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Description of magnetic moments within the Gogny Hartree-Fock-Bogolyubov framework:
Application to Hg isotopes
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While the ground state configuration is classically determined by the variational principle minimizing the
binding energy of the system, we propose here a different procedure to identify the configuration of the ground
state in odd-A nuclei. This procedure is based on the Hartree-Fock-Bogolyubov (HFB) framework with a
self-consistent blocking of the unpaired nucleon and identifies the ground state as the blocked quasiparticle
configuration compatible with the observed spin and parity and, most importantly, the measured magnetic
moment. The magnetic moments are calculated within the HFB framework for all odd Hg isotopes for which
experimental data is available. To validate the method, a systematic comparison between the predicted and
measured electric quadrupole moments and isotopic shifts is performed. For even-even isotopes, we show that
the ground state deformation, and more particularly the competition between the prolate and oblate shapes,
can hardly be determined through a comparison of the QRPA β-decay half-life with experiment, though this
approach also calls for an observable similar to the one used for odd-A isotopes, namely the spin-flip component
of the isovector part of the magnetic moment operator. For even isotopes with shape coexistence, no adequate
constraint could be identified, except though the charge radius. Assuming light even-even Hg isotopes to have an
oblate shape, the resulting charge radii staggering observed in the Hg chain by laser spectroscopy can through
this identification procedure be reproduced.

DOI: 10.1103/PhysRevC.104.024328

I. INTRODUCTION

The radioactive isotopes in the neutron-deficient lead
region have been studied by optical spectroscopy for sev-
eral decades due to the extraordinary measurements of the
so-called staggered pattern found experimentally in partic-
ular within the Hg isotopic chain region [1]. In particular,
181,183,185Hg present a charge radius significantly larger than
their even-even neighbours, in contrast to what is observed
for heavier Hg isotopes. This important discovery of shape
staggering between odd and even neutron-deficient mercury
isotopes is specific to this region of the nuclear chart and
has been contributing significantly to our understanding of
shape coexistence at low excitation energy [2–6]. This stag-
gering is explained through different distributions of proton
and neutron pairs with respect to their Fermi energies found
in neighboring isotopes and isotones, leading to sudden mod-
ifications of their ground state (GS) properties.

The GS configuration within the mean-field approach is
classically obtained assuming the variational principle, i.e.,
the GS is defined by the absolute minimum of the energy sur-
face in the deformation plane. While this procedure is rather
robust for quasispherical or well-deformed even-even nuclei,

for systems with an odd number of nucleons, it often fails
to provide the right spectroscopic properties of the GS, es-
sentially the spin and parity, hence all associated observables.
In addition, for many systems, corrections beyond mean field
are known to affect the energy balance between the various
minima in the deformation plane [7–10]. We propose here a
new procedure that identifies the GS of odd-A and odd-odd
nuclei on the basis of their measured magnetic moment with
the correct spin and parity. To validate the procedure, we also
calculate additional observables such as the β-decay half-life,
the charge radius or the electric quadrupole moment and com-
pare them with experimental data. In such an approach, the
magnetic moment plays a key role in the identification of the
quantum number associated with the GS.

Nuclear moments have been studied theoretically and ex-
perimentally since the very beginning of nuclear structure
physics [11]. The first measurements of nuclear magnetic
moments were performed in the 1950s by the nuclear mag-
netic resonance technique and are routinely done nowadays by
laser spectroscopy [1,12,13]. A comprehensive compilation
of magnetic moments measured up to 2004 can be found in
Ref. [14]. From the theory side, the magnetic dipole response
can be successfully described within the quasiparticle random
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phase approximation (QRPA) approach [15–17]. Here we
propose to estimate an effective magnetic moment operator
with respect to the approximation made by the Hartree-Fock-
Bogoliubov (HFB) method. Our theoretical framework is
described in Sec. II. In Sec. III, the identification of the GS
of even- and odd-A Hg isotopes is discussed. For odd Hg
isotopes (Sec. III A), the GS configuration is identified by
comparing the calculated magnetic moment of the various
potential states with experiment. In contrast, for even-even
Hg isotopes (Sec. III B), where no similar quantities can be
obtained, another protocol related to the β-decay half-life is
explored.

In Sec. IV, the charge radius and electric quadrupole mo-
ment of the identified GS of the Hg isotopes are estimated
and compared with measured values. Conclusions and per-
spectives are finally given in Sec. V.

II. THEORETICAL FRAMEWORK

The HFB formalism is well known to provide a reliable
description of the GS properties of even-even systems, but
also a starting point to improve the description of GS prop-
erties for systems with an odd number of nucleons or to
explain excited states through approaches such as the gener-
ator coordinate method or the random phase approximation
(e.g., Refs. [18,19]). At static mean-field level, the solutions
of the HFB equations are quasiparticle (qp) orbitals, which
set a so-called vacuum corresponding to a Jπ = 0+ state. The
HFB GS of even-even nuclei is determined by minimizing
the binding energy over the entire potential energy surface
in the deformation plane. To describe fermion systems, such
as nuclei with an odd number of nucleons, the GS should
be redefined as the excitation of one qp state on top of an
HFB vacuum. In practice, the qp excitation that minimizes the
total energy is selected. In the present axially symmetric HFB
framework, the projection K of the total angular momentum
J and the parity π are good quantum numbers. Thus, the
HFB GS for odd nuclei with spin-parity Jπ is described by
selecting a qp orbital with Kπ

qp = Jπ and imposing its oc-
cupation probability. This so-called blocking approximation
can be limited to the equal filling one where time-reversal
symmetry is conserved. This symmetry conservation has no
consequence in the present study. After variation, only one of
the two qp of the blocked pair is considered as an excitation
on top of the HFB vacuum to calculate observables within
time breaking assessment. Among them, the spectroscopic
magnetic moment is of particular interest since it contains, for
fermion systems, detailed structure information in contrast to
the spectroscopic quadrupole moment, which can cancel out
for spin values of J = 0 or 1/2.

The magnetic moment operator is known to be composed
of two contributions, namely a pure spinor part and an orbital
angular part [20], i.e.,

μ̂ = gsŝ + gl l̂, (1)

where gs and gl are the gyromagnetic factors. For protons
gl = 1, gs = 5.586 and for neutrons gl = 0 gs = −3.826. For
spherical and quasispherical nuclei (i.e., for nuclei with a
quadrupole deformation parameter |β| <∼ 0.07), the spectro-

scopic magnetic moment μS is equal to the intrinsic one.
However, for axially deformed nuclei, μS can be derived from
the expression

μS = K

J + 1
〈K|μ̂|K〉 + GR, (2)

where the additional collective contribution GR needs to be
considered for well-deformed nuclei (β typically larger than
0.2). This rotational component GR is related to the angular
momentum J and can be approximated by the simple expres-
sion [21–24]

GR = Z

A

J (J + 1) − K2

J + 1
. (3)

It is known to amount to about 0.25 for odd neutrons and
0.40 for odd protons [21]. Future work will consider a more
microscopic determination of GR within the Inglis-Belyaev
approximation [24,25].

For J = 1/2 states, a special attention should be paid
to the coupling with the K = −1/2 time-reversal configura-
tion [20,22], which brings an additional contribution to the
spectroscopic magnetic moment. The resulting spectroscopic
magnetic moment is given by
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Finally, to introduce in an effective way beyond-mean-field
and core polarization effects, the gs gyromagnetic factor is
usually reduced by a factor of 0.6–0.9 [21–23,25,26]. We
adopt here a spin quenching factor of 0.75, as proposed in
Ref. [26], with an uncertainty of about ±0.15, as studied in
Ref. [25]. In the present study, two spectroscopic values for
magnetic moment are consequently distinguished: the bare
one μS and the effective one μeff

S obtained with the effective
operator:

μ̂eff = 0.75 × gsŝ + gl l̂. (5)

The relevance of the effective operator within the HFB frame-
work is discussed below.

III. IDENTIFICATION OF THE GS IN HG ISOTOPES

A. Odd Hg isotopes

To test the HFB prediction of the magnetic moment, we
consider the Hg isotopic chain extensively studied through
recent laser spectroscopy measurements at CERN-ISOLDE
radioactive ion beam facility [1,12]. In axially symmetric de-
formed calculations, GS shapes are traditionally determined
by minimizing the potential energy curves obtained within the
constrained HFB model for various quadrupole deformations.
While for even isotopes only one Jπ = 0+ energy surface
needs to be calculated, for odd-A nuclei, all possible qp can-
didates for a given spin and parity need to be blocked in the
HFB calculations leading to a significant number of potential
energy curves. Note that all calculations have been performed
with the D1M interaction [27] and a 19 major oscillator shell
basis, except for the potential energy surfaces illustrated in
Fig. 1, which have been obtained with a 15 major oscillator
shell basis.
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FIG. 1. 177Hg axial potential energy curves for different Kπ

blockings as a function of the quadrupole deformation parameter β.
Calculations are performed with the D1M interaction and a 15 major
oscillator shell basis.

We start by focusing on the assignment of spin and parity of
odd Hg isotopes. Within our axially symmetric framework, it
is reasonable to propose a GS spin J corresponding to J = K .
For odd-A, isotopes, a potential energy curve can be obtained
for each value of Kπ corresponding to the blocking of the odd
neutron. As an example, Fig. 1 illustrates the 177Hg binding
energies as a function of the axial deformation parameter β for
various Kπ projections. Each curve is obtained by blocking
self-consistently in the iterative HFB resolution the first qp
state for the given Kπ quantum number.

Usually, the HFB GS is described by the lowest energy
configuration, i.e., the absolute minimum. As seen in Fig. 1,
such a blocking method applied to D1M-HFB predicts a Jπ =
5/2+ GS in disagreement with the 7/2− value suggested by
experiment [28]. Other configurations having binding ener-
gies close to the absolute minimum are still candidates since
beyond-mean-field correlations could modify the energy se-
quence without altering their respective structure properties.
For well-deformed shapes (|β| > 0.2) the difference between
the estimated rotational energy of both minima is �100 keV
and this mechanism is consequently inefficient to restore
the energy sequence. To reproduce the experimental scheme,
other contributions need to be explored. It should also be
noticed that the binding energy difference between the HFB
absolute minimum and the lowest 7/2− configuration is of
the order of 0.5 MeV. This difference is of the same order
of magnitude as the root-mean-square deviation of the D1M
mass predictions with respect to all 2408 known masses for
Z, N � 8 nuclei, i.e., of the order of 0.8 MeV [27]. For this
reason, all configurations with a binding energy within typi-
cally 1 MeV above the absolute minimum may reasonably be
considered as potential candidates for the GS.

To identify the GS characteristics, and in particular its
quantum numbers, we propose a new procedure based on the
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FIG. 2. D1M-HFB magnetic moments as a function of the spec-
troscopic quadrupole moment for the different energy minima for
each Kπ state shown in Fig. 1 for 177Hg. The red circles correspond to
the bare magnetic moments and the blue squares to the effective ones.
Both are joined by a solid line for the same Kπ blocked state. The
bare magnetic moment for the Jπ = 5/2− and the effective magnetic
moment for the Jπ = 7/2− are compatible with the experimental
data shown by the black diamond [1,14]. For the 3/2+, 5/2−, and
7/2+, the moments for the second minima observed in Fig. 1 are
also shown.

theoretical description of the experimental spectroscopic mag-
netic moment. Figure 2 shows theoretical spectroscopic mag-
netic moments with respect to the spectroscopic quadrupole
moment for all blocked HFB minima. Both the bare and
effective magnetic moments are shown and joined by a solid
line. The experimental data for the assigned 7/2− GS is also
shown for comparison [1].

From Fig. 2, it appears that both the bare and effective op-
erators can provide an HFB blocking configuration for which
the spectroscopic magnetic and electric moments are compati-
ble with experimental data. The corresponding GS candidates
are characterized by different spins and parities, namely Kπ =
7/2− using the effective magnetic moment and Kπ = 5/2−,
or potentially 7/2+, if we adopt the bare magnetic moment.
In contrast the Kπ = 5/2+ HFB absolute minimum is seen to
be incompatible with both the measured magnetic and electric
moments. Since the experimentally suggested GS is a 7/2−
state, this example clearly illustrates the relevance of con-
sidering the effective magnetic moment operator and not the
bare one. The HFB GS is neither given by the configuration
leading to the lowest absolute energy, nor by the blocked states
with a bare magnetic moment compatible with experiment.
However, considering the effective magnetic moment, all data
are found to be compatible with the Kπ = 7/2− blocked
configuration.

The three above-mentioned HFB blocking candidates can
also be tested on the charge radius recently measured and
giving rise to an isotopic shift with respect to 198Hg of
δ〈r2〉A−198

exp = −1.067(8){78} fm2 [1]. We find for our three
candidates Kπ = 7/2−, 5/2−, and 7/2+, an isotopic shift
of δ〈r2〉A−198 = −1.33, −1.28, and −1.29 fm2, respectively,
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while for the 5/2+ HFB absolute minimum, δ〈r2〉A−198 =
−0.57 fm2. The latter is clearly incompatible with experi-
mental data. A more detailed comparison with charge radii
is presented in Sec. IV.

The above-described protocol for identifying the GS can
similarly be applied to the other Hg isotopes. For 179Hg,
the HFB Jπ = Kπ = 1/2− configuration found as the ab-
solute minimum does not match the experimental tentative
assignment Jπ = (7/2−). Only the 7/2− configuration close
to a spherical shape appears to be compatible with ex-
periment. Its HFB spectroscopic moments are estimated to
μeff

S = −1.11μN and QS = 0.58 b in rather good agreement
with measured value of μ

exp
S = −0.949(29)μN and Qexp

S =
0.77(28) b.

For both 181Hg and 183Hg isotopes, we only found one
compatible candidate with Jπ = Kπ = 1/2−, as determined
experimentally. The effective spectroscopic magnetic mo-
ments [calculated from Eq. (4) are μeff

S = 0.48μN for 181Hg
and μeff

S = 0.45μN for 183Hg, in rather good agreement with
experimental data μ

exp
S = 0.510(9) and 0.516(11)μN , respec-

tively. On top of that, the intrinsic deformation of these
blocking HFB configurations is found to be prolate with
β = 0.31 for 181Hg and 0.29 for 183Hg in agreement with the
interpretation made by the shell model calculations [1]. Note
that for these Hg isotopes, the same assignment is obtained
with the effective or bare magnetic moment.

When dealing with the 185Hg GS, a more complex situa-
tion is found. In particular, none of the calculated magnetic
moments obtained by blocking the first Kπ qp states with
a reasonably low binding energy coincides with the experi-
mental value μ

exp
S = 0.509(4)μN [1,12]. However, the HFB

binding energy of the second 1/2− blocked qp state above the
7/2− minimum minimorum is low enough (�E = 1.1 MeV)
to be considered. For this blocked solution with prolate defor-
mation (β = 0.27) the effective magnetic moment amounts to
μeff

S = 0.43μN . It is therefore possible here again to identify
the structure of the 185Hg GS by constraining the magnetic
moment, leading to a Jπ = Kπ = 1/2− state with a prolate
intrinsic deformation.

Concerning 187Hg, the situation becomes even more com-
plex. Although the magnetic moment μeff

S = −0.68μN of
the Jπ = 9/2+ HFB absolute minimum is compatible with
the experimental one associated with a Jπ = 3/2− GS, this
configuration cannot correspond to the HFB GS since its
spectroscopic quadrupole moment QS = 2.15 b is far from
the measured Qexp

S = −0.8(3) b. For this isotope, only the
blocked 3/2− qp states are found to reproduce the experi-
mental magnetic moment. To remove this ambiguity on the
HFB configuration assignment, it remains possible to con-
sider the quadrupole moment as an additional criterion. It
turns out that the only candidate fully compatible with ex-
periment is the third blocked qp, which corresponds to an
oblate 3/2− state. Its HFB energy lies about 1.36 MeV
above the 9/2+ energy minimum minimorum. Similar con-
clusions are reached for 189,191,193Hg isotopes, where the
blocking of the 3/2− qp state reproduces both the measured
magnetic and electric moments. For the three isotopes, an
oblate shape is predicted for the corresponding GS, as found
experimentally [12].
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FIG. 3. Comparison between experimental [1,12,14] and HFB
magnetic moments for the various Hg isotopes. The full symbols
correspond to the GS and the open symbols to the isomeric states.
The corresponding spins are given. Details on the theoretical error
bars can be found in the text.

For 195,197,199Hg isotopes, Jπ = Kπ = 1/2− configurations
compatible with experiment are also found (Fig. 3). For these
three specific cases, the additional component in Eq. (4)
is found to increase the magnetic moment by typically 0.2
μN . The same above-described protocol to identify the qp
blocking configuration as actual GS has been applied up to
203Hg. Consequently, HFB calculations provide two sets of
results, namely the first one based on the absolute HFB energy
minima, and the second one based on the magnetic moment
selection provided experimental data is available. In the latter
case, an actual GS compatible with experimental spin, parity,
electric, and magnetic moments can be found. Note that a
similar procedure constraining the spin and parity on exper-
imental data has been applied within the spherical relativistic
Hartree-Bogolyubov framework to explain the kink in the
isotopic shifts for heavier Hg isotopes around the N = 126
closed shell [29]. Since the corresponding magnetic moments
have not been measured yet for such heaviest A � 207 iso-
topes, our present study is restricted to N � 126 Hg isotopes.

We compare in Fig. 3 the experimental magnetic mo-
ments for the ground states with those obtained through our
HFB assignment protocol. For completeness, we also estimate
the magnetic moment of the isomeric states 13/2+ for the
A = 185–199 nuclei and compare them with measured values
[1,12,14]. For each state, a theoretical uncertainty can be
attributed. It corresponds to a quadratic sum of uncertainties
associated with

(1) the effective spin quenching factor: it is estimated to
amount to 20% of the magnetic moment (see Sec. II);

(2) the determination of the rotational correction as well
as its contribution depending on the exact quadrupole
deformation: it is estimated to about ±0.1μN ;

(3) the interaction adopted: calculations performed with
the D1S interaction give an average deviation of
±0.07μN on the GS magnetic moments with respect
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TABLE I. Quadrupole deformation parameters β and binding
energies of the oblate “o” and prolate “p” minima in even Hg isotopes
calculated within the HFB framework using the D1M interaction [27]
and assuming axial symmetry with a 19 major oscillator shell basis.
For the two heaviest isotopes close to the N = 126 neutron shell
closure, a spherical shape β = 0 is found and referred to in the oblate
column.

Eo Ep Eo–Ep

A βo [MeV] βp [MeV] [MeV]

178 −0.11 −1383.62 +0.29 −1383.84 0.22
180 −0.13 −1403.67 +0.31 −1404.28 0.61
182 −0.15 −1423.28 +0.30 −1423.94 0.66
184 −0.15 −1442.41 +0.29 −1442.84 0.45
186 −0.15 −1461.04 +0.28 −1461.05 0.01
188 −0.15 −1479.18 +0.26 −1478.31 −0.87
190 −0.14 −1496.84 +0.10 −1495.54 −1.30
192 −0.14 −1514.03 +0.09 −1512.71 −1.32
194 −0.13 −1530.74 +0.09 −1529.47 −1.27
196 −0.12 −1546.93 +0.07 −1545.82 −1.11
198 −0.11 −1562.59 +0.04 −1561.82 −0.77
200 −0.08 −1577.80 – – <0
202 0.00 −1592.98 – – <0
204 0.00 −1607.91 – – <0

to those obtained with D1M. For the 13/2+ isomeric
states, similar predictions are obtained with both inter-
actions.

The resulting uncertainties affecting the magnetic moment
of the newly assigned ground and isomeric states are shown
in Fig. 3.

B. Even Hg isotopes

The above-described protocol to estimate the GS configu-
ration on the basis of the magnetic moments can obviously not
be applied to even-even Hg isotopes. Even-N Hg isotopes are
known to be subject to shape coexistence, as shown in Table I
by the binding energies of the prolate and oblate minima for
the Hg nuclides ranging between A = 178 and 204 estimated
within the HFB framework. The last column provides the
energy difference between the oblate and the prolate wells.

As expected, for the heavy A > 186 Hg isotopes, the
prolate minimum progressively disappears, giving place to
a shallow oblate minimum, which finally migrates towards
sphericity close to the N = 126 shell closure. For the light Hg
isotopes with A = 178–186, the prolate and the oblate min-
ima are relatively degenerate and should be mixed including
beyond-mean-field corrections [7–10,30,31]. Nevertheless, a
recent comparison between the experimental spectra and the
theoretical ones obtained by the five-dimensional collective
Hamiltonian (5DCH) approach including triaxial degree of
freedom for 188Hg [4] has shown that the predicted intrin-
sic deformation of the first and second 0+ can be inverted
with respect to experimental evidence. Such a discrepancy
in the relative excitation energy is found although the ab-
solute minimum of the potential energy surface is oblate as
experimentally expected (see Sec. IV). Even if all rotational

and vibrational bands are properly reproduced, the 5DCH
approach keeps on failing in the GS structure assignment and,
in particular, supports the prolate shape over the spherical or
oblate ones. On top of that, the 5DCH approach describes only
positive parity states on the basis of the unique Jπ = 0+ po-
tential energy surface, hence is limited up to now to even-even
nuclei. For theses reasons, this dynamical 5DCH approach
may not be pertinent for improving the description of such
intrinsic observables and will not be followed in the present
study. At this stage, both GS candidates corresponding to the
oblate and prolate HFB minima should be considered, though
some alternative approaches may help us to differentiate them.

A tentative determination of the GS intrinsic deforma-
tion of even-N Hg isotopes considers the β-decay half-lives
prediction. This choice is motivated first by the similarity
between the isovector spin-flip component of the magnetic
moment and the Gamow-Teller operator and second by the
analysis of the deformation effects on β-decay patterns ob-
tained in Ref. [32] with the Skyrme interaction for the same
isotopic chain. In the present work, we plan to deduce the
intrinsic GS deformation in even-N Hg isotopes through the
best simultaneous description of the experimental β-decay
half-lives of the even-even Hg isotopes and the GS magnetic
moment of the corresponding odd-odd daughter Au isotopes.

To calculate the β-decay half-lives we follow the axially
symmetric HFB+QRPA approach developed in Ref. [33] for
the Gogny forces. This approach was used to estimate the
β−-decay half-lives of all the even-even nuclei for which
experimental data exist as well as the exotic neutron-rich N =
82, 126, and 184 isotones. The Gamow-Teller response of
even and odd 90−94Zr isotopes [16] and β−-decay of 83Ga [34]
have also been successfully studied within the same approach.
In the same framework, β+ and electron-capture (EC) decay
rates have been estimated for 188Bi [35]. In the present study,
we follow the same approach and estimate the β+ and EC
decay half-lives of 182,184,186Hg isotopes to choose between
the oblate or prolate configurations. Both the allowed Fermi
and Gamow-Teller transitions are included. The folding of the
Gamow-Teller strengths is the same as the one employed in
Ref. [33]. The allowed EC contribution is also included, as
described in Ref. [36].

Turning to the identification of different possible config-
urations for the GS of the daughter 182–186Au isotopes, we
adopt the same protocol as described in Sec. III A. However,
since the considered Au isotopes are odd-odd nuclei and the
underlying HFB calculation does not break time-reversal sym-
metry, the calculation of magnetic moment may be affected
by a larger uncertainty with respect to the odd-even cases
previously discussed. Furthermore, since configurations with
either a proton up plus neutron up or a proton up plus neutron
down remain degenerate in the present approach, the corre-
sponding excitation energies should be taken with caution. For
this reason, a larger tolerance is considered to identify the con-
figurations compatible with the GS assignment. It is important
also to emphasize that HFB calculations of odd-odd nuclei
were already performed in the context of our β-decay study
for even-even nuclei [33] in order to obtain the β strengths as
a function of the excitation energy of the daughter odd-odd
nucleus. The procedure to evaluate the reference energy in
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the odd-odd nucleus is explained in detail in Ref. [33]. The
method introduced here represents an improvement of that
procedure.

Concerning the 182Hg → 182Au decay, two 182Au HFB
minima are compatible with the experimental assignments
of Jπ = 2+ and μ

exp
S = 1.30(10)μN [14]: these correspond

to the same (π3/2− ↑, ν1/2− ↑) configurations with μeff
S =

1.40μN , β = 0.29, �E = 0.72 MeV or μeff
S = 1.33μN , β =

−0.16, �E = 1.63 MeV (where �E is the HFB excitation
energy with respect to the absolute minimum). This con-
figuration assignment in 182Au is in agreement with recent
experimental analysis [37]. These daughter nucleus configu-
rations, irrespective of the shape, provide a different reference
energy value in the mother nucleus, hence a different predic-
tion of the β-decay rate. More specifically, the β+ + EC 182Hg
half-life is estimated to T QRPA

1/2 = 7.8 s and 14.4 s for the 182Hg
GS oblate and prolate shapes, respectively. When compared to
T exp

1/2 = 10.83 s [38], none of these GS shapes can be clearly
excluded.

In the case of 184Hg → 184Au decay, the (π3/2− ↑,
ν7/2− ↑) 184Au GS configuration leads to an HFB mag-
netic moment μeff

S = 2.10μN in agreement with experimental
GS assignments of Jπ = 5+ and μ

exp
S = 2.07(2)μN [14,39].

Within this assignment, we find a β-decay half-life T QRPA
1/2 =

120 s for the mother oblate shape and 56 s for the prolate one.
Both theoretical half-lives are in disagreement with the exper-
imental T exp

1/2 = 30.87 s [38]. Finally, for 186Hg → 186Au, we

found two prolate 186Au HFB minima compatible with the ex-
perimental assignments of J+ = 3− and μ

exp
S = −1.28(3)μN

[14], i.e., the (π3/2− ↓, ν9/2+ ↑) configuration with β =
0.28, μeff

S = −1.35μN and the (π1/2− ↓, ν7/2+ ↑) one with
β = 0.27, μeff

S = −1.43μN . The corresponding QRPA half-
lives are T QRPA

1/2 = 377 s and 410 s for the prolate 186Hg
minimum and 286 s and 136 s for the oblate one. Both over-
estimate the experimental value T exp

1/2 = 82.3 s [40].
In summary, the β-decay half-life cannot be determined

accurately enough at the present time by the QRPA approach
to constrain the intrinsic GS deformation in the mother nu-
cleus. This complex situation found for even-even nuclei also
illustrates the relevance of considering the magnetic moment
to identify the GS in odd-A or odd-odd nuclei.

IV. ISOTOPIC SHIFT AND SPECTROSCOPIC
QUADRUPOLE MOMENTS

With the GS configuration of the odd Hg isotopes identi-
fied, as described in Sec. III A, we compare in Fig. 4 the HFB
isotopic shifts with experimental data for the GS of all Hg
isotopes. As discussed in Sec. III B, for the light even isotopes
with A = 178–186, it has not been possible to distinguish
between the oblate or prolate intrinsic configurations. For
this reason, we show in Fig. 4 both theoretical predictions.
It clearly appears that the measurement of isotopic shift fa-
vors the oblate configuration for the even 178–186Hg isotopes.
Only with such an assumption, it is possible to reproduce the
staggering observed for the GS of 180 � A � 186 nuclides.

Some deviations can also be observed for the lightest iso-
topes, where the charge radii are seen to be underestimated
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FIG. 4. Comparison between experimental [1,12] and HFB iso-
topic shifts δ〈r2〉A–198 for the various Hg isotopes. For the even
A = 178–186 isotopes, the isotopic shift for the prolate HFB config-
urations are shown with open circles. The corresponding full circles
for even A = 178–186 correspond to the oblate configuration.

with respect to the experimental ones. Beyond static mean-
field calculation may induce some dynamical deformation,
which could increase the charge radii for isotopes with a
relatively soft quadrupole deformation.

A comparison with D1S predictions shows that on average
a systematic deviation of 0.045 fm2 can affect δ〈r2〉A–198. Such
an uncertainty is illustrated by the theoretical error bars in
Fig. 4.

A similar comparison can be made for the electric
quadrupole moments. In the present study, the quadrupole
moment is estimated from the proton and not the charge
distribution. The impact of the charge distribution will be
estimated in a forthcoming study. The experimental and cal-
culated moments are compared in Fig. 5. The agreement is
found to be rather satisfactory. A systematic uncertainty of
0.055 b is shown on J > 1/2 predictions, corresponding to
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FIG. 5. Comparison between experimental [12,14] and HFB
spectroscopic quadrupole moments for the odd-N Hg isotopes.
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the average deviation obtained between calculations using the
D1S or D1M interactions.

V. CONCLUSION AND PERSPECTIVES

While the GS configuration is classically determined by the
variational principle minimizing the binding energy of the sys-
tem, in the present study, we propose a different procedure to
identify the GS configuration and applied it to the Hg isotopic
chain. For odd-A isotopes, this procedure is based on the HFB
calculation with a self-consistent blocking of the unpaired
nucleon and the identification of the GS configuration as the
blocked qp compatible with the observed spin and parity and,
most importantly, the measured magnetic moment. For even-
even isotopes, the GS deformation, and more particularly the
competition between the prolate and oblate shapes, could not
be determined through a comparison of the QRPA β-decay
half-life with experiment, though this approach also calls for
an observable similar to the one used for odd-A isotopes,
namely the spin-flip component of the isovector part of the
magnetic moment operator, even when identifying the GS
configuration of the daughter nucleus through its magnetic
moment.

The magnetic moments have been calculated within
the HFB framework for all odd Hg isotopes for which
experimental data is available. The corresponding configu-
rations have been used to estimate the electric quadrupole

moment and charge radii that are found to be in rather good
agreement with experimental data. For even isotopes with
shape coexistence, no adequate constraint could be identified
up to now, except perhaps the charge radius. The knowledge
of the intrinsic deformation allows us to interpret phenomena
as charge radii staggering in term of shape coexistence. It is
clear that when shape coexistence occurs the present mean-
field calculation is able to interpret them, but it often fails in
the prediction of the GS assignment when only the energy
criterion is applied. In conclusion, the magnetic moment is
found to be a valuable observable to constrain mean-field
models, which still need to be improved through either new
parametrizations of the interaction or extended descriptions of
its functionals. Such improvements should aim at reproducing
the correct energy sequence, keeping in mind that energy or-
dering can be also affected by beyond-mean-field corrections
(e.g., through generator coordinate methods) or by dynamical
effects, for example within the QRPA framework.
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