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Second and fourth moments of the charge density and neutron-skin thickness of atomic nuclei

Tomoya Naito (����) ,1,2,* Gianluca Colò ,3,4,† Haozhao Liang (���),1,2,‡ and Xavier Roca-Maza 3,4,§

1Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
2RIKEN Nishina Center, Wako 351-0198, Japan

3Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
4INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy

(Received 20 January 2021; accepted 20 July 2021; published 9 August 2021)

A method is presented to extract the neutron-skin thickness of atomic nuclei from the second and fourth
moments of the electric charge distribution. We show that the value of the proton fourth moment must be
independently known in order to estimate the neutron-skin thickness experimentally. To overcome this problem,
we propose the use of a strong linear correlation among the second and fourth moments of the proton distribution
as calculated with several energy density functionals of common use. We take special care in estimating the
errors associated with the different contributions to the neutron radius and show, for the first time, the analytic
expressions for the spin-orbit contribution to the charge fourth moments of neutrons and protons. To reduce the
uncertainty on the extraction of the neutron radius, two neighboring even-even isotopes are used. Nevertheless,
the error on the fourth moment of the proton distribution, even if determined or assumed with large accuracy,
dominates and prevents the present method from being applied for a sound determination of the neutron-skin
thickness.
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I. INTRODUCTION

The study of the neutron-skin thickness �rnp =
√

〈r2〉n −√〈r2〉p of atomic nuclei has become one of the hottest topics
in nuclear physics during the past decades [1–5]. Here, 〈r2〉p

and 〈r2〉n denote the second moments of the proton and neu-
tron density distributions ρp and ρn, respectively. A precise
determination of the neutron-skin thickness of a heavy nu-
cleus sets a basic constraint on the nuclear symmetry energy,
in particular, its density dependence around the saturation
density [6–12]. For example, the neutron-skin thickness of
208Pb is known to be directly related to the slope parameter
of the symmetry energy L by �rnp(208Pb) [fm] = 0.101(3) +
0.001 47(5)L [MeV] (r = 0.98) if one exploits the prediction
by a large and representative set of modern nuclear energy
density functionals (EDFs) [13]. The equation of state of
nuclear matter, which provides the value of L, is also known to
be related to a wide range of questions in nuclear physics and
astrophysics [14–28]. For more detail, see the review papers,
e.g., Refs. [3,9,29–31]. Yet, our knowledge of neutron-skin
thickness is limited even in the stable nuclei, and neutron-skin
thickness of the unstable nuclei has not been measured yet.

The parity-violating elastic electron scattering [13,32–38]
and the isotopic ratio of atomic parity violation [39] were
suggested as clean and model-independent probes of neutron
densities. However, measuring parity-violating asymmetries
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of the order of a part per 106 is challenging. The present
result is �rnp = 0.283 ± 0.071 fm at the PREX-II experi-
ment [33,38] for 208Pb. The ambitious efforts in JLab aim
at determining the �rnp of 48Ca with higher precisions as
well [40].

The hadronic probes, including polarized-proton scatter-
ing [41,42], α scattering [43], antiprotonic atoms [44], π±
scattering [45,46], and antiproton scattering [47,48], as well
as the nuclear excitations, such as isovector resonances [49]
have been also widely used or proposed to determine the
neutron-skin thickness and cover a large area of the nuclear
chart. Nevertheless, even if some of these experiments reach
small errors, all hadronic probes require model assumptions
to deal with the strong force, which, in principle, introduces
systematic uncertainties.

In contrast, the study of the charge density distribution ρch

of atomic nuclei, which is essentially dominated by the pro-
ton density distribution ρp, can be experimentally determined
with no model dependence via elastic electron scattering
[50–55]. The ρch of many stable nuclei has been measured
with very high accuracy [56]. As a big step further, the elec-
tron scattering of unstable nuclei is foreseen in the near future,
for instance, in the SCRIT facility in RIKEN [57–59] and
in the ELISe facility in FAIR [60,61]. Nowadays, essentially
the only way to provide the information of the charge radii
of unstable nuclei is the laser spectroscopy of atoms. The
laser spectroscopy of atoms was established in the late 1910s
[62,63] and has been applied to long-lived unstable nuclei
since the 1960s [64–69]. The charge radii of nuclei located
on wide region of the nuclear chart have been measured [70]
and are still being measured at many radioactive isotope beam
facilities.
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Recently, the fourth moment of the charge distribution has
been highlighted as a possible proxy to access information
of the neutron root-mean-square radius [71–73]. Kurasawa
and Suzuki [71] suggested that the fourth moment of the
charge density distribution 〈r4〉ch, which can be measured by
the electron scattering [73] or the laser spectroscopy [74],
includes the information of the neutron radius and, thus, the
neutron-skin thickness. This is because the neutron distribu-
tions ρn of atomic nuclei do contribute to their charge density
distributions ρch [75–77] since a neutron has a finite size
and has a corresponding internal charge distribution, which
is usually encoded in the electromagnetic form factor of the
neutron. In other words, precise measurements of ρch may
be able to provide information on ρn as well as ρp and,
thus, determine the neutron-skin thickness �rnp. For instance,
Ref. [73] showed the feasibility to extract 〈r2〉n using 〈r2〉ch

and 〈r4〉ch for 40Ca, 48Ca, and 208Pb isotopes by using the
linear correlations among second and fourth moments of pro-
ton, neutron, and charge density distributions, and eventually,
the uncertainty of 〈r2〉n is quite small. Indeed, this relied on
a correlation for these specific nuclei based on a specific type
of models, and, hence, it is questionable whether that method
can be applied, in general.

To answer this question, in this paper, we discuss the feasi-
bility of extracting 〈r2〉n from the second and fourth moments
of the charge density distribution 〈r2〉ch and 〈r4〉ch, applying
the general modeling of electromagnetic form factors of both
protons and neutrons avoiding as much as possible the use of
model-induced correlations. We also explore a method to ex-
tract the neutron-skin thickness by employing the information
of ρch of two neighboring even-even isotopes to cancel large

part of the spin-orbit contributions to 〈r2〉ch and 〈r4〉ch and
reduce the uncertainty due to the nucleon form factors and the
pairing correlation. To extract 〈r2〉n from 〈r2〉ch and 〈r4〉ch, we
will show that the key issue is how to accurately determine
〈r4〉p.

This paper is organized as follows: First, the general equa-
tions for 〈r2〉ch and 〈r4〉ch will be given in Sec. II as functions
of the second and fourth moments of the neutron and proton
density distributions and of the parameters defining the neu-
tron and proton electric form factors. Second, a novel equation
will be introduced in Sec. III to reduce the uncertainty due to
the magnetic contribution and nucleon form factors. In this
equation, two neighboring even-even nuclei are used in which
the same single-particle orbitals are being filled and, thus, the
uncertainties associated with the latter effects are expected
to be reduced. Third, the possibility to derive theoretically
the fourth moment of the proton distribution 〈r4〉p will be
discussed in Sec. IV A. Then, we will show the benchmark
calculation of the novel method in Sec. IV B. We will also
show the uncertainty due to the nucleon form factors in
Sec. IV C. Finally, the conclusion and perspectives will be
given in Sec. V.

II. SECOND AND FOURTH MOMENTS OF CHARGE
DISTRIBUTION

First, we would recall the relationship between 〈rn〉ch

and 〈rn〉τ , which is originally derived in Refs. [71,78]. It
is convenient to consider the finite-size effects of nucleons
on the charge density distribution in the momentum space,
i.e.,

ρ̃ch(q) =
∑

τ=p,n

[
G̃Eτ (q2)ρ̃τ (q) + G̃Mτ (q2) − G̃Eτ (q2)

1 + q2/4M2
τ

(
q2

4M2
τ

ρ̃τ (q) + q

2Mτ

F̃Tτ (q)

)]
, (1)

where Mτ is the nucleon mass [79], G̃Eτ and G̃Mτ are the electric and magnetic form factors of nucleons, ρch, ρp, and ρn,
respectively, are the charge, proton, and neutron density distributions, which are assumed to have spherical symmetry in this
paper, ρ̃ is the Fourier transform of the density ρ, and F̃Tτ is the tensor form factor, whose definition is given in Eq. (B11b). Note
that ρ̃ch is sometimes called the (charge) form factor of the nucleus. The Fourier transform is defined by

ρ̃τ (q) =
∫

ρτ (r)e−iq·rdr = 4π

∫ ∞

0
ρτ (r)

sin(qr)

qr
r2dr. (2)

The 2nth moment of ρτ is defined by

〈r2n〉τ =

∫
ρτ (r)r2ndr∫
ρτ (r)dr

. (3)

In particular, with the assumption of spherical symmetry, this expression for ρch can be simplified into1

〈r2n〉ch = (−1)n4π

Z

∑
τ=p,n

∫ ∞

0

{
1

q

d2n

dq2n
G̃Eτ (q2) sin(qr)

}
q=0

ρτ (r)r dr, (4)

where derivation of this equation is shown in Appendix A. Using Eq. (4), the second and fourth moments of ρch read

〈r2〉ch = 〈r2〉p +
(

r2
Ep + N

Z
r2

En

)
+ 〈r2〉SOp + N

Z
〈r2〉SOn, (5a)

1Note that the expression of ρch without assuming the spherical symmetry has been shown recently in Ref. [78].
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〈r4〉ch = 〈r4〉p + 10

3

(
r2

Ep〈r2〉p + N

Z
r2

En〈r2〉n

)
+

(
r4

Ep + N

Z
r4

En

)
+ 〈r4〉SOp + N

Z
〈r4〉SOn, (5b)

where r2
Eτ and r4

Eτ are the second and fourth moments of charge distribution of the nucleon τ , respectively [note that r4
Eτ �=

(r2
Eτ )2]. For a detailed derivation, see Appendix B. Here, 〈rn〉SOτ is called the spin-orbit contribution due to the existence of the

magnetic form factor, and if one considers only the first term of Eq. (1), it vanishes. The spin-orbit contributions 〈rn〉SOτ read

〈r2〉SOτ � κτ

M2
τ Nτ

∑
a∈occ

Naτ 〈l · σ〉, (6a)

〈r4〉SOτ � 10

M2
τ Nτ

∑
a∈occ

[
κτ

5
〈r2〉gaτ

+ r2
Mτ − r2

Eτ

3
+ κτ

2M2
τ

]
Naτ 〈l · σ〉, (6b)

where Nτ = Z for proton (τ = p) or charge distribution and Nτ = N for neutron (τ = n) distribution, κτ is the anomalous
magnetic moment of the nucleon τ [79], and r2

Mτ is the second moment of magnetic distribution of the nucleon τ . The index
a = (n, κ, m) is the set of the quantum numbers of a single-particle orbital, whose occupation number is Naτ , and 〈r2〉gaτ

is the
second moment of the radial part of the upper component of single-particle Dirac spinor gaτ (r), which is approximately identical
to the radial part of a single-particle orbital in the nonrelativistic scheme. Detailed derivations are shown in Appendices A and
B, and see also Ref. [80] for Eq. (6a).

One can simply assume that 〈r2〉gaτ
� 〈r2〉τ , which is probably a good approximation except in weakly bound systems, and

estimate the spin-orbit contribution 〈r2〉SOτ and 〈r4〉SOτ based on the naive shell-model occupancies. The approximation brings
us to

〈r4〉SOτ � 10

M2
τ Nτ

[
κτ

5
〈r2〉τ + r2

Mτ − r2
Eτ

3
+ κτ

2M2
τ

] ∑
a∈occ

Naτ 〈l · σ〉, (7)

and we will discuss below the role of the occupancies Naτ (cf.
Sec. IV).

In this paper, we use the electric form factors of protons
and neutrons G̃Eτ proposed in Ref. [81] in which values of
r2

Eτ , r4
Eτ , and r2

Mτ are

r2
Eτ =

{
0.75036 fm2 (proton),
−0.11146 fm2 (neutron),

(8a)

r4
Eτ =

{
1.6228 fm4 (proton),
−0.33398 fm4 (neutron),

(8b)

r2
Mτ =

{
0.74439 fm2 (proton),
0.86381 fm2 (neutron),

(8c)

respectively. Note that these values of r2
Eτ and r2

Mτ are accurate
enough for our purpose [79] and some form factors available
in the literature [82] give the opposite sign for r4

En, but this

difference does not change the discussion presented in this
paper.

III. ISOTOPE-SHIFT METHOD

We then consider whether 〈r2〉n can be extracted from
experimental data of 〈r2〉ch and 〈r4〉ch provided by the
electron-scattering experiments or isotope shift by using
Eqs. (5a) and (5b). Although 〈r2〉SOτ and 〈r4〉SOτ are de-
rived in Eqs. (6a) and (7), several approximations have been
introduced to derive them as shown in Appendix B. To re-
duce uncertainties introduced by such approximations and
by the nucleon form factors, we will consider two iso-
topes with the neutron numbers N − 2 and N , instead of
only one nucleus. Since 〈r2〉SOτ and 〈r4〉SOτ are written
as the sum of 〈l · σ〉 over all the single-particle orbitals,
〈rn〉SOτ for two isotopes in the same neutron shell are almost
the same. Hence, a large cancellation of such uncertainty
can be expected.

Comparing Eq. (5b) for two isotopes with their neutron
numbers N − 2 and N , the master equation,

〈r2〉(N−2)
n = 3

10

Z

r2
En

[
〈r4〉(N )

ch − 〈r4〉(N−2)
ch

2
− 〈r4〉(N )

p − 〈r4〉(N−2)
p

2
− 〈r4〉(N )

SOp − 〈r4〉(N−2)
SOp

2

]
− Z

r2
Ep

r2
En

〈r2〉(N )
ch − 〈r2〉(N−2)

ch

2

− N
〈r2〉(N )

n − 〈r2〉(N−2)
n

2
− 3

10

N

r2
En

〈r4〉(N )
SOn − 〈r4〉(N−2)

SOn

2
− 3

10

1

r2
En

〈
r4

〉(N−2)

SOn

+ r2
Ep + r2

Ep

r2
En

N〈r2〉(N )
SOn − (N − 2)〈r2〉(N−2)

SOn

2
− 3

10

r4
En

r2
En

(9)
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TABLE I. Benchmark calculation results of 〈r2〉τ , 〈r4〉τ , 〈r2〉SOτ , 〈r4〉SOτ , 〈r2〉ch, and 〈r4〉ch. The SLy4 energy density functional [83] is
used to calculate 〈r2〉τ and 〈r4〉τ . The spin-orbit contributions 〈r2〉SOτ and 〈r4〉SOτ are calculated by using Eqs. (6a) and (7). See the text for
detail.

Isotope Second moments (fm2) Fourth moments (fm4)

〈r2〉p 〈r2〉n 〈r2〉SOp
N
Z 〈r2〉SOn 〈r2〉ch 〈r4〉p 〈r4〉n 〈r4〉SOp

N
Z 〈r4〉SOn 〈r4〉ch

44Ca 11.778 12.234 0.000 −0.051 12.344 192.445 207.486 0.000 −1.162 216.510
46Ca 11.847 12.632 0.000 −0.075 12.377 193.613 220.471 0.000 −1.792 216.540
110Sn 20.312 20.665 0.063 −0.058 20.934 535.965 565.926 2.677 −2.320 579.136
112Sn 20.483 21.020 0.063 −0.049 21.110 544.080 585.111 2.697 −1.987 587.549

is derived, where the superscripts (N − 2) and (N ) describe
the quantities for the nuclei with the neutron numbers N − 2
and N , respectively. If one assumes the integer occupation

with the standard shell structure, N〈r2〉(N )
SOn−(N−2)〈r2〉(N−2)

SOn
2 can be

further simplified as κn
M2

τ
〈l · σ〉n last , where 〈l · σ〉n last is 〈l · σ〉

for the orbital that the last neutron occupies. On the right-hand
side of Eq. (9), 〈r4〉ch is given by the experimental data, and
〈r2〉p is given by Eq. (5a) and the experimental value of 〈r2〉ch.
Meanwhile, the way to derive 〈r4〉p, which is not known, will

be discussed later. The remaining term N 〈r2〉(N )
n −〈r2〉(N−2)

n
2 will be

shown to be small and almost model independent, thus, we
can adopt theoretically predicted values for this factor which
will be referred to as the “neutron slope term,” as we explain
in the following. Since the spin-orbit contribution to the sec-
ond moment 〈r2〉SOτ can be estimated and that to the fourth
moment 〈r4〉SOτ is much smaller than the other contributions
as will be shown in Table I, we assume it is known.

The slopes of the second moments in the same neutron
(sub)shell, e.g., A ∈ [40, 48] for Ca isotopes or A ∈ [100, 120]
for Sn isotopes, are almost constant. In other words, 〈r2〉(N )

n −
〈r2〉(N−2)

n or N (〈r2〉(N )
n − 〈r2〉(N−2)

n ) is almost constant as seen
in Figs. 1 and 2. By studying the predictions of several models
for the neutron slope term as well, we have found that it is
almost model independent. Hence, in the benchmark calcu-
lation in the next section, we will use the averaged value of
N (〈r2〉(N )

n − 〈r2〉(N−2)
n ) among the values for the same neu-

tron (sub)shell (N = 22, 24, 26, and 28 for Ca isotopes and
N = 52, 54, 56, . . . , 70 for Sn isotopes) calculated with the
selected energy density functionals. As we will show, our mild
assumptions on the neutron slope and spin-orbit contributions
will not affect our conclusions.

IV. BENCHMARK CALCULATION

As a benchmark calculation, we test whether the neutron
radius calculated theoretically can be reproduced in this novel
method. During the benchmark calculation, the theoretical
values of 〈r2〉ch and 〈r4〉ch are used, and we will see how
accurately 〈r2〉(N−2)

n can be calculated from Eq. (9), or how
large the neutron slope term and the spin-orbit term or the
pairing introduce an uncertainty.

The Skyrme Hartree-Fock-Bogoliubov calculation [84,85]
is performed under the assumption of the axial symmetry
using the code HFBTHO [86]. The calculations are performed
using a basis of the spherical harmonic oscillator in which
24 major shells are taken into account and whose oscillator
frequency ω0 satisfies h̄ω0 = 1.2 × 41A−1/3 MeV. As for the

proton-proton and neutron-neutron pairing force, a volume-
type pairing force [85],

Vpair τ (r, r′) = −V0τ δ(r − r′) (10)

is used where the pairing strength V0p = V0n is determined
to reproduce the pairing gap of 120Sn as 1.4 MeV with the
cutoff energy in quasiparticle space 60 MeV. The SLy4 [83],
SLy5 [83], SkM* [87], SAMi [88], HFB9 [89], UNEDF0 [90],
UNEDF1 [91], and UNEDF2 [92] EDFs are used as examples,
whose pairing strengths V0τ are 194.2, 188.2, 156.2, 213.7,
166.4, 127.6, 138.4, and 150.0 MeV fm3, respectively2.

2Lipkin-Nogami prescription is not used, while UNEDF series are
fitted with the prescription.
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FIG. 1. The second 〈r2〉 and fourth 〈r4〉 moments of the proton,
neutron, and charge density distributions of Ca isotopes as functions
of mass number A. They are shown with blue long-dashed, green
dashed, and red solid lines, respectively. As an example, the SLy4
functional [83] is used.
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FIG. 2. Same as Fig. 1 but for Sn isotopes.

In this benchmark calculation, first, 〈r2〉τ and 〈r4〉τ are
calculated by the HFBTHO code, and 〈r2〉ch and 〈r4〉ch are
evaluated by using Eqs. (5a), (5b), (6a), and (7). Then, 〈r2〉ch

and 〈r4〉ch are assumed to be known, and we test how accu-
rately 〈r2〉τ and 〈r4〉τ can be evaluated. Sources of uncertainty
discussed in this paper are estimation of 〈r4〉p and the neutron
slope term, and if no uncertainty is introduced, evaluated 〈r2〉n

should be consistent to that calculated by the HFBTHO code.
The contributions of 〈r2〉SOτ and 〈r4〉SOτ are estimated as
previously explained and will not play a prominent role in the
determination of 〈r2〉n when compared with other sources of
uncertainties, and, thus, they are assumed to be known. As
examples, the Ca isotope with N = 26 and the Sn isotope
with N = 62 are chosen, i.e., (44Ca, 46Ca) and (110Sn, 112Sn)
pairs are used for Eq. (9). The values calculated with the
SLy4 EDF are used. Calculation results of 〈r2〉τ and 〈r4〉τ
are shown in Table I. Using these results, accordingly, we
calculate 〈r2〉SOτ , 〈r4〉SOτ , 〈r2〉ch, and 〈r4〉ch as shown in
Table I, where

∑
a Naτ 〈l · σ〉 are derived from the results

of the Hartree-Fock-Bogoliubov calculation as shown in
Table II. For comparison, Table II shows

∑
a Naτ 〈l · σ〉 calcu-

lated by using the Hartree-Fock calculation, i.e., integer Naτ .
On the one hand, since Ca and Sn are proton magic nuclei, the
proton pairing does not change

∑
a Naτ 〈l · σ〉 for protons. On

the other hand, one can find that the neutron pairing affects∑
a Naτ 〈l · σ〉 for neutrons, at most, approximately 30%, and

that the resulting impact on 〈r2〉ch and 〈r4〉ch is eventually less
than 0.5%. Thus, as discussed later, uncertainties associated
with the spin-orbit contribution due to the pairing are negligi-
ble, and hereinafter, this will not be considered.

TABLE II. Spin-orbit expectation values
∑

a Naτ 〈l · σ〉 calcu-
lated by using the Hartree-Fock-Bogoliubov method. For compari-
son, those calculated by using the Hartree-Fock method (integer Naτ )
are also shown.

Nuclei Proton
∑

a Naτ 〈l · σ〉 Neutron
∑

a Naτ 〈l · σ〉
HF HFB HF HFB

44Ca 0 0.00 +12 +11.982
46Ca 0 0.00 +18 +17.860
110Sn +40 +40.00 +32 +34.492
112Sn +40 +40.00 +22 +29.025

Figures 1 and 2, respectively, show 〈r2〉 and 〈r4〉 of Ca and
Sn isotopes calculated with the SLy4 EDF as functions of the
mass number A. It should be noted that all the calculation re-
sults are eventually spherical, although the axial deformation
is allowed in the numerical calculations.

A. Derivation of the proton fourth moment

Before going into the discussion on the neutron slope term
to derive 〈r2〉n from Eqs. (5a) and (5b), 〈r4〉p should be es-
timated in a certain way since it cannot be determined from
experimental data, in contrast to 〈r2〉p. In this paper, we adopt
a way which was similar to that used in Ref. [73].

We estimate the correlation between 〈r2〉p and 〈r4〉p for
44Ca, 46Ca, 110Sn, and 112Sn by using the theoretical results
for the selected EDFs as

〈r4〉Ca-44
p = (41.838 ± 1.704)〈r2〉Ca-44

p

−(300.062 ± 19.920) (r = 0.9951), (11a)

〈r4〉Ca-46
p = (45.559 ± 2.760)〈r2〉Ca-46

p

−(345.755 ± 32.458) (r = 0.9892), (11b)

〈r4〉Sn-110
p = (56.585 ± 6.607)〈r2〉Sn-110

p

−(614.296 ± 133.676) (r = 0.9614), (11c)

〈r4〉Sn-112
p = (59.223 ± 7.461)〈r2〉Sn-112

p

−(669.781 ± 152.183) (r = 0.9555), (11d)

respectively, as shown in Fig. 3. The proton second moments
extracted from experimental charge radii [70], experimen-
tal nucleon second moments (rEp = 0.8409 ± 0.0004 fm and
r2

En = −0.1161 ± 0.0022 fm2) [79], and Eq. (5a) are also
shown as filled bands where Hartree-Fock (integer) occupa-
tions are used for Naτ . Given that the estimated values of
〈r2〉p shown in Table I are 〈r2〉Ca-44

p = 11.778, 〈r2〉Ca-46
p =

11.847, 〈r2〉Sn-110
p = 20.312, and 〈r2〉Sn-112

p = 20.483 fm2, we
infer that the estimated values of 〈r4〉p for 44Ca, 46Ca, 110Sn,
and 112Sn are 192.716 ± 1.993, 193.980 ± 4.800, 535.091 ±
37.198, and 543.317 ± 45.483 fm4, respectively. These un-
certainties are theoretical ones coming from the linear fits.
These uncertainties range from 1.03% to 8.37%, and these
deviations from the benchmark values are around 0.15%.
These good correlations (r � 0.95) are due to the fact that the
density profiles calculated with different EDFs share similar
properties due to shell and orbital structures.
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FIG. 3. Correlation of proton second and fourth moments, 〈r2〉p and 〈r4〉p for 44Ca, 46Ca, 110Sn, and 112Sn. The proton second moments
extracted from experimental charge radii measured by using isotope shift (IS) method [70] and Eq. (5a) are also shown as filled bands. See the
text for more details.

Despite the good correlations between 〈r2〉p and 〈r4〉p, the
final values of 〈r2〉n calculated by using Eq. (5b), or rear-
ranged equation,

〈r2〉n = 3Z

10Nr2
En

[
〈r4〉ch − 〈r4〉p − 10

3
r2

Ep

×
{
〈r2〉ch −

(
r2

Ep + N

Z
r2

En

)
− 〈r2〉SOp − N

Z
〈r2〉SOn

}

−
(

r4
Ep + N

Z
r4

En

)
− 〈r4〉SOp − N

Z
〈r4〉SOn

]
, (12)

are 〈r2〉Ca-44
n = 12.842 ± 4.470 and 〈r2〉Sn-110

n = 18.706 ±
83.434 fm2, and, consequently,

√〈r2〉Ca-44
n = 3.584 ± 0.624

and
√〈r2〉Sn-110

n = 4.325 ± 9.645 fm, respectively, whereas
the benchmarked values are

√〈r2〉Ca-44
n = 3.498 and√〈r2〉Sn-110

n = 4.546 fm. The uncertainties range from
17% to 220%. This means the uncertainty is too large to
extract �rnp or even

√
〈r2〉n. The reason why the error of

〈r2〉n enhances is due to the coefficient of 〈r4〉p, that is,
3Z/|10Nr2

En| � 2.69 fm−2.
In short, extracting 〈r2〉n from the charge second and fourth

moments is not feasible, unless the proton fourth moment

〈r4〉p can also be determined precisely either experimentally
or theoretically.

B. Neutron slope term and isotope-shift method

In the previous section, we see that extracting 〈r2〉n from
〈r2〉ch and 〈r4〉ch may not be feasible. Nevertheless, in this
section, the other method called the isotope-shift method,
which is introduced in Sec. III, will be further discussed
since once 〈r4〉p is determined precisely, the method helps
us to reduce uncertainty. Furthermore, in laser spectroscopic
experiments, the difference in 〈r2〉ch between two isotopes is
obtained whereas absolute values are not. Thus, this isotope-
shift method is still important for discussion.

The neutron slope term for Ca and Sn isotopes are derived
by the average of 32 and 80 results, which are for N =
22, 24, 26, and 28 (Ca isotopes) or N = 52, 54, 56, . . . , 70
(Sn isotopes) calculated with the selected eight functionals,
i.e., SLy4, SLy5, SkM*, SAMi, HFB9, UNEDF0, UNEDF1,
and UNEDF2. The calculated value of N (〈r2〉(N )

n − 〈r2〉(N−2)
n )

is

N (〈r2〉(N )
n −〈r2〉(N−2)

n )

=
{

10.720±1.155 fm2 for Ca isotopes,
20.614±2.086 fm2 for Sn isotopes,

(13)

024316-6



SECOND AND FOURTH MOMENTS OF THE CHARGE … PHYSICAL REVIEW C 104, 024316 (2021)

TABLE III. Breakdown of uncertainties of isotope-shift method [Eq. (9)]. Uncertainties are calculated by using standard deviations. For
comparison, those of direct method is also shown. Uncertainties due to nucleon second and fourth moments r2

Eτ and r4
Eτ (column with ∗) are

not considered in the total uncertainties. See the text for more details.

Nuclei Method σ 2 (fm4) σ (fm2) 〈r2〉n (fm2)

rn
Eτ (∗) 〈r4〉p Neutron slope term Total Calculation Benchmark

44Ca Direct 9.934 19.977 19.977 4.470 12.842 12.234
Isotope shift 0.667 19566.142 0.334 19566.476 139.880 14.639 12.234

110Sn Direct 31.137 6961.160 6961.160 83.434 18.706 20.665
Isotope shift 4.091 15631629.395 1.087 15631630.482 3953.686 28.774 20.665

respectively. Substituting the neutron slope term [Eq. (13)]
and 〈r4〉p calculated in Sec. IV A as well as 〈r4〉ch and 〈r2〉p

shown in Table I, into Eq. (9), we get 〈r2〉n of 44Ca and 110Sn
as

〈r2〉Ca-44
n = 14.639 ± 139.880 fm2, (14a)

〈r2〉Sn-110
n = 28.774 ± 3953.686 fm2, (14b)

respectively, where breakdown of these uncertainties are
shown in Table III. Accordingly, the neutron radii are calcu-
lated as √

〈r2〉Ca-44
n = 3.826 ± 18.280 fm, (15a)√

〈r2〉Sn-110
n = 5.364 ± 368.531 fm. (15b)

Obviously, the uncertainties are too large to extract 〈r2〉n and√
〈r2〉n. Note that the errors that are shown here are simply

standard deviations. For more details, see Appendix C.
Contribution to these standard deviations can be divided

into two parts: the part that originates from 〈r4〉p and that from
the neutron slope term. Other sources can be considered as
negligible. Contribution of the neutron slope term to the total
standard deviation σ 2 is approximately 2 ppm or less. If there

were no uncertainties due to 〈r4〉p, the results would become
much improved as

〈r2〉Ca-44
n = 12.054 ± 0.578 fm2, (16a)

〈r2〉Sn-110
n = 21.348 ± 1.043 fm2. (16b)

Thus, the assumption for the neutron slope term is reasonable,
whereas the estimation of 〈r4〉p remains a problem.

As an important remark, it should be noted that r2
En and

r4
En include the information of the charge distribution of the

neutron, which has been determined with large uncertainty.
However, in the isotope-shift method proposed in this paper,
most of the contributions from these terms are canceled out in
Eq. (9). In the last subsection of this section, discussion for
uncertainty due to the nucleon form factors will be given.

C. Uncertainty due to nucleon form factors

Here, uncertainty due to nucleon form factors, which is not
considered in evaluations of 〈r2〉n in the previous subsections,
is discussed. Note that, in this subsection, we do not consider
the uncertainty discussed in the previous subsections.

In general, 〈r2〉n can be regarded as a function of r2
Eτ and

r4
Eτ . Accordingly, the uncertainty due to the nucleon form

factors can be calculated as

σ 2
form �

(
∂〈r2〉n

∂r2
Ep

)2

σ 2
r2

Ep
+

(
∂〈r2〉n

∂r4
Ep

)2

σ 2
r4

Ep
+

(
∂〈r2〉n

∂r2
En

)2

σ 2
r2

En
+

(
∂〈r2〉n

∂r4
En

)2

σ 2
r4

En
, (17)

where contributions of the magnetic form factors are neglected since they are tiny. Here, contributions from the covariances are
also neglected, and because of this, the uncertainty is overestimated slightly.

The uncertainty due to the nucleon form factors for the direct method [Eq. (12)] can be estimated as

σ 2
〈r2〉n

�
[

Z

N

1

r2
En

(〈r2〉p − r2
Ep

)]2

σ 2
r2

Ep
+

(
Z

N

3

10r2
En

)2

σ 2
r4

Ep
+

[
1

r2
En

(〈r2〉n − r2
Ep)

]2

σ 2
r2

En
+

(
3

10r2
En

)2

σ 2
r4

En
, (18)

whereas the uncertainty due to the nucleon form factors for the isotope-shift method [Eq. (9)] can be estimated as

σ 2
〈r2〉n

�
[

1 − Z

r2
En

〈r2〉(N )
ch − 〈r2〉(N−2)

ch

2
− κn

M2
n

1

r2
En

〈l · σ〉n last

]2

σ 2
r2

Ep

+
[

1

r2
En

(〈
r2

〉(N−2)

n + N
〈r2〉(N )

n − 〈r2〉(N−2)
n

2
− r2

Ep

)]2

σ 2
r2

En
+

(
3

10

1

r2
En

)2

σ 2
r4

En
. (19)
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For simplicity, here relative uncertainty σrn
Eτ

/rn
Eτ is assumed

5%. The uncertainties calculated by Eq. (18) for 44Ca and
110Sn are σ 2

〈r2〉n
= 9.934 and 31.137 fm4, respectively. If one

uses the isotope-shift method, the uncertainties are further
suppressed as σ 2

〈r2〉n
= 0.667 and 4.091 fm4, respectively.

Thus, the isotope-shift method has another advantage to sup-
press the uncertainty due to the nucleon form factors. These
errors are anyway negligible as compared to the error intro-
duced by the correlation (that is, their covariance) between
〈r2〉p and 〈r4〉p.

V. CONCLUSION

In this paper, we have discussed how to extract the neutron
radius, that is, the second moment of the neutron distribution
by using the experimentally measured second and fourth mo-
ments of the charge distribution. Our goal was to reduce model
assumptions to a minimum. To this aim, we have discussed in
detail two contributions to the neutron moment: the spin-orbit
contribution and the contribution from the fourth moment of
the proton distribution. As for this latter, we have seen we
can relate it to the second moment in a quite robust manner.
Therefore, we deem that we have been able to determine
the mildest assumptions under which the neutron radius of a
single isotope can be extracted.

Our main result has been the introduction of a novel
method to extract neutron radius from the charge density dis-
tribution using the information of two neighboring even-even
nuclei. In this method, the uncertainties due to nucleon form
factors and introduced by approximation for spin-orbit con-
tribution are suppressed, whereas the uncertainties introduced

by the pairing are negligible. We advocate that this method,
namely, the consideration of two neighboring isotopes is more
reliable.

Despite our efforts, we conclude that the main obstacle
to an accurate determination of the neutron radius is the
contribution from the proton fourth moment. Even if this
is strongly correlated to the second moment, the resulting
uncertainty cannot be neglected. This uncertainty is strongly
enhanced when propagated from the fourth moment to the
neutron radius. Eventually, extracting the neutron radius or the
neutron-skin thickness from the second and fourth moments
of the charge density distribution does not seem to be feasible
based on the present discussion. Despite these pessimistic
conclusions, the equations derived in this paper may be useful
for further understanding and investigation and even more
useful if, in the future, a clever way to better determine the
proton fourth moment can be envisaged.
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APPENDIX A: DERIVATION OF EQ. (4)

In this Appendix, we recall the way to derive Eq. (4), which was originally derived by Kurasawa and Suzuki [71]. Here, the
unnormalized 2nth moment of a density ρ can be calculated as

∫
ρ(r)r2ndr =

∫ {
1

(2π )3

∫
[(−�q)nρ̃(q)]eiq·rdq

}
dr

=
∫

[(−�q)nρ̃(q)]

[∫
1

(2π )3
e−i(−q)·rdr

]
dq

=
∫

[(−�q)nρ̃(q)]δ̃(−q)dq

= [(−�q)nρ̃(q)]q=0, (A1)

and, hence,

〈r2n〉 = [(−�q)nρ̃(q)]q=0

ρ̃(0)
= 1

Nτ

[(−�q)nρ̃(q)]q=0 (A2)

holds [71]. Since the Laplacian of a function f is written as

� f (r) = d2 f (r)

dr2
+ 2

r

df (r)

dr
= 1

r

d2

dr2
[r f (r)], (A3)
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as long as f is spherically symmetric, Eq. (A1) can be simplified as

[(−�q)nρ̃ch(q)]q=0 = (−1)n

{
1

q

d2n

dq2n

[
q

∑
τ

G̃Eτ (q2)ρ̃τ (q)

]}
q=0

= (−1)n4π

{
1

q

d2n

dq2n

[
q

∑
τ

G̃Eτ (q2)
∫ ∞

0
ρτ (r)

sin(qr)

qr
r2dr

]}
q=0

= (−1)n4π
∑

τ

∫ ∞

0

{
1

q

d2n

dq2n
G̃Eτ (q2) sin(qr)

}
q=0

ρτ (r)r dr. (A4)

Thus, combining with Eq. (A2) and assuming the spherical symmetry, we get Eq. (4) for ρch.

APPENDIX B: CHARGE FORM FACTOR OF THE NUCLEUS

In this Appendix, the detailed derivations of equations for the second and fourth moments discussed in Sec. II are shown. The
spin-orbit contributions to 〈r2〉ch and 〈r4〉ch are discussed as well. For the contribution to 〈r2〉ch, it has been already derived by
Horowitz and Piekarewicz [80]. Nevertheless, the contribution to 〈r4〉ch can be derived in the parallel way as that to 〈r2〉ch, and,
thus, the derivation of the former is also shown here for convenience.

The Dirac and Pauli form factors of nucleons are denoted by F̃1τ and F̃2τ , and the Sachs electric and magnetic form factors
are defined by [93]

G̃Eτ (Q2) = F̃1τ (Q2) − Q2

4M2
τ

F̃2τ (Q2), (B1a)

G̃Mτ (Q2) = F̃1τ (Q2) + F̃2τ (Q2), (B1b)

respectively, in the relativistic scheme, where Q2 = −qμqμ > 0 and Mτ is the nucleon mass. The Dirac and Pauli form factors
are normalized as

F̃1τ (0) = eτ , (B2a)

F̃2τ (0) = μτ , (B2b)

respectively, where eτ and μτ denote the charge and the magnetic dipole moment of nucleons τ . The anomalous magnetic
moment κτ reads κτ = μτ − eτ . Accordingly, the electric and magnetic form factors are normalized as

G̃Ep(0) = 1, (B3a)

G̃En(0) = 0, (B3b)

G̃Mτ (0) = μτ . (B3c)

Throughout the derivation of the charge form factors, the relativistic scheme is used. The relativistic single-particle (Kohn-Sham)
orbital under the spherically symmetric potential is written as

ϕaτ (r) = 1

r

(
igaτ (r)

faτ (r)σ · r̂

)
Ya(θ, ϕ)χτ , (B4)

where r̂ = r/r, Ya is the spherical spinor, χτ is the isospin spinor, and the set of the quantum numbers a = (n, κ, m) includes
the principal quantum number n, the angular quantum number,

κ =
{+( j + 1/2) (for j = l − 1/2),
−( j + 1/2) (for j = l + 1/2), (B5)

and its z-projection m [94–96]. The normalization condition,∫
ϕ†

aτ (r)ϕaτ (r)dr =
∫ ∞

0
[{gaτ (r)}2 + { faτ (r)}2]dr

= 1 (B6)

holds.
The matrix element of the electromagnetic current operator for nucleon τ, Ĵμ

EMτ , reads [97–100]

Ĵμ
EMτ (Q2) = G̃Eτ (Q2)γ μ + G̃Mτ (Q2) − G̃Eτ (Q2)

1 + Q2/4M2
τ

(
Q2

4M2
τ

γ μ + iσμν qν

2Mτ

)
, (B7)
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and especially its μ = 0 component (density component) is

Ĵ0
EMτ (Q2) = G̃Eτ (Q2)γ 0 + G̃Mτ (Q2) − G̃Eτ (Q2)

1 + Q2/4M2
τ

(
Q2

4M2
τ

γ 0 + γ 0 γ · q
2Mτ

)
. (B8)

Since one-nucleon contribution of the form factors is defined by 〈Nτ (p′)|Ĵ0
EMτ (Q2)|Nτ (p)〉 with the on-shell nucleon state |Nτ (p)〉

and four-momentum transfer Q = p′ − p, the charge form factor of the nucleus ρ̃ch is calculated by summing up the single-
nucleon contributions as

ρ̃ch(q) �
∑
occ

〈
Nτ (p′)

∣∣Ĵ0
EMτ (Q2)

∣∣Nτ (p)
〉

=
∑

τ=p,n

∑
a

∫∫
ϕ†

aτ (r′)eip′ ·r′
δ(r − r′)Ĵ0

EMτ (Q2)ϕaτ (r)e−ip·rdr dr′

�
∑

τ=p,n

∑
a

∫∫
ϕ†

aτ (r′)eip′ ·r′
δ(r − r′)Ĵ0

EMτ (q2)ϕaτ (r)e−ip·rdr dr′

=
∑

τ=p,n

∑
a

∫
ϕ†

aτ (r)Ĵ0
EMτ (q2)ϕaτ (r)e−iq·rdr

=
∑

τ=p,n

[
G̃Eτ (q2)F̃Vτ (q) + G̃M(q2) − G̃E(q2)

1 + q2/4M2
τ

(
q2

4M2
τ

F̃Vτ (q) + q

2Mτ

F̃Tτ (q)

)]
, (B9)

where F̃Vτ and F̃Tτ are the vector and tensor form factors defined by

F̃Vτ (q) =
∑

a

∫
ϕ†

aτ (r)γ 0ϕaτ (r)eiq·rdr, (B10a)

F̃Tτ (q) =
∑

a

∫
ϕ†

aτ (r)γ 0γ · q̂ϕaτ (r)eiq·rdr, (B10b)

respectively. The impulse approximation, which means that scattering occurs only once, and Q2 = q2 (elastic scattering, i.e.,
q0 = 0) are introduced in � appearing in the first and third lines of Eq. (B9), respectively. Here, ρ̃ch is normalized to ρ̃ch(0) = Z .
Under the spherical symmetry, Eqs. (B10a) and (B10b) are calculated as

F̃Vτ (q) =
∑

a

∫
ϕ†

aτ (r)γ 0ϕaτ (r) j0(qr)dr

=
∑

a

Naτ

∫ ∞

0
[{gaτ (r)}2 + { faτ (r)}2] j0(qr)dr, (B11a)

F̃Tτ (q) =
∑

a

∫
ϕ†

aτ (r)γ 0γ · r̂ϕaτ (r) j1(qr) dr

= 2
∑

a

Naτ

∫ ∞

0
gaτ (r) faτ (r) j1(qr)dr, (B11b)

where Naτ is the occupation number of the orbital and spherical Bessel functions,

j0(r) = sin r

r
, (B12a)

j1(r) = sin r

r2
− cos r

r
= −d j0(r)

dr
(B12b)

appear due to the spherical symmetry and the Fourier factor eiq·r.
The vector form factor F̃Vτ is the sum of the single-particle orbitals. Thus,

∑
a Naτ [{gaτ (r)}2 + { faτ (r)}2] is the nucleon

density distribution ρτ . Hence,

F̃Vτ (q) = ρ̃τ (q). (B13)
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In contrast, the tensor form factor F̃Tτ can be calculated as

q

2Mτ

F̃Tτ (q) = 2q

2Mτ

∑
a

Naτ

∫ ∞

0
gaτ (r) faτ (r) j1(qr)dr

�
∑

a

Naτ

[
q2

3Mτ

∫ ∞

0
gaτ (r) faτ (r)r dr − q4

30Mτ

∫ ∞

0
gaτ (r) faτ (r)r3dr

]
,

(B14)

because of

j1(qr) = rq

3
− r3q3

30
+ O(r5q5). (B15)

Using the Taylor expansion,

sin(qr)

qr
= 1 − r2q2

6
+ r4q4

120
+ O(r6q6), (B16)

and the normalization conditions shown in Eqs. (B3) [101], the contribution of nucleon τ to the charge form factor ρ̃chτ is

ρ̃chτ (q) � G̃Eτ (q2)F̃Vτ (q) + G̃Mτ (q2) − G̃Eτ (q2)

1 + q2/4M2
τ

(
q2

4M2
τ

F̃Vτ (q) + q

2Mτ

F̃Tτ (q)

)

�
(

eτ − q2

6
r2

Eτ + q4

120
r4

Eτ

)
Nτ

(
1 − q2

6
〈r2〉τ + q4

120
〈r4〉τ

)

+
(

1 − q2

4M2
τ

)[(
μτ − q2

6
r2

Mτ

)
−

(
eτ − q2

6
r2

Eτ

)]
q2

4M2
τ

Nτ

(
1 − q2

6
〈r2〉τ + q4

120
〈r4〉τ

)

+
(

1 − q2

4M2
τ

)[(
μτ − q2

6
r2

Mτ

)
−

(
eτ − q2

6
r2

Eτ

)]

×
∑

a

Naτ

[
q2

3Mτ

∫ ∞

0
rgaτ (r) faτ (r)dr − q4

30Mτ

∫ ∞

0
r3gaτ (r) faτ (r)dr

]

=
(

eτ − q2

6
r2

Eτ + q4

120
r4

Eτ

)
Nτ

(
1 − q2

6
〈r2〉τ + q4

120
〈r4〉τ

)

+
(

1 − q2

4M2
τ

)[(
μτ − q2

6
r2

Mτ

)
−

(
eτ − q2

6
r2

Eτ

)]
q2

4M2
τ

Nτ

(
1 − q2

6
〈r2〉τ + q4

120
〈r4〉τ + fT2τ − q2 fT4τ

)

� Nτ eτ − Nτ q2

[
1

6

(
eτ 〈r2〉τ + r2

Eτ

) − κτ

4M2
τ

(1 + fT2τ )

]

+Nτ q4

{
1

360

(
3eτ 〈r4〉τ + 10r2

Eτ 〈r2〉τ + 3r4
Eτ

) − 1

24M2
τ

[
κτ

(〈r2〉τ + 6 fT4τ

) +
(

r2
Mτ − r2

Eτ + 3κτ

2M2
τ

)
(1 + fT2τ )

]}
,

(B17)

where ep = 1 and en = 0 are the charge of protons and neutrons, respectively, r2
Eτ and r4

Eτ are the second and fourth moments of
nucleon τ, r2

Mτ is the second magnetic moment of nucleon τ , and

fT2τ =
∑

a

Naτ

4Mτ

3Nτ

∫ ∞

0
rgaτ (r) faτ (r)dr, (B18a)

fT4τ =
∑

a

Naτ

2Mτ

15Nτ

∫ ∞

0
r3gaτ (r) faτ (r)dr. (B18b)

Therefore, comparing the same order of q0, q2, and q4, we get

Z = Z, (B19a)

〈r2〉ch � 〈r2〉p + r2
Ep + N

Z
r2

En − 3

2M2
τ

[
κp(1 + fT2p) + N

Z
κn(1 + fT2n)

]
, (B19b)
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〈r4〉ch �
(

〈r4〉p + 10

3
r2

Ep〈r2〉p + r4
Ep

)
+ N

Z

(
10

3
r2

En〈r2〉n + r4
En

)

− 5

M2
τ

{
κp

(〈r2〉p + 6 fT4p
) +

(
r2

Mp − r2
Ep + 3κp

2M2
τ

)
(1 + fT2p)

+N

Z

[
κn

(〈r2〉n + 6 fT4n
) +

(
r2

Mn − r2
En + 3κn

2M2
τ

)
(1 + fT2n)

]}
, (B19c)

where the expansion of the charge form factor ρ̃ch [102],

ρ̃ch(q) = Z

[
1 − 〈r2〉ch

6
q2 + 〈r4〉ch

120
q4 − · · ·

]
(B20)

is used.
In the free Dirac equation,

faτ (r) = 1

2Mτ

(
d

dr
+ κ

r

)
gaτ (r) (B21)

holds. Since the small component is small, this relationship is assumed to approximately hold even in the real nuclear systems.
Using equations, ∫ ∞

0
rgaτ (r)

d

dr
gaτ (r)dr = [rgaτ (r)gaτ (r)]∞0 −

∫ ∞

0

d

dr
[rgaτ (r)]gaτ (r)dr

= −
∫ ∞

0
gaτ (r)gaτ (r)dr −

∫ ∞

0
rgaτ (r)

d

dr
gaτ (r)dr

= −1

2

∫ ∞

0
gaτ (r)gaτ (r)dr, (B22a)

∫ ∞

0
r3gaτ (r)

d

dr
gaτ (r)dr = [r3gaτ (r)gaτ (r)]∞0 −

∫ ∞

0

d

dr
[r3gaτ (r)]gaτ (r)dr

= −
∫ ∞

0
3r2gaτ (r)gaτ (r)dr −

∫ ∞

0
r3gaτ (r)

d

dr
gaτ (r)dr

= −3

2

∫ ∞

0
r2gaτ (r)gaτ (r)dr, (B22b)

the integrals of fT2τ and fT4τ are∫ ∞

0
rgaτ (r) faτ (r)dr � 1

2Mτ

∫ ∞

0
rgaτ (r)

(
d

dr
+ κ

r

)
gaτ (r)dr

= −1

2

1

2Mτ

∫ ∞

0
gaτ (r)gaτ (r)dr + κ

2Mτ

∫ ∞

0
gaτ (r)gaτ (r)dr

=
(

κ − 1

2

)
1

2Mτ

∫ ∞

0
gaτ (r)gaτ (r)dr, (B23a)

∫ ∞

0
r3gaτ (r) faτ (r)dr � 1

2Mτ

∫ ∞

0
r3gaτ (r)

(
d

dr
+ κ

r

)
gaτ (r)dr

= − 1

2Mτ

3

2

∫ ∞

0
r2gaτ (r)gaτ (r)dr + κ

2Mτ

∫ ∞

0
r2gaτ (r)gaτ (r)dr

= 1

2Mτ

(
κ − 3

2

) ∫ ∞

0
r2gaτ (r)gaτ (r)dr. (B23b)

Therefore, parts of the spin-orbit contribution fT2τ and fT4τ are

fT2τ =
∑

a

Naτ

4Mτ

3Nτ

∫ ∞

0
rgaτ (r) faτ (r)dr

=
∑

a

Naτ

4Mτ

3Nτ

(
κ − 1

2

)
1

2Mτ

∫ ∞

0
gaτ (r)gaτ (r)dr �

∑
a

Naτ

2

3Nτ

(
κ − 1

2

)
, (B24a)
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fT4τ =
∑

a

Naτ

2Mτ

15Nτ

∫ ∞

0
r3gaτ (r) faτ (r)dr

=
∑

a

Naτ

2Mτ

15Nτ

(
κ − 3

2

)
1

2Mτ

∫ ∞

0
r2gaτ (r)gaτ (r)dr �

∑
a

Naτ

1

15Nτ

(
κ − 3

2

)
〈r2〉gaτ

, (B24b)

where gaτ is assumed to be normalized and 〈r2〉gaτ
is the second moment of gaτ in the last lines of two equations above. Using

2〈l · s〉 = j( j + 1) − l (l + 1) − 3

4
= −(κ + 1)

=
{−(l + 1), (κ > 0, i.e., j = l − 1/2),

l, (κ < 0, i.e., j = l + 1/2), (B25)

and assuming that each orbital is fully occupied or fully unoccupied, we get

1 + fT2τ � 2

3Nτ

[
3Nτ

2
+

∑
a

(2 j + 1)

(
κ − 1

2

)]

= 2

3Nτ

[
3Nτ

2
−

∑
a

(2 j + 1)

(
2〈l · s〉 + 3

2

)]

= − 2

3Nτ

∑
a

(2 j + 1)2〈l · s〉

= 4

3Nτ

sgn(κ )l (l + 1), (B26a)

〈r2〉τ + 6 fT4τ � 〈r2〉τ + 6
∑

a

(2 j + 1)
1

15Nτ

(
κ − 3

2

)
〈r2〉gaτ

= 〈r2〉τ − 6
∑

a

(2 j + 1)
1

15Nτ

(
2〈l · s〉 + 5

2

)
〈r2〉gaτ

= −
∑

a

(2 j + 1)
2

5Nτ

2〈l · s〉〈r2〉gaτ
. (B26b)

In total, the charge second and fourth moments are

〈r2〉ch � 〈r2〉p + r2
Ep + N

Z
r2

En + 〈r2〉SOp + N

Z
〈r2〉SOn, (B27a)

〈r4〉ch �
(

〈r4〉p + 10

3
r2

Ep〈r2〉p + r4
Ep

)
+ N

Z

(
10

3
r2

En〈r2〉n + r4
En

)
+ 〈r4〉SOp + N

Z
〈r4〉SOn, (B27b)

where

〈r2〉SOτ = − 3κτ

2M2
τ

(1 + fT2τ ) � κτ

M2
τ Nτ

∑
a

(2 j + 1)〈l · σ〉, (B28a)

〈r4〉SOτ = − 5

M2
τ

[
κτ (〈r2〉τ + 6 fT4τ ) +

(
r2

Mτ − r2
Eτ + 3κτ

2M2
τ

)
(1 + fT2τ )

]

� 5

M2
τ

[
κτ

∑
a

(2 j + 1)
2

5Nτ

〈l · σ〉〈r2〉gaτ
+

(
r2

Mτ − r2
Eτ + 3κτ

2M2
τ

)
2

3Nτ

∑
a

(2 j + 1)〈l · σ〉
]

= 10

M2
τ Nτ

∑
a

[
κτ

5
〈r2〉ga + r2

Mτ − r2
Eτ

3
+ κτ

2M2
τ

]
(2 j + 1)〈l · σ〉. (B28b)

Note that Eq. (6a) was previously derived in Refs. [80,103], and if the orbital is not fully occupied, (2 j + 1) is replaced by the
occupation number Naτ . Also, contributions of the spin-orbit partners are canceled out if both orbitals are fully occupied.
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As long as only the electric form factors of nucleons are considered, the second and fourth moments are written as

〈r2〉ch � 〈r2〉p + r2
Ep + N

Z
r2

En, (B29a)

〈r4〉ch � 〈r4〉p + 10

3

(
r2

Ep〈r2〉p + N

Z
r2

En〈r2〉n

)
+ r4

Ep + N

Z
r4

En. (B29b)

APPENDIX C: ERROR ESTIMATION

We note the error of f = X 1/2 is estimated as σ 2
f = 1

4X σ 2
X , and, thus, σ 2√

〈r2〉 = 1
4〈r2〉σ

2
〈r2〉. The error of linear fitting (a ±

�a)x + (b ± �b) is also estimated as σ 2 = (�a)2x2 + (�b)2 + 2ρabx �a �b. Therefore, if there is perfect correlation (ρab =
±1), σ = |x �a ± �b| holds.
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