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We discuss the construction of a nuclear energy density functional (EDF) from ab initio computations and
advocate the need for a methodical approach that is free from ad hoc assumptions. The equations of state (EoSs)
of symmetric nuclear and pure neutron matter are computed using the chiral NNLOsat and the phenomenological
AV4′ + UIXc Hamiltonians as inputs to self-consistent Green’s function (SCGF) and auxiliary field diffusion
Monte Carlo (AFDMC) methods. We propose a convenient parametrization of the EoS as a function of the
Fermi momentum and fit it on the SCGF and AFDMC calculations. We apply the ab initio based EDF to carry
out an analysis of the binding energies and charge radii of different nuclei in the local density approximation.
The NNLOsat-based EDF produces encouraging results, whereas the AV4′ + UIXc-based one is farther from
experiment. Possible explanations of these different behaviors are suggested, and the importance of gradient and
spin-orbit terms is analyzed. Our paper paves the way for a practical and systematic way to merge ab initio
nuclear theory and density functional theory, while shedding light on some critical aspects of this procedure.
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I. INTRODUCTION

The need to tackle the very complex nuclear many-body
problem has inspired dramatic advances in the so-called
ab initio methods in recent years [1–3]. These approaches
aim at solving the many-nucleon Schrödinger equation in
an exact or systematically improvable way by using a re-
alistic model for the nuclear interaction in the vacuum.
Examples of these approaches are the Green’s function
Monte Carlo (GFMC) and auxiliary field diffusion Monte
Carlo (AFDMC) [4–6], self-consistent Green’s function
(SCGF) [7–10], coupled-cluster [2,11,12], in-medium similar-
ity renormalization group [3,13], and many-body perturbation
theory methods [14,15]. Successful nuclear structure cal-
culations have been performed for low- and medium-mass
nuclei [1,3,4,16], as well as in infinite nuclear matter [9,17,18]
and neutron stars [19,20]. Although ab initio theory can now
approach masses of A ≈ 140 [21], its predictive power is
affected by the large computational cost and full-scale studies
of heavy nuclei are still out of reach.

In the heavy-mass region of the nuclear chart, the method
of choice is density functional theory (DFT). Originally intro-
duced in condensed matter, DFT is a hugely popular method
that finds application in several areas of physics, ranging from
quantum chemistry [22–25] to nuclear physics [26–31]. In the
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latter case, it represents the only approach that allows one
to cover almost the whole nuclear chart [26,27,30], with the
partial exception of very light nuclei, and to study both ground
states (g.s.) and, in its time-dependent formulation, excited
states [29]. In principle, DFT provides an exact formulation
of the many-body problem based on the Hohenberg-Kohn
theorems [22,30,32], which state that all observables, starting
from the total energy, can be expressed in a unique way as a
functional of the one-body density (including spin densities
and other generalized densities [33]). However, these theo-
rems give no hints about the actual form of such functional,
which is dubbed as the energy density functional (EDF).
Hence, in practice, DFT turns out to be an approximate, albeit
very powerful, method. In particular, most relativistic [34]
and nonrelativistic [26–28] nuclear EDFs are designed in an
empirical manner. A reasonable ansatz for the functional form
is chosen and its actual parameters are fitted on experimen-
tal observables such as radii and masses of finite nuclei, or
pseudo-observables such as the saturation density of symmet-
ric nuclear matter [27,35]. The available EDFs are overall
successful [26,30], e.g., the experimental binding energies
are reproduced on average within 1–2 MeV and charge radii
within 0.01–0.02 fm. However, it is unclear how to further
improve the performance of traditional EDFs [36]. Despite
attempts to frame DFT as an effective field theory (EFT),
we still lack guiding principles for the systematic improve-
ment of nuclear EDFs [37]. Existing EDFs are affected by
uncontrolled extrapolation errors when applied to systems for
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which scarce data are available, like neutron-rich nuclei or
superheavy nuclei [26,38]. To solve these issues, a rethinking
of the strategy to build the EDFs is in order.

It has already been recognized that surpassing the current
limitations of nuclear EDFs requires a combination of the
DFT and ab initio approaches [37,39,40]. Other attempts
made in this direction include the density matrix expan-
sion [41,42] and the use of ab initio calculations to constrain
specific terms of the EDFs, while retaining a large amount of
phenomenology [43–48].

In this paper, we advocate the need for pursuing a novel
and more systematic strategy to ground nuclear DFT in ab
initio. Our proposal is motivated by the existence of a well-
established methodology in electronic DFT, known as the
“reductionist” or nonempirical research program [25,49–51].
It aims at constructing a so-called Jacob’s ladder [49] of in-
creasingly more sophisticated EDFs, where one relies as much
as possible on exact properties and ab initio calculations,
and as little as possible on fits to the empirical data. The
first rung of this ladder is the local density approximation
(LDA), where an EDF that depends on the number densi-
ties alone is derived from the equations of state (EoSs) of
uniform matter, i.e., the homogeneous electron gas (HEG)
in the electronic case [22,23] and symmetric nuclear matter
(SNM) plus pure neutron matter (PNM) in the nuclear case
(we note that this has been, to a large extent, the spirit behind
the works of Refs. [43,44]). The second rung introduces sur-
face terms within the so-called gradient approximation (GA),
constrained by ab initio simulations of nonuniform systems
and by general principles when possible.

Nuclear physics poses additional challenges, however. In
fact, the success of electronic DFT stems from the fact that
the Coulomb force is known, and the dominant contribution to
the total energy is the simple Hartree term [22]. On the other
hand, the nuclear interaction has a rather complicated operator
structure and is not uniquely determined [52], which allows
for different predictions of some quantities and possibly leads
to different equivalent EDFs. Moreover, the nuclear matter
EoS is still not firmly established at variance with the HEG
case [53]. Therefore, a truly systematic approach should take
into account the nonuniqueness of the nuclear Hamiltonian, as
well as to explore different many-body methods, to quantify
the quality of predictions. An important final aspect is that
the reductionist approach just outlined can be understood
as a model selection procedure typical of machine learning
applications [54,55]. Thus, Bayesian inference [56,57], and
even more sophisticated learning tools, can be exploited to
validate our EDFs and provide reliable uncertainties for their
predictions

In this paper, we start the implementation of this program
by carrying out a study of the LDA step for two distinct
nuclear interactions. First, we make use of the simplified
phenomenological AV4′ + UIXc potential [58,59] in AFDMC
calculations. Although this is the least sophisticated among
the Argonne family [60], it is known to combine a reasonable
accuracy in the description of finite nuclei [58] with a rela-
tively modest computational effort. This allows for accurate
AFDMC computations of isotopes as large as 90Zr, as well as
of both SNM and PNM. Moreover, within the scope of this

paper, this Hamiltonian is unique in that it allows one to test
how our EDF construction method performs in the unfavor-
able case of hard interactions. Second, we use the established
and accurate chiral interaction NNLOsat from Ref. [61] as
input for SCGF computations [16,18]. We argue that the SNM
and PNM EoSs are well parametrized in powers of the Fermi
momentum kF and perform a model selection procedure based
on this ansatz. The resulting parametrizations of the EoS are
used to construct the LDA EDFs, which are employed for g.s.
calculations of closed-subshell nuclei and compared directly
to the ab initio results for the same Hamiltonian that generated
the EDF itself, as well as to the experiment. Lastly, a very
preliminary exploration of the GA level is also discussed,
although a full ab initio based study will be the subject of
future works.

This paper is structured as follows. Section II provides
an introduction to ab initio theory, presenting Hamiltonians
(Sec. II A) and many-body methods (SCGF in Sec. II B,
AFDMC in II C). Section III is devoted to the construction
of the nuclear EDFs. The general framework is outlined in
Sec. III A. The parametrization of the ab initio EoS is ex-
amined in Sec. III B. Then, LDA EDFs and GA EDFs are
discussed in Sec. III C. In Sec. IV, the results are presented.
The ab initio EoSs determined with NNLOsat and AV4′ +
UIXc are shown and interpolated (Sec. IV A). The correspond-
ing LDA EDFs and GA EDFs are applied to finite nuclei in
Secs. IV B and IV C, respectively. Lastly, concluding remarks
are presented in Sec. V.

II. AB INITIO

A. Nuclear interactions

An effective description of nuclear systems at low energies
can assume the nucleons as degrees of freedom and model
their interactions through a nonrelativistic Hamiltonian, which
includes two-nucleon (NN) and three-nucleon (3N) (and pos-
sibly many-nucleon) potential terms:

H = T +
∑
i< j

V NN
i j +

∑
i< j<k

V 3N
i jk + . . . . (1)

Determining the nuclear interaction is still a partially open
problem, but realistic models of the nuclear force, that are
fitted to reproduce accurately two- or few-body observ-
ables, e.g., NN scattering phase shift or the binding energy
of the deuteron, do exist. Interactions are constructed in a
phenomenological way [4,60], or by making use of chiral
EFTs [52,62–64]. Chiral forces are derived in an order-by-
order, low-momentum expansion consistent with the QCD
symmetries. They are defined in momentum space, although
coordinate-space versions of the so-called local forces have
been put forward [65–69]. Since they are naturally cut off
at high momenta by regulators [70], they elude the prob-
lem of handling the hard core, i.e., the strongly repulsive
short-range behavior of the phenomenological potentials [10].
The calculations performed in this paper make use of the
chiral NNLOsat and the phenomenological AV4′ + UIXc

interactions.

024315-2



NUCLEAR ENERGY DENSITY FUNCTIONALS GROUNDED … PHYSICAL REVIEW C 104, 024315 (2021)

NNLOsat [61] is a chiral force that has been found to give a
good simultaneous reproduction of binding energies and radii,
as well as densities [21], up to medium-mass nuclei, while it
also predicts a saturation point close to the empirical region.
In spite of some drawbacks, e.g., the symmetry energy around
and above saturation is underestimated [18], NNLOsat is still
among the best performing and most used chiral Hamiltonians
(see, e.g., Refs. [16,71]).

Argonne interactions are widely employed phenomeno-
logical potentials [4,59,60]. The most sophisticated of them
is the Argonne v18 (AV18) NN force, which contains
18 spin/isospin operators. Simplified versions, more
amenable to many-body calculations, have been devised [59].
Denoted as AVN′, these interactions contain a subset of N
operators and are refitted in order to reproduce as many
two-nucleon properties as possible. Together with the NN
interaction, a three-nucleon force has to be introduced
to reproduce the spectrum of light nuclei and saturation
properties of infinite nucleonic matter [72]. In Refs. [58,73] it
was found that the simple AV4′, which comprises only four
operators,

Op=1,...,4
i j = [1, σi · σ j] ⊗ [1, τi · τ j], (2)

complemented with the central term of the Urbana IX 3N
interaction (UIXc), yields reasonable ground-state energies of
light and medium-mass nuclei—the binding energies deviate
by about 10% from experiment. AV4′ + UIXc is therefore
interesting for this exploratory paper, since it allows one to
carry out accurate Monte Carlo studies of nuclear matter (both
PNM and SNM) and of nuclei as large as 90Zr. Moreover, the
fact that AV4′ does not contain tensor or spin-orbit operators
greatly simplifies the solution of the many-body problem with
the AFDMC method.

B. SCGF

The SCGF method [7–10] provides a nonperturbative and
systematically improvable solution to the Schrödinger equa-
tion for a system of A interacting fermions that is rooted on
the concept of many-body propagators, also known as Green’s
functions. The central quantity is the one-particle propagator

gαβ (ω) = − i

h̄

∫
dt eiωt 〈�0|T [cα (t )c†

β (0)]|�0〉, (3)

where greek letters label the states of a complete orthonormal
single-particle basis, cα (t ) [c†

α (t )] are the annihilation (cre-
ation) operators of a particle in state α at time t , and T [. . .]
is the time ordering operator. The propagator gαβ (ω) provides
access to all one-body observables and to the ground-state en-
ergy; moreover, it gives information on the neighboring A ± 1
nuclei, for example by providing the one-nucleon addition
and removal energies [16]. The interest in SCGF lies in the
wealth of information that can be accessed in a single stage, as
well as in its computational cost scaling polynomially with the
number of particles [8]. It is nonetheless a demanding method
and fully converged results for g.s. energies are presently
possible for mass numbers up to A ≈ 60–90, depending on
the chosen Hamiltonian, and for nuclear matter [10]. In a
recent work [21], though, charge radii and charge density

distributions have been successfully obtained in a set of Sn
and Xe isotopes up to A = 138.

In SCGF, the dressed Green’s function is determined by
solving the Dyson equation,

gαβ (ω) = g(0)
αβ (ω) +

∑
γ δ

gαγ (ω) 
∗
γ δ (ω) gδβ (ω), (4)

or the equivalent Gor’kov equation when one deals with open
shell nuclei [74]. In Eq. (4), g(0)

αβ (ω) is an unperturbed prop-
agator. The 
∗

αβ (ω) is the irreducible self-energy which is
suitably written in a form that does not depend on a choice
of the reference state but only on gαβ (ω) itself. The Dyson or
Gor’kov equations are in principle exact but the self-energy,

∗

αβ (ω), must be truncated in practical applications by keep-
ing selected series of Feynman diagrams, hence resumming
infinite subsets. State-of-the-art computations in finite nuclei
exploit the algebraic diagrammatic construction method at
order n [ADC(n)] [8,10], which is based on enforcing the
correct analytic properties of the self-energy. ADC(n) is sys-
tematically improvable, as the exact solution is approached
in the limit of large n. State-of-the-art computations use the
ADC(2) many-body truncation in the Gor’kov formalism and
reach ADC(3) for Dyson SCGF [10].

Nuclear matter is studied within the finite-temperature
formalism, making use of the ladder approximation to the
self-energy [8,9,75]. A fully self-consistent solution for the
dressed propagator is found within such approximation, from
which the total energy per nucleon can be obtained exploiting
the modified Galitskii-Migdal-Koltun sum rule [76]:

E = 1

2π

∑
αβ

∫ EF

−∞
(Tαβ + ωδαβ )Im gαβ (ω)dω − 1

2
〈W 〉, (5)

where Tαβ represents the kinetic energy term and 〈W 〉 is a
correction due to the inclusion of three-body interactions. The
zero temperature limit for nuclear matter calculations is then
taken exploiting the Sommerfeld expansion at low temper-
atures, which provides a reliable extrapolation of results to
T = 0 [77].

C. AFDMC

Diffusion Monte Carlo (DMC) [4,5,78] methods solve the
many-body Schrödinger equation by using imaginary-time
projection techniques to enhance the ground-state component
|�0〉 of a starting trial wave function |�T 〉:

|�0〉 ∝ lim
τ→+∞ |�(τ )〉 = lim

τ→+∞ e−(H−ET )τ |�T 〉, (6)

where τ is the imaginary time and ET is an estimate of the
ground-state energy.

The application of DMC to nuclear physics is complicated
by the presence of spin and isospin operators in the Hamil-
tonian. The two variants of continuum DMC algorithms, the
GFMC [4,6] and the AFDMC [6,69,79], differ in the way they
deal with the spin/isospin degrees of freedom. The GFMC
method uses all of the 2A

(A
Z

)
spin-isospin components of the

wave function and can treat highly realistic phenomenological
and chiral interactions [66–68,80], but it is currently limited to
nuclei with up to A = 12 nucleons. On the other hand, within
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the AFDMC, the spin-isospin degrees of freedom are de-
scribed by single-particle spinors, the amplitudes of which are
sampled using Monte Carlo techniques based on the Hubbard-
Stratonovich transformation, reducing the computational cost
from exponential to polynomial in A. However, some of
the contributions characterizing fully realistic nuclear forces,
such as isospin-dependent spin-orbit contributions, cannot be
treated in this way, yet. Hence, the AFDMC is limited to
somewhat simplified interactions, but it can be applied to
compute larger nuclei and nuclear matter.

The starting point of AFDMC calculations is a trial wave
function, which is commonly expressed as the product of a
long-range component |�〉 and of two- plus three-body corre-
lations:

|�T 〉 =
∏
i< j

f c
i j

∏
i< j<k

f c
i jk|�〉. (7)

In the above equation, we assumed the correlations to be spin-
isospin independent. This simplified ansatz, consistent with
Refs. [58,81,82], is justified by the fact that the AV4′ + UIXc

Hamiltonian does not contain tensor or spin-orbit terms.
In finite nuclei, |�〉 is constructed by coupling different

Slater determinants of single-particle orbitals in the |nl jmj〉
basis so as to reproduce the total angular momentum, total
isospin, and parity of the nuclear state of interest [6]. On the
other hand, infinite nuclear matter is modeled by simulating
a finite number of nucleons on which periodic-box boundary
conditions are imposed [83]. In this case, the single-particle
states are plane waves with quantized wave numbers:

k = 2π

L
(nx, ny, nz ) ni = 0,±1,±2, . . . , (8)

where L is the size of the box and the shell closure condition
must be met in order to satisfy translational invariance. As
a consequence, the number of nucleons in a box must be
equal to the momentum space “magic numbers” (1, 7, 19, 27,
33, . . . ) times the number of spin/isospin states: 2 for PNM,
4 for SNM. The equations of state of nuclear matter discussed
in Sec. IV A are computed with 66 neutrons (PNM) and
76 nucleons (SNM) in a periodic box.

The AFDMC method has no difficulty in dealing with
“stiff” forces that can generate wave functions with high-
momentum components. This is in contrast with remarkably
successful many-body approaches that rely on a basis ex-
pansion [11,12,84,85], which need relatively “soft” forces to
obtain converged calculations. However, like standard dif-
fusion Monte Carlo algorithms, the AFDMC suffers from
the fermion sign problem, which results in large statistical
errors that grow exponentially with τ . To control it, we
employ the constrained-path approximation, as described in
Refs. [6,69,86]. This scheme is believed to be accurate for
Hamiltonians that do not include tensor or spin-orbit opera-
tors, as is the case for the AV4′ + UIXc potential. Expectation
values of operators Ô that do not commute with the Hamilto-
nian are evaluated by means of the mixed estimator [4]

〈Ô(τ )〉 ≈ 2
〈�T |Ô|�(τ )〉
〈�T |�(τ )〉 − 〈�T |Ô|�T 〉

〈�T |�T 〉 . (9)

Also, charge radii are estimated from the proton radii with the
formula r2

ch = r2
p + (0.8 fm)2.

III. METHOD

A. Nuclear EDFs

The general structure of a nonrelativistic nuclear EDF is
described in depth in Refs. [27,28,87]. In this section, the
discussion is limited to even-even nuclei and to quasilocal
EDFs, i.e., functionals that can be expressed as the volume
integral of an energy density E (r) which is a function of
the local densities [28] and their gradients. Nonlocal EDFs
such as Gogny ones are not treated. Moreover, for simplicity
pairing terms are neglected. Applications shall be limited to
magic nuclei and to some closed-subshell ones.

Under these assumptions, the total energy is a functional
of the time-even proton and neutron densities [number density
ρq(r), kinetic density τq(r), and spin-orbit density Jq(r), with
q = n, p] [28,35] and reads

E =
∫

dr E (r) = Ekin + Epot + ECoul. (10)

The kinetic energy term is given by [35]

Ekin =
∫

dr Ekin(r) =
∫

dr
h̄2

2m
τ0(r). (11)

The Coulomb contribution ECoul is treated in the standard
local Slater approximation [88]. The most general form of the
potential term

Epot =
∫

dr Epot(r) (12)

is reported in Eqs. (48) and (49) of Ref. [28], and will be
outlined in the next section. Neutron and proton densities have
been recoupled into the isoscalar (t = 0) and isovector (t = 1)
channels: isoscalar densities are total densities (e.g., ρ0 =
ρn + ρp), while isovector densities account for proton-neutron
differences (ρ1 = ρn − ρp). The coefficients of the various
terms are all, in principle, functions of the density, although
in practice most of them are set to a constant value [27].
The mean field equations are then derived by relating the
densities to the single-particle orbitals φ j (r) and applying the
variational principle [87]:[

−∇ · h̄2

2m∗
q (r)

∇ + Uq(r) + UCoul(r)δq,p (13)

+ Wq(r) · (−i)(∇ × σ )

]
φ j (r) = ε jφ j (r) (14)

where

Uq = δE

δρq
,

h̄2

2m∗
q (r)

= δE

δτq
, Wq = δE

δJq
, (15)

and m∗
q (r), Uq(r), and Wq(r) are called effective mass, mean

field, and spin-orbit potential, respectively.
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B. Parametrization of the ab initio EoS

Nuclear matter is an infinite and uniform system of nucle-
ons interacting through the strong interaction only [20,89,90].
Nuclear matter is characterized by the nuclear EoS, which at
zero temperature and for spin-unpolarized matter corresponds
to the energy per nucleon e = E/A as a function of the number
densities of neutrons and protons, or of the total density ρ and
the isospin asymmetry parameter β = ρn−ρp

ρ
.

Uniformity implies that the orbitals are plane waves, lead-
ing to important simplifications of Eq. (10). In fact, the
number and kinetic densities are uniform and related by [87]

τq = 3
5ρqk2

F,q = 3
5 (3π2)2/3ρ5/3

q . (16)

Moreover, the spin-orbit densities Jq, as well as the deriva-
tives of the density (∇ρq = �ρq = 0), vanish. Thus only the
ρ and ρτ terms contribute to the nuclear matter energy, while
the gradient (ρ�ρ), spin-orbit (ρ∇ · J), and tensor (J2) terms
are nonvanishing in nonuniform systems only, such as nuclei,
neutron drops, or semi-infinite matter.

These considerations suggest the following regrouping of
the potential density Epot for a generic nuclear system:

Epot = Ebulk + Esurf, (17)

where

Ebulk =
∑
t=0,1

(
Cρ

t ρ2
t + Cτ

t ρtτt
)

(18)

and

Esurf =
∑
t=0,1

(
C�ρ

t ρt�ρt + CJ
t J2

t + C∇J
t ρt∇ · Jt

)
. (19)

These terms are called here bulk and surface contributions, re-
spectively. Infinite matter probes only the bulk contributions,
while surface terms are active in nonuniform systems.

The problem of determining the nuclear EoS is still par-
tially unsettled [9,20,57,91], at stark variance with the case
of the homogeneous electron gas in condensed matter, the
EoS of which has been well known for decades from Monte
Carlo calculations, as well as from analytical results in the
low- and high-density limits [23]. By contrast, the choice of
the nuclear Hamiltonian [14,17,18,72] and, to a lesser extent,
of the many-body method [86] still impacts our knowledge of
the theoretical nuclear EoS. Therefore, it is important to test
our method on different EoSs, in order to better understand its
potentialities and limitations.

Before using it as input to an EDF, the EoS must be
parametrized. First of all, it is convenient to represent the
energy per particle e(ρ, β ) as the sum of the kinetic energy
per particle of the Fermi gas t (ρ, β ) and of a potential term
v(ρ, β ) [47,89], consistently with the EDF structure (10):

e(ρ, β ) = t (ρ, β ) + v(ρ, β ), (20)

where

t (ρ, β ) = tsat

2
[(1 + β )

5
3 + (1 − β )

5
3 ]

(
ρ

ρsat

) 2
3

, (21)

tsat = 3h̄2

10m

(
3π2

2

) 2
3

, ρ
2
3

sat ≈ 22 MeV, (22)

and tsat is the Fermi gas kinetic energy per particle of SNM at
saturation density, tsat = t (ρ = ρsat, β = 0).

Next, an ansatz for the expression of the potential energy
per particle v(ρ, β ) as a function of both ρ and β must
be chosen. Presently, ab initio methods are mostly applied
to PNM (β = 1) and SNM (β = 0). Hence, the dependence
on β must be extrapolated from the limiting cases β = 0
and 1. Due to the isospin invariance of the nuclear force,
odd powers of β vanish. Moreover, neglecting terms in β4

is deemed accurate for densities close to saturation even for
large asymmetries [90]. This quadratic dependence is adopted
here too.

As far as the ρ dependence is concerned, one can rea-
sonably expect that a limited number of powers of ρ

should suffice for reproducing the theoretical EoS (see e.g.,
Refs. [17,89]). While a Taylor expansion in powers of the
density is simple and useful [44,89], we argue that a better
option is to postulate that the potential term be a polynomial
of the Fermi momentum kF , or equivalently of ρ1/3 [47,48].
Heuristic motivations are the following: from a practical per-
spective, it grants a greater flexibility than a ρ expansion, to
which it may eventually reduce as a special case. Also, it is
known on an empirical basis that local EDFs need fractional
powers of the density in order to get satisfactory predictions
of the nuclear incompressibility [28,92], thus using kF instead
of ρ as an expansion variable is also in keeping with this
latter necessity. Lastly, if the EoS is thought of as arising
from a diagrammatic expansion, then powers of the Fermi
momentum should appear naturally [47,93].

Combining the above assumptions, one can then write

v(ρ, β ) =
∑

γ=1/3...6/3

cγ (β )ργ =
∑

γ=1/3...6/3

[cγ ,0 + cγ ,1β
2]ργ

(23)

where cγ ,0 ≡ cγ (β = 0) and cγ ,1 ≡ cγ (β = 1) − cγ (β = 0).
Up to this point, the model is still quite general. The only
condition is that γ ’s have to be of the form integer/3. Now,
we do not choose the potential a priori [47], but, in order to
determine how many terms and which powers should enter the
potential, we perform a model selection among all possible
polynomials with at most six terms and γ not larger than 6
[Eq. (23)]. The following convention is employed: each model
is identified by the exponents of the powers of kF or ρ

1
3 it

contains. For example, we refer to the polynomial c 2
3
ρ

2
3 +

c 5
3
ρ

5
3 + c2ρ

2 by (2,5,6). Each model is fitted on the SNM and
PNM data points and the optimal parameters are determined
by minimizing the mean squared error (MSE) [55,94]:

σ 2(cγ ,0, cγ ,1) = 1

Ndata

Ndata∑
i=1

[e(ρi, βi ) − ei]
2. (24)

Cross-validation is used to evaluate the out-of-sample er-
ror [54,55], which we use to rank the different models. This
is a more robust measure of goodness than the fit MSE or
χ2 [94]. The statistical analysis has been performed with the
SCIKIT-LEARN library [95].
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C. Construction of the EDFs

The simplest way to define an EDF based on the infinite
matter EoS is LDA [23,31,44]. In LDA, one assumes that
the same expression of the potential energy density valid in
infinite matter holds for nonuniform densities ρq(r) too. This
approximation is well suited in particular for slowly varying
density distributions, so that each small region of a generic
(finite or infinite) system can be treated as a piece of bulk
matter [23]. LDA provides the following expression for the
bulk energy density Ebulk(r):

Ebulk[ρ(r), β(r)] = ρ(r)v[ρ(r), β(r)]. (25)

The LDA EDFs read

ELDA = Ekin + Ebulk + ECoul (26)

and Eq. (13) simplifies, as m∗ = m, W(r) = 0, and Uq(r) =
U bulk

q (r), where

U bulk
q (r) = δEbulk

δρq(r)

=
∑

γ

{(γ + 1)cγ ,0

+ [(γ − 1)β(r) + 2τz]β(r) cγ ,1}ργ (r), (27)

for the potential term (23) and τz = +1 for neutrons and τz =
−1 for protons. See Appendix A for the derivation.

While an ab initio based treatment of LDA is the main sub-
ject of this paper, it is known that such approximation is not
sufficient to accurately describe nuclear systems [31]. Even
for electronic DFT, where LDA is a solid starting point, it is
understood that gradient terms are necessary for quantitatively
accurate predictions [22]. In Sec. IV B, we will show that
the LDA EDFs based on our chosen Hamiltonians give rather
different outcomes. Hence, to better gauge the LDA, we also
perform a preliminary analysis of a set of EDFs that include
surface terms.

These functionals, that we name GA EDFs, are made by
complementing LDA with isoscalar and isovector density-
gradient terms and a one-parameter spin-orbit contribution. It
must be understood that these GA EDFs are treated at a very
preliminary level. For instance, ρτ terms, that are known to
be important in nuclear DFT and produce an effective mass
m∗ = m, are not discussed. Also, no rigorous statistical anal-
ysis is performed and no attempt to derive the surface terms
from ab initio is made. These important themes are left for
future studies.

Our GA EDFs have the following form:

EGA = ELDA + Esurf (28)

where

Esurf =
∫

dr

[ ∑
t=0,1

C�
t ρt�ρt

−W0

2

(
ρ∇ · J +

∑
q

ρq∇ · Jq

)]
. (29)

Three parameters, C�
0 , C�

1 , and W0, are introduced and are
all assumed to be density-independent constants, as in widely
used EDFs. The mean field equations (13) hold, with m∗ = m
and U (r) = U bulk

q (r) + U surf
q (r), where

Wq(r) = δEsurf

δJ(r)
= W0

2
(∇ρ + ∇ρq), (30)

U surf
q (r) = δEsurf

δρq

= 2C�
0 �ρ0 + 2C�

1 �ρ1τz − W0

2
(∇ · J + ∇ · Jq)

(31)

and U surf
q is derived in Appendix B. Appendix C is dedicated

to the concept of rearrangement energy of the EDF.
To tune the surface terms, a grid search on the three param-

eters C�
0 , C�

1 , and W0 is carried out, although full-fledged fits
will be necessary in later works. To benchmark the quality of
the EDF predictions, the root mean square (rms) errors of the
binding energies and the charge radii for the GA EDFs

σE
(
C�

0 ,C�
1 ,W0

) =
√∑nE

k=1

(
E th

k − E exp
k

)2

nE
, (32a)

σrch

(
C�

0 ,C�
1 ,W0

) =
√∑nr

k=1

(
rth

k − rexp
k

)2

nr
(32b)

are evaluated with respect to the experimental radii of 40Ca,
48Ca, 132Sn, and 208Pb and the binding energies of 40Ca, 48Ca,
90Zr, 132Sn, and 208Pb [96]. All the DFT g.s. calculations are
performed with the SKYRME_RPA code [88], which has been
appropriately modified.

IV. RESULTS

A. Nuclear matter fits

The SNM and PNM equations of state employing the
NNLOsat potential were computed in Ref. [18] using the
SCGF method. The T = 0 limit is shown in Fig. 1 and explicit
values are reported in Table I. In this paper, we consider sim-
ulations up to densities ρ = 0.32 fm−3, as these are still com-
patible with the soft momentum cutoff of this interaction. The
SNM EoS saturates at ρsat =0.15 fm−3 and Esat =−14.7 MeV.
We performed fits on a set of points equally spaced by
0.01 fm−3 following the parametrizations discussed in
Sec. III B. A fivefold cross-validation procedure was used
to estimate the validation error and select the best model.
The optimal choice was the polynomial (2,3,4,5,6), which
achieves a very small MSE = 10−8 MeV2. This model is
shown by the curves in Fig. 1 along with the complete ab
initio dataset used in the fit.

The AV4′ + UIXc EoS has been calculated with the
AFDMC method for several densities up to 0.40 fm−3. To the
best of our knowledge, this is the first application of AV4′ +
UIXc to nuclear matter. The results are reported in Table II.
The saturation point is located at an unusually high density
(ρ = 0.24 fm−3) and low energy (Esat = −23.7 MeV) and the
3N contribution is instrumental in allowing the SNM EoS to
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FIG. 1. Dots: SNM and PNM EoS computed with the NNLOsat

interaction and the SCGF method. Dashed: model EoS (2,3,4,5,6)
(see text).

saturate; in fact, AV4′ alone predicts no saturation before 0.50
fm−3 [97]. The smallest validation error (MSE = 0.06 MeV2)
is achieved by the (2,5,6) model, which is shown in Fig. 2
together with the ab initio EoS.

To sum up, parametrizing the nuclear EoS as a polynomial
of the Fermi momentum has proved an effective ansatz. Two
optimal models have been found, namely, (2,3,4,5,6) for the
NNLOsat EoS and (2,5,6) for the AV4′ + UIXc EoS. The
parameters of these models are reported in Table III.

B. Predictions of the LDA EDFs in finite nuclei

Two LDA EDFs are derived from the (2,3,4,5,6) and (2,5,6)
parametrizations of the NNLOsat- and the AV4′ + UIXc-based
EoS (Sec. IV A). These are then applied to closed-subshell
nuclei and compared to experimental values, taken from
Refs. [98,99], and to ab initio results. Full ab initio calcula-
tions are available for a set of nuclei up to 54Ca for NNLOsat

TABLE I. Energy per particle e computed with SCGF and the
NNLOsat interaction at several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −7.94 5.22
0.08 −11.78 6.71
0.12 −13.98 8.51
0.16 −14.62 11.23
0.20 −13.68 14.99
0.22 −12.61 17.24
0.24 −11.12 19.71
0.26 −9.22 22.40
0.28 −6.91 25.29
0.32 −1.00 31.58

TABLE II. Energy per particle e and standard errors (in paren-
theses) computed with AFDMC and the AV4′ + UIXc interaction at
several densities ρ in both SNM and PNM.

ρ (fm−3) e (MeV) SNM e (MeV) PNM

0.04 −8.17 (1) 7.062 (5)
0.08 −13.60 (1) 11.075 (6)
0.12 −17.48 (1) 15.278 (8)
0.16 −20.74 (2) 20.20 (1)
0.20 −22.80 (1) 26.23 (1)
0.22 −23.42 (2) 29.66 (2)
0.24 −23.68 (3) 33.44 (3)
0.26 −23.58 (3) 37.47 (2)
0.28 −23.15 (3) 42.12 (3)
0.32 −21.10 (3) 52.26 (5)
0.36 −17.0 (1) 63.91 (6)
0.40 −12.21 (8) 77.51 (7)

and 90Zr for AV4′ + UIXc. Moreover, the NNLOsat densities
for 90Zr are available.

The discrepancy between theory and experiment for ener-
gies per nucleon (top) and charge radii (bottom) are shown in
Fig. 3 for NNLOsat and the (2,3,4,5,6) EDF, as well as the
GA-E and GA-r EDFs introduced later on (Sec. IV C). On
the one hand, we can appreciate that NNLOsat predictions are
very close to experiment. On the other hand, the LDA EDF, al-
though less precise, exhibits interesting trends, since it enables
one to reproduce heavier nuclei, especially from 90Zr on, in
a realistic way, with deviations smaller than 1 MeV/nucleon
and 0.05 fm for the energies and radii, respectively. This is
quite remarkable, as the LDA EDF incorporates only infor-
mation on uniform matter. Also, it is unsurprising that light
systems are less amenable to a local density treatment, since

FIG. 2. Dots: SNM and PNM EoS computed with the AV4′ +
UIXc interaction and the AFDMC method. The AFDMC statistical
error bars are shown. Dashed: model EoS (2,5,6) (see text).

024315-7



F. MARINO et al. PHYSICAL REVIEW C 104, 024315 (2021)

TABLE III. Coefficients of the optimal polynomial parametriza-
tions (23) of the NNLOsat and AV4′ + UIXc EoS. The exponents γ

and the corresponding parameters cγ ,0 and cγ ,1 are reported.

γ cγ ,0 (MeV fm3γ ) cγ ,1 (MeV fm3γ )

NNLOsat 2/3 −182.41 16.93
1 252.54 920.29

4/3 −501.04 −4026.38
5/3 63.80 6440.50

2 669.42 −3646.52

AV4′ + UIXc 2/3 −131.94 81.04
5/3 −578.00 64.04

2 901.30 48.97

surface effects are known to play a larger role for small values
of A.

In Fig. 4, the deviation of the AV4′ + UIXc, (2,5,6) EDF,
and GA-E and GA-r EDF (Sec. IV C) predictions from ex-
periment is shown. The outcome is puzzling, since, while
the ab initio results are overall decent, the LDA EDF (2,5,6)
strongly overbinds all the nuclei considered, by ≈10 MeV
per nucleon. In addition, radii are underestimated with re-
spect to both experiment and ab initio. Thus, in the case of
the phenomenological interaction AV4′ + UIXc, LDA alone
has difficulties to capture the properties of the microscopic
potential.

Number densities are then shown for the representative
nuclei 48Ca (Fig. 5) and 90Zr (Fig. 6). In the NNLOsat case (top
left), the (2,3,4,5,6) EDF density profile closely resembles the
ab initio one, although it features slightly wider oscillation.

FIG. 3. Discrepancy between the predicted energies per nucleon
(top) and charge radii (bottom) and the corresponding experimental
values for a set of closed subshell nuclei. Results obtained with the
NNLOsat interaction and with the LDA, GA-E, and GA-r EDFs are
shown. The LDA EDF is derived from the (2,3,4,5,6) model EoS.
The GA-E and GA-r EDFs are described in Sec. IV C.

FIG. 4. Same as Fig. 3 (note the different scale), but for results
obtained with the AV4′ + UIXc interaction and with the LDA, GA-E,
and GA-r EDFs. The LDA EDF is based on the (2,5,6) EoS.

In the AV4′ + UIXc case (top right), instead, the (2,5,6) EDF
and ab initio number densities differ considerably, as LDA
produces definitely steeper density profiles, consistently with
predicting sensibly smaller radii. Also, it somewhat overes-
timates the central density. In the bottom panel, the 48Ca ab
initio densities weighted by the squared radius, r2ρ(r), are
compared. The r2 factor emphasizes that AV4′ + UIXc and
NNLOsat predict rather different density surfaces. Roughly
similar considerations hold for 90Zr, except that the discrep-
ancy of AV4′ + UIXc with the (2,5,6) EDF, as well as with
NNLOsat, is more accentuated.

In conclusion, the NNLOsat-based LDA EDF compares
favorably with the experiment, in spite of its simplicity,
and reproduces radii, energies, and densities fairly well in
magic nuclei, especially in the heavier ones. The AV4′ +
UIXc-based EDF, on the other hand, is less satisfactory and
highlights even more clearly the necessity of introducing sur-
face terms.

C. Predictions of the GA EDFs

In Sec. III C, simple GA EDFs have been introduced by
complementing LDA with two gradient terms and one spin-
orbit term. In this section, the predictions of the GA EDFs
based on NNLOsat and AV4′ + UIXc are discussed. The pa-
rameters C�

0 , C�
1 , and W0 are tuned by grid searching over

physically reasonable intervals and the results for the four
EDFs that yield the smallest rms errors on binding energies
or charge radii, called GA-E and GA-r for short, are shown.
The corresponding parameters are reported in Table IV. The
three parameters are measured in MeV fm5; from now on, for
simplicity the dimension is omitted.

In the case of the NNLOsat-based EDF (2,3,4,5,6), we have
considered C�

0 and C�
1 in the intervals [−40, 0] and [0,40]

in steps of 5, while we have varied W0 between 30 and 140
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FIG. 5. Ab initio and EDF (LDA, GA-E, and GA-r) number densities, ρ(r), for 48Ca computed using the NNLOsat (top left) and AV4′ +
UIXc (top right) Hamiltonians. See text for details. Note that for the AV4′ + UIXc case the GA-E and GA-r curves overlap closely. Bottom:
ab initio number densities times the squared radius, r2ρ(r), obtained with NNLOsat (full line) and AV4′ + UIXc (dotted).

in steps of 10. The smallest rms error on the energy is ob-
tained for (C�

0 = −25, C�
1 = 10, W0 = 50), while charge radii

are best reproduced for (C�
0 = −30, C�

1 = 25, W0 = 140)

(Table V). The remarkable improvement over the LDA EDF
can be appreciated by looking at energies and radii (Fig. 3). In
Figs. 5 and 6, the effect of the gradient terms on the number

FIG. 6. Ab initio and EDF (LDA, GA-E, and GA-r) number densities of 90Zr obtained from NNLOsat (top left) and AV4′ + UIXc (top
right). Note that for the AV4′ + UIXc case the GA-E and GA-r curves overlap closely. Bottom: ab initio results for r2ρ(r) using NNLOsat (full
line) and AV4′ + UIXc (dotted).
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TABLE IV. Coefficients C�ρ

0 , C�ρ

1 , and W0 of the GA-E and GA-r
EDFs based on the NNLOsat and AV4′ + UIXc EoS. The GA EDFs
are built on top of the LDA EDFs (2,3,4,5,6) in the NNLOsat case
and (2,5,6) in the AV4′ + UIXc case (Table III). GA-E and GA-r
stand for the GA EDFs that achieve the smallest discrepancy for
binding energies and charge radii, respectively. All three parameters
are measured in MeV fm5.

EDF C�ρ

0 C�ρ

1 W0

NNLOsat GA-E −25 10 50
GA-r −30 25 140

AV4′ + UIXc GA-E −155 0 10
GA-r −155 15 10

densities is made clear by the disappearance of the oscillations
which instead characterize the LDA densities. All considered,
these GA EDFs are quite accurate, in spite of containing only
three adjustable parameters, one of which (C�

1 ) is of minor
importance for the g.s. properties. A full-fledged optimization
would be necessary at a later stage of development to be truly
competitive against the most sophisticated existing EDFs.
However, the outcomes shown here are already a very encour-
aging starting point.

In the case of AV4′ + UIXc-based EDFs, C�
0 , C�

1 , and W0

have been varied in the intervals [−200,−60], [0,50], and
[0,150]. The smallest errors on radii and energies are obtained
with (C�

0 = −155, C�
1 = 15, W0 = 10) (GA-r) and (C�

0 =
−155, C�

1 = 0, W0 = 10) (GA-E), respectively. Highly repul-
sive gradient contributions are needed to compensate for the
LDA overbinding excess. We also note that GA-r and GA-E
have quite similar parameters and as a consequence lead to
almost indistinguishable outcomes. The GA EDFs perform
significantly better than the LDA (2,5,6) EDF (Table V). Sur-
face terms are effective in improving the binding energies,
which are brought less than 1 MeV/A from experiment and
quite close to AFDMC predictions (top panel of Fig. 4). Note,
however, that the scale is different from that of Fig. 3, and that
NNLOsat-based EDFs are nonetheless more accurate. Some
problems persist concerning radii (bottom panel of Fig. 4),
which are still inaccurate for the nuclear DFT standards.

TABLE V. Rms errors between theoretical predictions and exper-
imental data on the binding energies per nucleon σE/A, total energies
σE , and charge radii σrch . Calculations are performed with two sets
of EDFs, based on the NNLOsat and AV4′ + UIXc EoS. The LDA
EDFs are based on the (2,3,4,5,6) EoS in the NNLOsat case and on
(2,5,6) EoS in the AV4′ + UIXc case. The rms errors are evaluated
on the same set of magic nuclei data as in Ref. [96].

EDF σE/A (MeV) σE (MeV) σrch (fm)

NNLOsat LDA 1.07 59 0.10
GA-E 0.30 13 0.03
GA-r 0.34 21 0.01

AV4′ + UIXc LDA 7.4 800 0.67
GA-E 0.81 112 0.22
GA-r 0.77 120 0.21

The different behavior of the NNLOsat- and AV4′ + UIXc-
based EDFs calls for an explanation. The unrealistic saturation
density of the AV4′ + UIXc EoS may correlate with LDA
predictions being far from experiment. Also, it may explain,
at least partially, why radii are not accurate, even at the GA
level. However, it cannot explain the large discrepancies of
LDA (and GA, as far as radii are concerned) with respect to
ab initio itself. We then suggest that the strong correlations
induced by the hard core of the Argonne interaction may be
difficult to catch within LDA, whereas the same scheme can
be more successfully applied to the relatively soft NNLOsat

potential. The wide oscillations of the AV4′ + UIXc densities
may witness the role of short-range correlations. Further in-
vestigations should focus on finding a quantitative measure of
“hardness” appropriate for this problem [70].

V. CONCLUSION

The present paper outlined a strategy for grounding nu-
clear DFT into ab initio theory, which is systematic in three
respects. First, following the “Jacob’s ladder” approach of
electronic DFT [49], we propose to define a sequence of EDFs
with increasing complexity. The starting point is the local
density approximation, which allows one to derive the EDFs
from the ab initio nuclear EoS. Second, different microscopic
interactions should be considered as input to the EDF mod-
els, in order to assess the sensitivity to this choice and the
resulting uncertainty. Third, modern statistical tools should
be employed to validate the EDFs and to provide reliable
uncertainties on their predictions.

We have thoroughly analyzed the LDA step, using two
distinct EoSs, computed with two interactions and many-body
methods, i.e., NNLOsat with SCGF and AV4′ + UIXc with
AFDMC. A parametrization of the EoS as a polynomial of
the Fermi momentum has been proposed and its effective-
ness in representing the theoretical curves has been rigorously
discussed. The optimal models have been fed as input to the
LDA scheme, allowing the construction of simple ab initio
based EDFs. Moreover, we have introduced a set of elemen-
tary GA EDFs, defined by complementing LDA EDFs with
phenomenological surface (density-gradient and spin-orbit)
terms. Both LDA and GA EDFs have been tested on the g.s.
of magic nuclei and compared to ab initio and experiment.
It must be stressed that we have attempted here only a pre-
liminary GA implementation, while an ab initio treatment,
fully coherent with the approach described above, will be the
subject of future works.

The NNLOsat-based EDFs show very interesting results.
The simple LDA EDFs only incorporate information on uni-
form matter but they fairly reproduce charge radii and binding
energies. The agreement with the experiment is particularly
good for the heaviest nuclei we have tested. Moreover, the pre-
dictive power improves considerably at the GA level, although
more advanced studies are necessary to compare with the most
sophisticated empirical EDFs. In contrast, the AV4′ + UIXc

case is somewhat puzzling and the LDA appears to be much
less satisfactory in our computations. We observe that very
repulsive gradient contributions are needed at the GA level
and do make an important effect, significantly shrinking the
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discrepancy with AFDMC calculations. Still, some more is-
sues persist; in particular, radii compare to experiment in an
unsatisfactory way for the DFT standards.

The different behavior of NNLOsat- and AV4′ + UIXc-
based EDFs needs to be understood. We suggest that LDA
may struggle to catch the strong correlations induced by the
hard core of the Argonne interaction, while NNLOsat, that
is a relatively soft potential, may be more amenable to this
approximate mapping onto LDA. Further investigations of this
hypothesis will require seeking an appropriate quantitative
measure of the hardness of these interactions [70]. Energy
densities, although they are not observables, may be useful
to link ab initio and DFT [100]. For example, they may help
clarifying to what extent ab initio calculations meet the hy-
pothesis that underlie LDA.

We find that the quality of predictions obtained in the
present exploratory paper is promising, in particular for the
NNLOsat interaction. Therefore, we will aim at extending our
paper in several directions. First of all, future studies will
focus on constraining the gradient terms systematically on ab
initio, with the help of simulations of model systems, such as
neutron/proton drops [101] or the static or dynamic response
of nuclear matter [9,102,103].

Also, some of the surface terms of empirical EDFs give rise
to the so-called effective mass, which is known to be crucial
to the description of the nuclear spectroscopy. A second par-
allel line of development will aim at exploiting more refined
statistical tools. As mentioned, Bayesian statistics [56,57] or
machine learning techniques [54] can play a determinant role
in the calibration and assessment of the EDFs. Providing error
bars on the EDF predictions would be a very important step
forward. Lastly, we plan to apply these EDFs on a wider range
of physical problems, including time-dependent DFT.

ACKNOWLEDGMENTS

The SCGF computations were performed using HPC re-
sources at the DiRAC DiAL system at the University of
Leicester, United Kingdom (BIS National E-infrastructure
Capital Grant No. ST/K000373/1 and STFC Grant No.
ST/K0003259/1). Monte Carlo numerical calculations were
made possible also through a CINECA-INFN agreement,
providing access to resources on MARCONI at CINECA.
Funding from the European Union’s Horizon 2020 research
and innovation program under Grants No. 654002 and No.
824093 is acknowledged. This work was supported in part
by the U.S. Department of Energy (DOE), Office of Science,
Office of Nuclear Physics, by the Argonne LDRD program,
and by the NUCLEI project under Contract No. DE-AC02-
06CH11357. A.L. was also supported by DOE Early Career
Research Program awards and by the INFN grant INNN3.

APPENDIX A: LDA MEAN FIELD POTENTIAL

We derive the mean field potential Uq(r) for the LDA EDF
in Sec. III C. By definition,

Uq(r) = δEbulk

δρq(r)
= ∂Ebulk

∂ρq
= ∂Ebulk

∂ρ
+ ∂β

∂ρq

∂Ebulk

∂β
(A1)

with q = n, p. Using ρ = ρn + ρp and β = ρn−ρp

ρ
, the chain

rule leads to the following contributions:

∂β

∂ρq
= 1

ρ

∂

∂ρq
(ρn − ρp) + (A2)

(ρn − ρp)

(
− 1

ρ2

)
∂ρ

∂ρq
= τz − β

ρ
,

∂Eloc

∂ρ
=

∑
γ

(γ + 1)cγ (β )ργ , (A3)

∂Eloc

∂β
=

∑
γ

∂cγ (β )

∂β
ργ = 2β

∑
γ

cγ ,1ρ
γ+1

(A4)

where τz = +1 for neutrons and τz = −1 for protons. There-
fore

Uq =
∑

γ

(γ + 1)cγ (β )ργ + (τz − β ) 2β
∑

γ

cγ ,1ρ
γ

=
∑

γ

[(γ + 1)cγ (β )ργ + 2β(τz − β )cγ ,1]ργ

and finally

Uq(r) =
∑

γ

[(γ + 1)cγ ,0 + 2β(τz − β )cγ ,1

+ (γ + 1)cγ ,1β
2]ργ ,

which proves Eq. (27).

APPENDIX B: GA MEAN FIELD POTENTIAL

The mean field U surf
q Eq. (31) is derived. By definition,

U surf
q (r) = δEsurf

δρq
, where Esurf is conveniently written as the

volume integral of the density:

Esurf = −
∑
t=0,1

C�
t |∇ρt |2

− W0

2
(ρ∇ · J + ρn∇ · Jn + ρp∇ · Jp).

Then

δEsurf

δρq
(r) = ∂Esurf

∂ρq
− ∇ ·

(
∂Esurf

∂ (∇ρq )

)
. (B1)

The first contribution is due to the spin-orbit part and is equal
to

∂Esurf

∂ρq
= −W0

2
(∇ · J + ∇ · Jq). (B2)

The second one is due to the gradient terms of the EDF. To
compute it, we first insert ρ0 = ρn + ρp and ρ1 = ρn − ρp into
the energy density,

Esurf = −(
C�

0 + C�
1

)
(|∇ρn|2 + |∇ρp|2)

+ 2
(
C�

1 − C�
0

)∇ρn · ∇ρp,
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and then take the derivative:

− ∇ ·
(

∂Esurf

∂ (∇ρq)

)

= 2
(
C�

0 + C�
1

)
�ρq − 2

(
C�

1 − C�
0

)
�ρq̄

= 2C�
0 (�ρq + �ρq̄) + 2C�

1 (�ρq − �ρq̄)

= 2C�
0 �ρ0 + 2C�

1 �ρ1τz (B3)

where q̄ = p if q = n and vice versa. Summing Eqs. (B2)
and (B3) concludes the derivation.

APPENDIX C: REARRANGEMENT ENERGY

In nuclear DFT, the total energy can be computed in two
independent ways: (1) as the space integral of the EDF evalu-
ated on the ground-state densities that one obtains by solving
the mean field equations,

E =
∫

dr E (r), (C1)

and (2) with the Hartree-Fock (HF) formula for a density-
dependent Hamiltonian [87]:

E = 1

2

(
T +

∑
k

εk

)
+ Erea. (C2)

The extra term Erea is called rearrangement energy. The equal-
ity of the two expressions for the binding energy is often used
as a nontrivial test of the correctness of the implementation of
a DFT or HF code.

Here, the rearrangement energy for the LDA EDF of
Sec. III C is derived. The following practical definition is

employed:

Erea =
∫

dr Ebulk(r) − 1

2

∑
q

∫
drUq(r)ρq(r) (C3)

with the mean field Uq(r) (27). Then∑
q

Uqρq = Unρn + Upρp

= [Un(1 + β ) + Up(1 − β )]
ρ

2

= [(Un + Up) + (Un − Up)β]
ρ

2
.

We calculate Un + Up and Un − Up separately:

Un + Up = 2
∑

γ

[(γ + 1)cγ ,0 − 2β2cγ ,1 + (γ + 1)β2cγ ,1]ργ

= 2
∑

γ

[(γ + 1)cγ ,0 + (γ − 1)β2cγ ,1]ργ

and

Un − Up = 4β
∑

γ

cγ ,1ρ
γ

with τz = 1 for neutrons and τz = −1 for protons. Then∑
q

Uqρq = ρ

2
2

∑
γ

[(γ + 1)cγ ,0 + (γ + 1)β2cγ ,1]ργ+1.

Plugging into the definitions of Erea

Erea =
∫

dr
∑

γ

[
(cγ ,0 + β2cγ ,1)ργ+1

−
(

1 + γ

2

)
(cγ ,0 + β2cγ ,1)ργ+1

]
and finally

Erea =
∫

dr
∑

γ

(
1 − γ

2

)
(cγ ,0 + β2cγ ,1)ργ+1. (C4)
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