse angled
triangle. What this actually means is not clear yet; however,
this may give some idea regarding possible α configuration
inside the Hoyle state when compared with measured direct
decay components.

In a recent observation by J. Bishop et al. [32], a 95% confi-
dence belt of upper and lower limit was formed. Accordingly,
the direct decay component has a upper limit 0.043% and a
lower limit of 0.0058%. But to extract the direct decay com-
ponent, a more realistic model (DDP2) [32] was considered
later instead of a simple phenomenological one. This model
considers direct decay in entire phase space but weighted
by penetrability. The present work using DDP2 model and
“first approach” gives an upper limit of (0.019–0.028)%. This
result lies within the experimental limit quoted by [32]. Also,
the “second approach” provides an absolute value for DDP2

branching ratio in the range of (0.01–0.035)% correspond-
ing to r0 = 1.05–1.60 fm. It is interesting to note that the
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branching ratio calculated at r0 = 1.6 fm reproduces the ex-
perimental value (0.035%) observed by Smith et al. [33] and
is also within the experimental confidence belt obtained by
Bishop et al. [32].

It is seen from the present work that the phase-space points
close to DDE are more favorable in terms of penetrability
and in the case of DDP2, the major contribution comes from
these points. This implicates that DDE mode may be the most
prominent decay mode after all. Instead of a single point in the
phase space, DDE may occupy a zone around this point due to
inherent quantum mechanical uncertainties and perturbations
and can explain why this mode is the major contributor in the
DDP2.

C. Simulated spectrum

Next, we try to see the implications of very low branch-
ing ratios in a real experiment. As seen from the results of
all three approaches, we find that out of all the approaches
considered for simulation, in the best-case scenario one can
have a branching ratio of around 10−5 which is still 5 times
lower than what was achieved by Rana et al. [14]. Such low
branching ratios mean that one needs very long and high
statistics experiment to get a significant number of direct de-
cay events. In order to simulate what happens if we do perform
such a high statistics experiment, we perform a Monte Carlo
simulation which generates the events for various direct decay
modes and then mix these different decay events according
to our current knowledge of the branching ratio [14]. The
spectra obtained from the simulations are shown in Fig. 4 with
gray, red, pink, and yellow regions representing the sequential,
DDL, DDE, and DDφ decay events. The blue star symbols
represent the sum of all the contributions and are supposed
to imitate the data events obtained from a real experiment. It
may be emphasized that the energy and angular resolutions
of the detectors have been considered to be 40 keV and 0.3◦,
respectively, to build these spectra.

Now we have to find out whether we can reliably extract
back the branching ratio information from the above com-
bined spectrum which replicates an experimental data. This
will help us plan any future experiment for measuring the
direct decay branching more effectively. The conventional
fitting procedure (ROOT TFractionFitter) is employed to fit
a typical combined data described above and the results are
shown in Fig. 4. The plot shows a successful fitting for a
branching ratio of 2 × 10−4. It is interesting to find that a
branching ratio of less than ≈10−4 cannot be fitted reliably
without having a very large statistics which also raises the
issue of computational limitation.

FIG. 4. Simulated root-mean-square energy deviation spectrum
of three α particles emitted via different decay modes, with dominant
contribution (99.965%) from sequential mode as shown by gray
shade. Contribution from DDL, DDE, and DDφ modes are 0.004%,
0.012%, and 0.019% respectively. Combined events shown by blue
solid line have been fitted again to find the uncertainty in extracting
back the above contributions if possible.

III. CONCLUSIONS

In summary, using elaborate simulations, it has been found
that the dependence of penetrability on the initial configu-
ration of three α inside 12C is quite sensitive. It may be
concluded that it is necessary to specify the initial configu-
ration, which is very important, while mentioning any upper
limit for direct decay branching ratio. For the first time, we
make use of a different approach to calculate the branching
ratio and we find that this method further reduces its limit.
However, this technique should in principle give an absolute
branching ratio instead of an upper limit. We also explore the
specific case where Hoyle state is assumed to have a bent-arm-
like structure and the results obtained by varying the angle
of the bent arm are found to be quite interesting. Last, we
simulate a real life like experiment where we mix the events of
direct decay modes with the sequential mode in proportion to
their respective branching ratios known so far and try to find
out whether our current minimization techniques are able to
extract the specific mixing ratios. We find that the techniques
are not sensitive enough below the branching ratio of ≈10−4

even when using a reasonably large sample volume for the
Monte Carlo simulation. Present results will not only serve as
important inputs to the future measurements but also open up
further simulations and theoretical work on the study of direct
decay of the Hoyle state.
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