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Background: Recent accumulation of experimental data is revealing nuclear deformation in vicinity of 42Si. This
demands systematic theoretical studies to clarify more specific aspects of nuclear deformation and its causes.
Purpose: The purpose of this study is to investigate the nature and mechanism of the nuclear deformations and
its relation to the disappearance of the neutron magic number N = 28.
Method: The framework of antisymmetrized molecular dynamics with Gogny D1S density functional has been
applied. The model assumes no spatial symmetry and can describe triaxial deformation. It also incorporates with
the configuration mixing by the generator coordinate method.
Results: We show that the shell effects and the loss of the magicity induce various nuclear deformations. In
particular, the N = 26 and N = 30 isotones have triaxially deformed ground states. We also note that the erosion
of the N = 28 magicity gradually occurs and has no definite boundaries.
Conclusion: The present calculation predicts various nuclear deformations in vicinity of 42Si, and suggests that
the interband electric transitions are good measure for it. We also remark that the magicity is lost without the
single-particle level inversion in the oblate deformed nuclei such as 42Si.
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I. INTRODUCTION

The disappearance of magic numbers [1–4], which oc-
curs in unstable nuclei with neutron numbers N = 8, 20, 28,
and 50, significantly changes the structure of Fermi surface.
Hence, it is expected to considerably affect the fundamental
properties of nuclei, such as stability, size, and shape. In fact,
decades of studies have shown that various phenomena such
as nuclear deformation [5–11], shape coexistence [12–14],
radius increase [15–20], and clustering [21,22] occur with
the disappearance of neutron magicity. The causes of the
vanishing magic number, such as weak bindingness [23] and
the effect of nuclear forces [24,25], especially that of tensor
force [26,27], have also been intensively studied.

Among the neutron magic numbers, N = 28 is the smallest
one generated by the spin-orbit interaction. Therefore, its dis-
appearance should change the structure of the Fermi surface in
a different way from the cases of N = 8 and 20. More specif-
ically, the N = 28 shell gap is composed of the neutron 0 f7/2

and 1p3/2 orbits, which belong to the same major shell in the
absence of spin-orbit splitting. This means that the quenching
of the N = 28 shell gap causes quasidegeneracy of the orbits,
which have the same parity but different angular momenta by
two. This will induce strong quadrupole correlations between
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the nucleons near the Fermi surface, which leads to various
quadrupole deformation of the low-lying states [28–30]. In
fact, recent accumulation of experimental data for the low-
lying states and their electric transitions [9–11,31–45] are
revealing the onset of the ground-state deformation and the
quenching of the N = 28 shell gap in neutron-rich Mg, Si,
S, and Ar isotopes. Therefore, it is important to theoretically
investigate the deformation of each isotopes and provide an
insight to the mechanism behind it.

Antisymmetrized molecular dynamics (AMD) [22,46,47]
is one of the powerful theoretical approaches for investi-
gating nuclear deformation induced by the disappearance of
magic numbers. It can describe various nuclear shapes without
assuming spatial symmetry and can handle the shape coex-
istence by the generator coordinate method (GCM). In the
last decades, AMD has been applied to study the quadrupole
deformations and clustering induced by the disappearance of
magic numbers N = 8 and 20 [22]. However, the increas-
ing computational costs and numerical accuracy issues have
prevented us from systematically applying AMD to N = 28
nuclei, even though we had obtained interesting preliminary
results about the coexistence of exotic nuclear shapes in
43S [30].

Recently, the excellent performance of modern computers
and improvements in numerical techniques [48] have resolved
these problems and enabled systematic study of N = 28 iso-
topes. This motivated us to illustrating the landscape and
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causes of exotic shape coexistence in neutron-rich Mg, Si, S,
and Ar isotopes, and discussing feasible experimental signa-
tures for them. In this paper, which is going to be the first
of a series of papers, we focus on the shape of the ground
bands of these isotopes. We present the energy surfaces and
single-particle levels as functions of the quadrupole deforma-
tion parameters. We also discuss the excitation spectra and
electric properties of the low-lying states to compare with
the observed data. As far as we know, this is the first time
to show the interplay of the γ -deformed proton and neutron
shells strongly affects the shape of the N = 28 isotones and
induces triaxial deformation of the N = 26 and 30 isotones.
The analysis of the neutron occupation number shows that the
erosion of the N = 28 magicity gradually occurs and there is
no definite boundaries in nuclear chart where the magicity of
N = 28 is lost. Another finding is two different patterns in
the loss of the N = 28 magicity with and without the explicit
inversion of the single-particle levels, which will be the main
topic in our next paper.

This paper is organized as follows. In Sec. II, we briefly
explain the framework of AMD. In the Sec. III, we present the
numerical results for N = 26, 28, and 30 isotones; the energy
surfaces, single-particle levels, neutron occupation numbers,
spectra, and electric properties. Based on these numerical
data, we will discuss the factors that determine the shape of
each nucleus and the relationship to the disappearance of the
neutron magic number. Section IV summarizes this paper.

II. THEORETICAL FRAMEWORK

The A-body Hamiltonian used in this study is given as

Ĥ =
A∑
i

t̂i − t̂cm + 1

2

A∑
i j

v̂NN
i j + 1

2

Z∑
i j∈proton

v̂C
i j, (1)

where the Gogny D1S density functional [49] is employed
as an effective nucleon-nucleon interaction v̂NN

i j and the
Coulomb interaction v̂C

i j is approximated by a sum of seven
Gaussians. The center-of-mass kinetic energy t̂cm is exactly
removed.

The variational wave function is a parity-projected Slater
determinant,

�π = P̂πA{ϕ1ϕ2 . . . ϕA}, (2)

where P̂π is the parity projection operator. In this pa-
per, we investigate the low-lying positive-parity states. The
single-particle wave packet ϕi is represented by a deformed
Gaussian [50],

ϕi(r) = exp

{
−

∑
σ=x,y,z

νσ (rσ − Ziσ )2

}
χiηi, (3)

χi = aiχ↑ + biχ↓, ηi = {proton or neutron}. (4)

The variational parameters are the width (νx, νy, νz ) and the
centroids Zi of Gaussian wave packets; and spin direction
ai and bi. They are determined by the variation with the
constraint on the matter quadrupole deformation parameters
β and γ [51]. The sum of the energy and the constraint

potentials,

Ẽπ (β, γ ) = 〈�π (β, γ )|Ĥ |�π (β, γ )〉
〈�π (β, γ )|�π (β, γ )〉

+ vβ (〈β〉 − β )2 + vγ (〈γ 〉 − γ )2, (5)

is minimized to obtain the optimized wave function �π (β, γ )
for given values of β and γ . The strengths of the constraint
vβ and vγ are chosen sufficiently large. In this paper, the set
of (β, γ ) is chosen on the triangular lattice on the β-γ plane
ranging from β = 0 to 0.6 with interval of 0.05.

After the variational calculation, we perform the angular
momentum projection and the generator coordinate method
(GCM). The optimized wave functions are projected to the
eigenstate of the angular momentum,

�Jπ
MK (βi, γi ) = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)�π (βi, γi ), (6)

where DJ
MK (�) and R(�) represent the Wigner’s D function

and rotation operator. The projected wave functions are super-
posed employing β and γ as the generator coordinates,

�Jπ
Mα =

∑
iK

giKα�Jπ
MK (βi, γi ), (7)

where the coefficients giKα and eigenenergies Eα are obtained
by solving the Hill-Wheeler equation [52],∑

jK ′
HiK jK ′g jK ′α = Eα

∑
jK ′

NiK jK ′g jK ′α, (8)

HiK jK ′ = 〈
�Jπ

MK (βi, γi )
∣∣Ĥ ∣∣�Jπ

MK ′ (β j, γ j )
〉
, (9)

NiK jK ′ = 〈
�Jπ

MK (βi, γi )
∣∣�Jπ

MK ′ (β j, γ j )
〉
. (10)

In order to discuss the breaking of the magic number,
we also calculate the single-particle configuration of the op-
timized wave function at each point in the β-γ plane by
the following procedure [53]. We first transform the single-
particle wave packets ϕi into the orthonormalized basis ϕ̃p,

ϕ̃p = 1√
μp

∑
i

cipϕi, (11)

where μp and cip are the eigenvalues and the eigenvectors of
the overlap matrix B,∑

j

Bi jc j p = μpcip, Bi j = 〈ϕi|ϕ j〉. (12)

With this basis, the single-particle Hamiltonian is defined as

hpq = 〈̃ϕp|t̂ |̃ϕq〉 +
∑

r

〈̃ϕpϕ̃r |v̂NN + v̂C |̃ϕqϕ̃r − ϕ̃r ϕ̃q〉

+ 1

2

∑
r,s

〈̃ϕr ϕ̃s |̃ϕ∗
pϕ̃q

δv̂NN

δρ
|̃ϕr ϕ̃s − ϕ̃sϕ̃r〉 . (13)

The eigenvalues and eigenvectors of hpq give the single-
particle energies εp and wave functions φα ,
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FIG. 1. (a) Energy surfaces of the Jπ = 0+ states as functions of the quadrupole deformation parameters β and γ . The filled (open) circles
show the global (local) minima. Color plots show the energies relative to the global minima. The triangles show the energy minima before the
angular momentum projection. (b) Squared GCM amplitude (color plots) and occupation number of the 1p orbit (contour lines) of the ground
state. The filled circles and squares show the maxima of the squared GCM amplitudes for the ground and 2+

1 states, while open squares show
the maximum for the 2+

2 state of N = 26 and 30 isotones∑
q

hpq fqα = εα fpα, (14)

φα =
∑

p

fpαϕ̃p =
∑

i

(∑
p

cip
1√
μp

fpα

)
ϕi. (15)

III. RESULTS AND DISCUSSION

A. Ground-state deformation, Fermi levels and N = 28 magicity

Figure 1(a) shows the energy surfaces of N = 26, 28, and
30 isotones as functions of the deformation parameters β and
γ obtained by the angular momentum projection to Jπ = 0+.
It shows that all nuclei including the N = 28 isotones have
deformed energy minima [filled circles in Fig. 1(a)] whose
deformation parameter β are larger than 0.2. This implies
that the magicity of the neutron number N = 28 is lost in
this mass region. Furthermore, the energy surfaces are quite
soft against γ deformation and most of the energy minima
are triaxially deformed. For example, the energy minimum of
44Ar is at (β, γ ) = (0.26, 30◦) and triaxially deformed, but its
energy is very close to the prolate and oblate deformed states
with (β, γ ) = (0.26, 0◦) and (0.26, 60◦), which are only 1.5
and 1.6 MeV above the triaxial state, respectively. We note

that the angular momentum projection is essentially impor-
tant to describe triaxial deformation as is also mentioned in
Refs. [54,55]. Before the projection, all nuclei except for 38Mg
and 46S have axially deformed minima indicated by triangles
in the figure, but after the projection, triaxially deformed states
gain larger binding energy and become the ground states. We
also note that 40Mg, 42Mg, 40Si, and 44S have low-lying local
energy minima [open circles in Fig. 1(a)] at 2.8, 2.8, 1.2,
and 0.19 MeV above the global minima, which generate the
low-lying 0+

2 states.
In order to evaluate the deformation of individual nuclei

in detail, we calculate the squared GCM amplitude, which
is the overlap between a basis wave function [Eq. (6)] with
the deformation parameters (β, γ ) and a GCM wave function
[Eq. (7)],

OJπ
K (β, γ ) = ∣∣ 〈�Jπ

MK (β, γ )
∣∣�Jπ

Mα

〉 ∣∣2
. (16)

Larger amplitude means larger probability for corresponding
values of the deformation parameters (β, γ ), and the maxi-
mum may be regarded as the most probable intrinsic shape.
The calculated amplitudes for the ground states are shown in
Fig. 1(b). They show that most of the ground states of N =
26 and 30 isotones largely overlap with triaxially deformed
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FIG. 2. (a) Proton single-particle levels of the N = 30 isotones as functions of the quadrupole deformation parameters. Left (right) panels
describe prolate (oblate) deformation, while the middle panels describe triaxial deformation. Bold lines show the highest occupied orbits.
(b) Same with the panels (a) but for neutrons. Bold, dashed and dotted lines show the highest occupied orbits of the N = 26, 28, and 30
isotones.

shape with 15◦ < γ < 45◦. Because of triaxial deformation,
the N = 26 and 30 isotones have the non-yrast Kπ = 2+
bands built on the 2+

2 states as discussed later. Figure 1 also
show a trend that the Ar and Si isotopes favor the oblate
shape (γ > 30◦), while S and Mg isotopes are prolate shaped
(γ < 30◦).

We note that Delaroche et al. [56] have also discussed the
shape of neutron-rich N ∼ 28 nuclei using a similar theoreti-
cal framework with ours, Hartree-Fock-Bogoliubov (HFB) +
five dimensional collective Hamiltonian (5DCH) with Gogny
D1S interaction. They also obtained a result similar to ours.
The mean-field solutions of N ∼ 28 nuclei obtained by HFB
calculations, which correspond to AMD wave functions be-
fore the angular momentum projection, have axially deformed
shape. Once the effect of the collective motion is taken into
account by the 5DCH, which corresponds to our GCM results,
N = 26 and 30 nuclei exhibit triaxial deformation and the
low-lying Kπ = 2+ bands emerge. A qualitatively notable
difference between two calculations is the Kπ = 2+ band of
N = 28 nuclei. While HFB+5DCH predicts the low-lying
Kπ = 2+ band of N = 28 nuclei, AMD+GCM does not. We
conjecture that this difference can be attributed to the de-
scription of collective motion: 5DCH describes the mixing
of deformations macroscopically, whereas GCM treats it mi-
croscopically. In order to verify this difference, experimental
information on the 2+

2 and 3+
1 states of N = 28 nuclei, which

is currently scarce, is essential.
To understand the origin of the shape of each nuclei, Fig. 2

shows the proton and neutron single-particle levels of the

N = 30 isotones as functions of the quadrupole deformation
parameters. We note that N = 26 and 28 isotones have qual-
itatively the same structure of single-particle levels. First,
we focus on the proton Fermi level (highest occupied orbit)
shown by bold lines in panel (a). In Ar and Si, its energy
is lowered by oblate deformation, which explains the rea-
son why these isotopes tend to manifest oblate deformation.
On the other hand, in S and Mg, the Fermi level is low-
ered by prolate deformation or almost flat. Thus, the proton
Fermi level causes the general deformation trend of each
isotope.

The neutron single-particle orbits show the different de-
pendence on deformation. The neutron Fermi level of the
N = 30 isotones [bold lines in panel (b)] is almost constant
in Ar, but as proton number decreases, it starts to show de-
formation dependence. This partly owes to the quench of
N = 28 shell gap and resultant level inversion. They induce
many-body correlation leading to the rearrangement of the
single-particle levels in a self-consistent manner. Note that the
spherical N = 28 shell-gap gets smaller as the proton number
decreases. It is 4.0, 3.5, 3.4, and 2.8 MeV for 48Ar, 46S,
44Si, and 42Mg, respectively. Consequently, 42Mg is strongly
suffered from the shell quenching and results in the bumpy
behavior of the Fermi level. The Fermi levels of the N = 28
isotones [dashed lines in panel (b)] more clearly depend on
deformation and tend to favor oblate deformation except for
Mg. Similar to the N = 30 isotones, the deformation depen-
dence gets stronger as proton number decreases. In contrast
to N = 28 and 30 isotones, the Fermi levels of N = 26 iso-
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tones show moderate dependence [dotted lines in panel (b)]
as they are well below the N = 28 shell gap and more deeply
bound.

The interplay between the proton and neutron shell effects
influences the shape of N = 28 isotones. Let us explain it
with a couple of examples. In the case of 42Si, both proton
and neutron Fermi levels favor the oblate shape and coher-
ently induce strong oblate deformation. Similarly, the proton
and neutron shell effects cooperatively bring about oblate
deformation to 46Ar and prolate deformation to 40Mg. To the
contrary, the proton and neutron shell effect act in the opposite
way for 44S; proton’s Fermi level favors prolate deformation
whereas the neutron’s one favors oblate deformation. As a
result, the energy surface of 44S is double-well shaped with
two minima in prolate and oblate sides, and the many-body
correlation induced on top of it makes the low-lying spec-
trum of 44S rather complex compared to neighboring nuclei.
Indeed, many low-lying non-yrast states have been observed
in this nucleus [28,41] and their unique nature has been dis-
cussed [54,57].

As mentioned above, most of the N = 26 and 30 isotones
have flat neutron Fermi levels insensitive to deformation, so
their energy surfaces are also flat to deformation. This acti-
vates the degree-of-freedom of γ deformation and generates
the low-lying Kπ = 2+ bands to be discussed in the next
subsection. An exceptional case is 42Mg in which neutron
Fermi level shows bumpy behavior due to the quenched N =
28 shell gap and level inversion. At γ = 30◦, the neutron
Fermi energy is low and high single-particle level density
induces pairing correlations to gain larger binding energy.
Consequently, 42Mg has a well-developed triaxially deformed
energy minimum. Another point mentioned for this nucleus
is that it is not bound by the Gogny D1S density functional
used in this paper. This result contradicts to the recent shell
model study [58], and hence, the experimental information on
the binding of this nucleus will give us a deeper understanding
of nuclear force.

The last issue to mention in Fig. 2 is the disappearance of
the N = 28 magic number. In the prolate deformed region, the
level inversion takes place between the neutron single-particle
levels, which originate in the spherical 0 f7/2 and 1p3/2. In
the case of the N = 30 isotones, it occurs at β = 0.22, 0.24,
and 0.15 in 46S, 44Si, and 42Mg, respectively. On the other
hand, the N = 28 shell gap is kept large in the oblate de-
formed region, and hence, we are tempted to conclude that
the magicity of the neutron number 28 is robust in the oblate
deformed nuclei such as 42Si. However, as we show below, the
N = 28 magicity is also lost in oblate and triaxial deformed
nuclei even though there is no explicit inversion of the single-
particle levels. To elucidate this, we consider the multipole
decomposition of the single-particle orbits [Eq. (15)] as

φi(r) =
∑
jl jz

φi; jl jz (r)[Yl (r̂) × χ1/2] j jz . (17)

The squared integral of the l = 1 components (p3/2 and
p1/2) gives us an estimate of the occupation number of
the neutron 1p-orbit. Assuming the complete filling of the
0p-orbit, the neutron occupation number of the 1p-orbit is

FIG. 3. Occupation number of the neutron 1p orbits at the posi-
tion where the GCM amplitude of the ground-state is maximum.

obtained as,

N1p =
N∑

i=1

∑
j jz

∫ ∞

0
|rφi; j1 jz (r)|2dr − 6. (18)

The contours in Fig. 1(b) show the occupation numbers
of the 1p orbits as functions of the deformation parame-
ters. It must be noted that the occupation number becomes
large not only in the prolate deformed region but also in
the oblate deformed region even though there is no single-
particle level inversion. This indicates that the deformation
causes the strong mixing of the l = 3 and 1 components in
the single-particle levels close to the Fermi surface to increase
the p-wave occupation probability. Consequently, there are
two different types in the disappearance of the N = 28 magic
number: The magicity is lost due the single-particle level in-
version in the prolate deformed nuclei, while it is lost without
the inversion in the oblate deformed nuclei.

The maximum of the GCM amplitude of N = 28 isotones
(42Ar, 44S, 42Si, and 40Mg) are located at the regions where
the occupation number is close to or larger than 2. Therefore,
their ground states are dominated by the 2p2h configurations
because of the disappearance of the N = 28 magicity. To
illustrate how the neutron magic number N = 28 disappears,
Fig. 3 shows the occupation number of the 1p orbits at the
maximum of the GCM amplitudes. It shows that the occupa-
tion number gradually and continuously increases as proton
number decreases and neutron number increases. Therefore,
it seems that there is no clear boundary in nuclear chart where
the N = 28 magicity is lost. This feature is different from the
case of the island of inversion, which seems to have distinct
boundary at N = 19 and Z = 13 [5,59–61].

B. Low-lying spectrum and triaxial deformation

Here, we discuss how quadrupole deformation, in particu-
lar the γ deformation, influences to the excitation spectrum.
Figure 4 shows the energy spectra obtained by the GCM
calculations, which are labeled as “triaxial”. Compared to a
closed-shell nucleus 48Ca, which has the 2+

1 and 4+
1 states

at 3.8 MeV and 4.5 MeV [64], all of the calculated Mg, Si,
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FIG. 4. Low-lying positive-parity spectra of the N = 26, 28, and 30 isotones up to Jπ = 4+ compared to the experimental data [11,31–
35,38,39,41,42]. “triaxial” denotes the results of the GCM calculations, which allow γ deformation, while “axial” denotes that limited to axial
symmetric shape (γ = 0◦ or 60◦).

S, and Ar isotopes have low-lying 2+
1 and 4+

1 states, and the
energy ratios E (4+

1 )/E (2+
1 ) are close to 3.3, indicating their

rotational nature. These characteristics are consistent with the
observed spectra, although the calculation overestimates the
moments-of-inertia of several nuclei. Because of the defor-
mation, the E2 transition strengths (0+

1 → 2+
1 ) listed in table I

are stronger than 200 e2fm4 in all nuclei, which are more
than twice as large as that of 48Ca [65]. All these results are
in accordance with the disappearance of the N = 28 magic
number.

In addition to the rotational ground band, all the N = 26
and 30 isotones have the low-lying non-yrast Kπ = 2+ bands
built on the 2+

2 states because of their pronounced triaxial
deformation. Note that the maximum of the GCM amplitudes
for the 2+

1 and 2+
2 states [squares and triangles in Fig. 1(b)] are

located at almost the same position showing that the intrinsic
shape of the ground band and Kπ = 2+ band are similar to
each other. Experimentally, the candidates of the 2+

2 state have
been observed in 40Si, 42S, 44Ar, and 48Ar [11,31,34]. The
small excitation energies of the 3+ state as a member of the
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TABLE I. The calculated and observed B(E2) strengths in the unit of e2fm4 and electric quadrupole moments in the unit of
efm2 [9,10,36,37,40,62,63]. “triaxial” denotes the results obtained by the GCM calculations, which allow γ deformation, while “axial” denotes
that restricted to axial symmetric shape.

38Mg 40Si 42S 44Ar 40Mg 42Si 44S 46Ar 42Mg 44Si 46S 48Ar

B(E2; 0+
1 → 2+

1 ) triaxial 440 209 406 231 486 365 383 334 341 221 359 346
axial 357 162 416 286 474 356 145 326 290 194 326 321
exp. 397+63

−63 378+34
−55 314+88

−88
a 570+335

−160
b 346+55

−55
221+28

−28
c 216+22

−22
d

B(E2; 0+
1 → 2+

2 ) triaxial 18 90 58 88 0.03 8.4 26 15 89 7.1
axial 9.8 40 14 6.0 0.06 10 4.1 7.9 36 1.4
exp. 23+2

−2

B(E2; 2+
1 → 2+

2 ) triaxial 11 45 14 72 0.02 2.5 11 68 14 17
axial 0.2 16 3.5 42 0.07 14 9.6 53 7.3 2.2
exp. 680+150

−90

Q(2+
1 ) triaxial –18.5 –10.3 –18.4 –7.0 –20.1 17.3 –18.0 16.8 –16.3 2.1 –18.1 15.8

axial –17.4 –6.4 –18.7 11.5 –19.6 17.6 –12.1 16.5 –15.0 5.3 –17.0 16.4
exp. -8.3+3

−3

aReference [10]
bReference [36]
cReference [62]
dReference [40]

Kπ = 2+ band is another signature of triaxial deformation.
The candidates such 3+ state have also been observed at
4.2 MeV in 42S [31] and 3.3 MeV in 48Ar [34].

To investigate how the degrees of γ deformation affect the
low-lying spectroscopy, we have performed additional GCM
calculations, which are restricted to axial deformation. The
obtained spectra are labeled as “axial” in Fig. 4. It is found that
the energy of the non-yrast bands is sensitive to the degrees of
γ deformation. Namely, the Kπ = 2+ bands of the N = 26
and 30 isotones calculated by the axial GCM are much less
bound than the triaxial results. On the other hand, the energies
of the ground states are not strongly affected by the degree
of triaxial deformation except for 38Mg. The axial and triax-
ial GCM calculations also yielded largely different interband
transition strengths between the ground and Kπ = 2+ bands
as listed in Table I. The 0+

1 → 2+
2 and 2+

1 → 2+
2 transitions

obtained by the axial GCM are much smaller than those
obtained by the triaxial GCM except for 44Si. In short, the
degree-of-freedom of γ deformation is mostly reflected to the
properties of the non-yrast Kπ = 2+ band. We also remark
that the triaxial GCM reproduces the quadrupole moment of
the 2+

1 states of 44Ar while the axial GCM does not. This
result is consistent with the analysis made in Ref. [63]. Thus,
the electric quadrupole transitions and moments are sensitive
probes for the triaxial deformation. In particular, the proper-
ties of the non-yrast Kπ = 2+ band is important to identify
the triaxial deformation of the N = 26 and 30 isotones.

IV. SUMMARY

In this paper, we aimed to investigate the nature and cause
of the nuclear deformations and its relation to the disappear-
ance of the neutron magic number N = 28 in vicinity of 42Si.
For this purpose, we have employed a theoretical framework
of AMD combined with the Gogny D1S density functional
to calculate the neutron-rich N = 26, 28, and 30 isotones.

We have presented the energy surfaces, GCM amplitudes and
single-particle levels as functions of the quadrupole deforma-
tion parameters. We have also shown the spectra and electric
properties of the low-lying states, which qualitatively agree
with the observed data and predict the existence of the many
non-yrast states.

The analysis of the energy surfaces and the single particle
levels has revealed that the interplay between the proton and
neutron shell effects strongly affects shape of the N = 28 iso-
tones. In the case of 46Ar, 42Si, and 40Mg, they cooperatively
act and induce oblate or prolate deformation. On the other
hand, they act in the opposite way and make the double-well
shaped energy surface of 44S. Consequently, the low-lying
spectrum of 44S is relatively complicated and many a couple
of 2+ states coexist within small excitation energy. In the
case of the N = 26 and 30 isotones, except for 42Mg, the
neutron Fermi level is insensitive to deformation. As a result,
the energy surfaces become quite soft against γ deformation,
and many of the N = 26 and 30 isotones have the triaxially
deformed ground states. We have pointed out that the triaxial
deformation of the N = 26 and 30 isotones is mostly reflected
in the properties of the non-yrast Kπ = 2+ bands, especially
in their interband E2 transition strengths.

Finally, we note that the erosion of the N = 28 magicity
gradually occurs as seen in the occupation number of the
neutron 1p orbits. Therefore, there is no definite boundaries
in nuclear chart where the magicity of N = 28 is lost. This
is unlike to the case of the magic number N = 20 (island
of inversion). We also remark that there are two different
patterns in the loss of the N = 28 magicity. In the case of
the prolate deformed nuclei such as 42Mg, the magicity is
lost by the inversion of single-particle levels, while it is lost
without the inversion in the case of the oblate deformed nu-
clei such as 42Si. In the forthcoming paper, we will revisit
this issue and discuss how to distinguish these two patterns
experimentally.
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