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Thermodynamics of pairing transition for odd-A nuclei
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The hot nucleus 171Yb is investigated by the covariant density functional theory with the PC-PK1 effective
interaction. The thermodynamic quantities are evaluated with the canonical ensemble theory. The pairing
correlations is treated by the shell-model-like approach, in which the particle numbers are conserved strictly and
in which the blocking effect is handled exactly. An S-shaped heat capacity versus temperature of 171Yb appears.
It has been studied in terms of the blocking effect, the single-particle levels, the pairing gap, and defined seniority
components, and compared to the heat capacity of 172Yb. The pairing transition from the superfluid state to the
normal state can result in the S-shaped heat capacity of 172Yb where the one-pair-broken and two-pair-broken
states dominate, while the single-particle level structure near the Fermi surface is associated with the S-shaped
heat capacity of 171Yb. For odd-A nuclei, although the one-pair-broken and two-pair-broken states still contribute,
the pairing gap and the pairing transition is relatively weak. The S-shaped heat capacity could be affected due to
the blocking of the single-particle level near the Fermi surface.
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I. INTRODUCTION

The hot many-body systems in which the excited states
are thermally distributed among particles have attracted
widespread attention in nuclear physics. In particular, the
study of thermodynamics is essential for compound nuclei,
heavy ion collisions, and induced fusions [1–5]. Studies have
shown that the pairing correlation plays a very important role
in these phenomena and other nuclear thermodynamic prop-
erties [6], such as the shape transition in hot nuclei [7,8], the
phase diagram structure of liquid-gas phase transition [9,10],
and the fragments produced in spallation reactions [11].

Thanks to the accurate measurement of energy level den-
sity [12,13], S-shaped curves of heat capacity have been
found in 161,162Dy, 171,172Yb [14], and 166,167Er [15] and are
explained as a superfluid-to-normal state transition. The the-
oretical calculation and investigation for the nature of the
S-shaped curve for heat capacity and other thermodynamic
properties have also been performed in the nuclear shell model
[16–18], mean field model [19–23], and other models [24,25].
In the mean field theory, one could define the superfluid
and the normal-fluid phases for nuclei with Bardeen-Cooper-
Schrieffer (BCS) theory or the Bogoliubov transformation.
Clear pairing phase transitions has been obtained by the fact
that the S shapes of heat capacity can be reproduced by most
mean field calculations including finite-temperature BCS
[26–28], finite-temperature Hartree-Fock-Bogoliubov (HFB)
with a pairing-plus-quadrupole Hamiltionian [29], as well as
the self-consistent mean field models in the nonrelativistic
[30] and relativistic framework [22,23]. The critical temper-
ature for the pairing phase transition can be then derived in
these models.
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However, the particle number conservation is violated
during the transition of pairing in the BCS theory and the
Bogoliubov transformation. The number conservation effects
on the nuclear heat capacity have been investigated through
the particle number projection methods based on the finite-
temperature BCS or HFB approaches [28,31,32]. One of the
consequences of this symmetry breaking is that there is a
nonphysical mutations in thermodynamic quantities, e.g., heat
capacity and pairing gap, near the critical temperature. These
changes are unlikely to occur in a system with finite particle
number and can be smoothed out after the particle number
projection is introduced [32].

Moreover, in the mean field theory with the BCS equation
or the Bogoliubov transformation, the blocking effect is dif-
ficult to deal with. Therefore, research on odd-A nuclei are
quite rare. However, the shell-model-like approach (SLAP)
can accurately treat the blocking effect, as well as keep the
particle number strictly conserved [33–35]. The SLAP has
been used successfully for describing various phenomena con-
cerning pairing correlations, e.g., the odd-even differences
in moments of inertia [36], the identical bands [37,38], the
nuclear pairing phase transition [39], the antimagnetic rotation
[40,41], and the high-K rotational bands in the rare-earth-
metal [42–46] and actinide nuclei [47–50], etc. At the same
time, with the development of the covariant density functional
theory (CDFT) [51–54], a successful point coupling interac-
tion, PC-PK1, is proposed and proved to be very successful
in the description of infinite nuclear matter and finite nuclei
including the ground state and low-lying excited states [55]. It
has also been widely used in describing the spectroscopies of
rod- and pear-shaped nuclei [56], the Coulomb displacement
energies between mirror nuclei [57], quadrupole moments
[58,59], magnetic and antimagnetic rotations [60–64], nuclear
masses [65–67], nuclear shape phase transitions [68], chiral
rotations [69], superheavy nuclei [70–73], etc. The SLAP
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method should be combined with CDFT with PC-PK1 inter-
action, just as they have been successfully used to study the
antimagnetic rotation of nuclei [74], the band crossing and
shape evolution in 60Fe [75], the superdeformed rotational
band in 40Ca [76], and the properties of hot nuclei.

In our previous work [77], thermodynamic properties of
even-even nuclei have been studied within CDFT with the
meson exchange. Heat capacity, entropy, and level density are
studied microscopically in terms of defined seniority compo-
nents. In this work, we took 171Yb as an example to study
thermodynamics of pairing transition for odd-A nuclei within
the CDFT+SLAP with PC-PK1 effective interaction. In addi-
tion, we also calculated 172Yb as a comparison.

This paper is organized as follows. A brief introduction
to the cranking CDFT-SLAP theoretical framework is in-
troduced in Sec. II. In Sec. III, the numerical details are
presented. The results and discussion are given in Sec. IV.
The last section is the summary.

II. THEORETICAL FRAMEWORK

The theoretical framework of point coupling CDFT has
been introduced in details in Ref. [55]. Only a simple outline
is given here. A Lagrangian density is the starting point of
CDFT, from which the Dirac equation for nucleons with local
scalar S(r) and vector V μ(r) potentials can be derived as

[γμ(i∂μ − V μ) − (m + S)]ψξ = 0, (1)

where

S(r) = �S, V (r) = �μ + �τ · ��μ
TV , (2)

and ψξ is Dirac spinor. In the above formula, the nucleon
scalar-isoscalar �S , vector-isoscalar �μ, and vector-isovector
��μ

TV self-energies can be obtained by the various densities as
follows:

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS,

�μ = αV jμV + γV ( jμV )3 + δV � jμV + eAμ,

��μ
TV = αTV �j μ

TV + δTV ��j μ
TV , (3)

where the local densities and currents are defined as

ρS (r) =
∑

ξ

nξ ψ̄ξ (r)ψξ (r),

jV (r) =
∑

ξ

nξ ψ̄ξ (r)γ μψξ (r),

�j μ
TV (r) =

∑
ξ

nξ ψ̄ξ (r)�τγ μψξ (r), (4)

and nξ is the occupation probability for single particle state
ξ . The iterative solution of these equations yields the total
energy, quadrupole moments, single-particle energies, etc.

In the SLAP method, the pairing correlation is then
treated by diagonalizing the following Hamiltonian in the
multiparticle configurations (MPCs), which are constructed
by the single-particle levels obtained by the above CDFT

solution.

H = Hs.p. + Hpair

=
∑

i

εia
+
i ai − G

i �= j∑
i, j>0

a+
i a+

ī
a j̄a j, (5)

where εi is the single-particle energy obtained from the Dirac
equation (1), ī is the time-reversal state of i, and G represents
constant pairing strength. For a system with an even particle
number N = 2n, the MPCs could be constructed as follows:

(1) fully paired configurations (seniority s = 0):

|c1c̄1 . . . cnc̄n〉 = a+
c1

a+
c̄1

. . . a+
cn

a+
c̄n
|0〉; (6)

(2) configurations with two unpaired particles (seniority
s = 2)

|i j̄c1c̄1 . . . cn−1c̄n−1〉
= a+

i a+
j̄
a+

c1
a+

c̄1
. . . a+

cn−1
a+

c̄n−1
|0〉 (i �= j); (7)

(3) configurations with more unpaired particles (seniority
s = 4, 6, . . .); see, e.g., Refs. [33,35].

In the case of odd-nucleon system, one only need to block
the state occupied by odd nucleons. For example, the MPCs
for s = 0 states can be expressed as

|cbc1c̄1 . . . cnc̄n〉 = a+
b (a+

c1
a+

c̄1
. . . a+

cn
a+

c̄n
)|0〉, (8)

where b denotes the single-particle level blocked by the odd
nucleon.

The Hamiltonian (5) has good quantum numbers of the
parity π and the seniority s. As a result, the MPC space can
be written as

MPC space = (s = 0, π = +) ⊕ (s = 0, π = −)

× ⊕ (s = 2, π = +) ⊕ (s = 2, π = −)

× ⊕ · · · . (9)

In practical calculations, the MPC space has to be truncated
with an energy cutoff Ec; i.e., the configurations with energies
Em − E0 � Ec are used to diagonalize the Hamiltonian (5),
where Em and E0 are the energies of the mth configuration
and the ground-state configuration, respectively.

After the diagonalization of the Hamiltonian (5), one could
obtain the nuclear many-body wave function

|ψβ〉 =
∑

c1...cn

vβ, c1...cn |c1c̄1 . . . cnc̄n〉

+
∑
i, j

∑
c1...cn−1

vβ(i j), c1...cn−1 |i j̄c1c̄1 . . . cn−1c̄n−1〉

+ · · · , (10)

where β = 0 for the ground state, and β = 1, 2, 3, . . .

for the excited states with the excitation energy Eβ . vβ

means the coefficient after diagonalization. The pairing
energy and the pairing gap then can be calculated by
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[35,78–80]

Epair = 〈ψβ | Hpair | ψβ〉, (11)

�β = G

[
− 1

G
〈�β |Hp|�β〉

]1/2

. (12)

By assuming the hot many-body system is a canonical
ensemble [81], the nuclear thermodynamic properties can be
calculated with the excited energies Eβ and the energy density
η(Eβ ) in the SLAP. The canonical partition function Z , aver-
age energy 〈E〉, heat capacity CV , and entropy S are defined
with the following equations:

Z =
∞∑

β=0

η(Eβ ) e−Eβ/T , (13)

〈E〉 = Z−1
∞∑

β=0

Eβ η(Eβ ) e−Eβ/T , (14)

CV = ∂〈E〉
∂T , (15)

S = ∂ (T ln Z )

∂T
= 〈E (T )〉

T
+ ln Z, (16)

where Eβ is the excitation energy which can be obtained from
the SLAP method with CDFT, and the corresponding level
density η(Eβ ) is taken as 2s, i.e., the degeneracy of each state.
By means of the partition function, one can also evaluate the
ensemble average pairing gap energy as

�̃ = Z−1
∞∑

β=0

�β η(Eβ ) e−Eβ/T . (17)

III. NUMERICAL DETAILS

In this work, CDFT is used to calculate the single-particle
levels of 171Yb and 172Yb self-consistently. The diagonaliza-
tion of the Hamiltonian including the pairing force in Eq. (5)
can be performed in the SLAP MPCs constructed by single-
particle levels. The thermodynamic quantities are evaluated
by using Eqs. (13)–(17) with the excitation energy and the
level density after diagonalization. Besides, in order to study
blocking effects and detailed single-particle features, we cre-
ate 171Yb∗ artificially as a bridge between 171Yb and 172Yb.
The neutron excitation spectrum of 171Yb∗ is obtained by di-
agonalization in the SLAP MPC space which is constructed by
the CDFT single-particle levels of 172Yb with one artificially
removed neutron. The proton excitation spectrum of 171Yb∗ is
the same as the proton excitation spectrum of 172Yb. The ax-
ially deformed harmonic oscillator basis with 20 major shells
is adopted to solve the Dirac equation (1) [82]. The effective
interaction is chosen as PC-PK1 [55]. In the construction
of the multiparticle configurations, 15 single-particle levels
around Fermi surfaces and eight pairs of valence particles are
included for neutrons and protons, respectively. This also indi-
cates that the highest seniority number is 16. The energy level
span for neutrons above and below the Fermi surface is chosen
as 3.5 MeV, while that for protons is chosen as 5.2 MeV. The
effective pairing strengths can, in principle, be determined by
the experimental odd-even differences in the nuclear binding

FIG. 1. Neutron (the left column) and proton (the right column)
heat capacities for 171Yb (the top row), 171Yb∗ (the middle row), and
172Yb (the bottom row) as functions of temperature with (red solid
lines) and without pairing (black dashed lines).

energies and are connected with the dimension of the trun-
cated MPC space. The odd-even mass difference is defined,
e.g., for neutron, as

�n = B(N, Z ) − 1
2 [B(N − 1, Z ) + B(N + 1, Z )], (18)

where the B(N, Z ) is the binding energy of the nucleus with
neutron number N and proton number Z . The pairing strength
in our calculations for neutron Gn is fixed to 0.19 MeV, and Gp

for proton is 0.22 MeV with Ec = 30 MeV. The convergency
of calculated results with energy cutoff Ec is checked. We
find that the calculated heat capacities with Ec = 20, 25, and
30 MeV obtain consistent values from 0 to 1 MeV. In the
following calculations, the energy cutoff Ec is fixed as 30
MeV. The dimensions of the neutron and proton MPC spaces
are about 2 × 106 and 6 × 105 for 171Yb, 2 × 106 and 6 × 105

for 171Yb∗, and 6 × 105 and 6 × 105 for 172Yb, respectively.

IV. RESULTS AND DISCUSSION

A. Thermodynamics

The heat capacities of neutron (the left column) and proton
(the right column) for 171Yb (the top row), 171Yb∗ (the middle
row), and 172Yb (the bottom row) as functions of temperature
with (red solid line) and without (black dashed line) pairing
are shown in Fig. 1. 171Yb∗ is explained in Sec. III. The
first and second columns show the neutron and proton heat
capacities, respectively. It can be found that 172Yb presents
the S-shaped heat capacity curve with the pairing force. The
S-shaped curve of 172Yb starts to occur at low temperatures
(T ≈ 0.17 MeV) and exhibits the second turning point around
T ≈ 0.3 MeV. After that, it increases almost linearly at high
temperatures. The microscopic mechanism of the S-shaped
heat capacity of 172Yb as an even-even nucleus is similar to
that of 162Dy, which has been discussed in detail in previous
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work [77]. Moreover, the behavior of heat capacity curve for
172Yb given by our calculation is very consistent with the
experimental extraction [14]. However, it is interesting to find
that the S shape even appears in the heat capacity of 171Yb
neutrons. One can find that the first inflection point of the
S-shaped curve of 171Yb neutrons appears at T ≈ 0.3 MeV,
and the second inflection point is presented around T ≈ 0.6
MeV. Also, unlike 172Yb, there is no linear increase at high
temperatures in 171Yb neutrons. Meanwhile, we carried out
the calculation of 171Yb∗ which is obtained by the single-
particle levels of 172Yb with one artificially removed neutron.
It is found that the heat capacity of 171Yb∗ neutrons has no
obvious S shape compared with 171Yb. The only difference
between 171Yb and 171Yb∗ is the single-particle level struc-
ture, and it probably leads to the different behaviors of the heat
capacity.

The heat capacity curve of 171Yb neutrons without pairing
tends to coincide with the case with pairing, and 171Yb∗
shows the same behavior at T � 0.4 MeV. They are both
odd-neutron systems, so the effect of pairing correlations is
relatively weak, and our calculation results have also con-
firmed this. Same as 171Yb∗, the heat capacity curve of 172Yb
has a small fluctuation at T ≈ 0.1 MeV when there is no
pairing force, and then it rises almost linearly, which is very
analogous to the results of the pure Fermi gas model [14].
However, the heat capacity of 172Yb at T � 0.6 MeV has a
significant difference between the case with pairing and the
case without pairing. The proton curves of 171Yb∗ are iden-
tical to that of 172Yb because the same proton single-particle
level is used. It can be found that, in the case with pairing, all
three results show S-shaped heat capacity curves. These are
also in line with the results of our discussion for even-even
nucleons system [77]. The heat capacities of 171Yb and 171Yb∗
without pairing grow almost linearly at high temperatures and
have slight fluctuations at low temperatures.

The average excitation energies of neutrons and protons
defined in Eq. (14) for 171Yb (the top row), 171Yb∗ (the
middle row), and 172Yb (the bottom row) calculated with (red
solid line) and without (black dashed line) pairing correlations
as functions of temperature are shown in Fig. 2. The first
and second columns are the average excitation energies of
neutrons and protons, respectively. It can be seen that the
average excitation energies of neutrons for 171Yb and 172Yb
are approximately zero at low temperatures when the pairing
correlation is considered. However, there are obvious changes
around T ≈ 0.3 MeV and T ≈ 0.17 MeV for 171Yb and 172Yb
respectively. Since the heat capacity is calculated as the partial
derivative of the average energy with respect to temperature
with Eq. (15), these also correspond to the first turning point
of S-shaped heat capacity curve of neutrons for 171Yb and
172Yb in Fig. 1. Nevertheless, the average excitation energy
of neutrons for 171Yb∗ starts to change when the temperature
is very low, so its neutron heat capacity curve does not have
an obvious suppression at low temperatures.

It can be seen from the second column of Fig. 2 that the
average excitation energies are about zero at T ≈ 0.3 MeV,
and then show a linear upward trend when the pairing cor-
relations are taken into account among these three curves. In
the absence of pairing correlations, all the average excitation

FIG. 2. Neutron (the left column) and proton (the right column)
average excitation energies for 171Yb (the top row), 171Yb∗ (the mid-
dle row), and 172Yb (the bottom row) calculated with (red solid line)
and without (black dashed line) pairing correlations as functions of
temperature. The two inserting subfigures are the average excitation
energies of 171Yb∗ and 172Yb at low temperature.

energies increase linearly beyond T ≈ 0.2 MeV. The linear
increase of the average energy indicates that the number of
the excited states increases uniformly with temperature.

B. Pairing gap

In order to further study the influence of pairing cor-
relations on thermodynamic quantities, the pairing gaps of
neutrons (a) and protons (b) are calculated with Eq. (17) and
shown in Fig. 3. It can be found that the pairing gap of 172Yb
changes very little at low temperatures and begins to drop
significantly after T ≈ 0.17 MeV. This temperature, where
the pairing gap starts to change, exactly corresponds to the

FIG. 3. The pairing gap of neutrons (a) and protons (b) for 171Yb
(black solid lines), 171Yb∗ (red dashed line), and 172Yb (blue dash-
dotted line) as functions of temperature calculated by SLAP.
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temperature of the first inflection point of the S-shaped heat
capacity curve for 172Yb as shown in Fig. 1. The dropping of
the pairing gap results in the increasing number of the Cooper-
pair-broken excited states and thus a rapid increase of the
heat capacity. The changes of the curve indicate the gradual
transition of pairing correlations from a superfluid state to a
normal state in the hot nucleus. The second inflection point
of heat capacity occurs at temperature about 0.3 MeV, which
is usually considered as the critical temperature for the phase
transition of pairing correlations. It locates at about 0.5�̃(0)
[14], where �̃(0) is the pairing gap at zero temperature. In
our calculations, the temperature of 0.3 MeV at which the
second inflection point occurs is half of the pairing gap at zero
temperature (≈0.6 MeV). These properties are consistent with
the even-even nuclei 162Dy discussed in Ref. [77].

However, in the case of odd-A nuclei, we can find that
the magnitudes of the pairing gaps for 171Yb and 171Yb∗ are
about only half of 172Yb. The pairing gap of 171Yb neutrons
changes little with temperature before T ≈ 0.3 MeV and de-
creases almost linearly after that. Although this temperature
can correspond to the first inflection point of the heat capacity
of 171Yb, it is difficult to find the temperature corresponding to
the second inflection point of the heat capacity. Moreover, the
temperature (T ≈ 0.6 MeV) of the second inflection point for
the heat capacity does not correspond to the half of the pair-
ing gap at zero temperature (�̃(0) ≈ 0.3 MeV). For 171Yb∗,
the pairing gap of neutrons begins to drop significantly at
T ≈ 0.1 MeV, and has a similar trend with that of 171Yb at
high temperature. Since 171Yb∗ does not show an obvious
S-shaped heat capacity curve, it is difficult to find the tem-
perature corresponding to the pairing gap change. In addition,
it is found that their pairing gaps of 171Yb, 171Yb∗, and 172Yb
protons, as even-particle systems, change with temperature,
which can explain the behavior of their heat capacity curves
of protons. Hence, compared with even-even nuclei 172Yb,
the CDFT+SLAP calculation seems to indicate that the heat
capacity of 171Yb and 171Yb∗ heat capacity are not directly
related to the phase transition of the pairing correlations, not to
mention that the effect of pairing correlations is so weak. Al-
though the pairing gaps of 171Yb and 171Yb∗ behave similarly,
the heat capacity curves are very different. The only difference
between them is the single-particle level. Therefore, it is nec-
essary for us to study their single-particle structure.

C. Single-particle levels and blocking effects

The single-particle levels of neutrons and protons for 171Yb
and 172Yb are shown in Fig. 4. The left side is the single-
particle levels of the neutrons for 171Yb and 172Yb. The red
dashed lines labeled with λ represent the Fermi surface. It can
be found that, above and below the Fermi surface, especially
below the Fermi surface, there is a relatively large energy gap.
That means that the single-particle level density for neutrons
near the Fermi surface of 171Yb is smaller than that of 172Yb.
Therefore, when the same temperature is raised, 171Yb is more
difficult to generate pairing excitation than 172Yb. It explains
that 171Yb neutrons has a larger temperature scale where the
curve is suppressed than other two curves at low temperatures
in Fig. 1. The right side of Fig. 4 is the single-particle levels of

FIG. 4. The single-particle levels of neutrons and protons for
171Yb and 172Yb. The single-particle levels in shadows (orange area)
are used to construct the SLAP MPCs. The red dashed lines labeled
with λ represent the Fermi surface.

the protons for 171Yb and 172Yb. It can be seen that there are
no obvious differences between the single-particle level struc-
ture for protons of 171Yb and 172Yb near the Fermi surface.
Therefore, it does not have a big impact on the heat capacity
curve for protons.

In the odd nucleons system, it is very important to accu-
rately deal with the blocking effects. Figure 5 schematically
illustrates how blocking level is handled in SLAP. Figure 6
shows the heat capacities of neutrons for 171Yb (the left
column) and 171Yb∗ (the right column) with different levels
blocked and total as functions of temperature with (the first
row) and without (the second row) pairing. Among them,
“bk1” represents the case of blocking the Fermi surface;
“bk2” represents the case of blocking the first level above the
Fermi surface; and “bkn” represents the case of blocking the
(n − 1)th level above the Fermi surface. In our calculation, the
maximum of n is 6. It can be found that the total heat capacity

FIG. 5. The schematic diagram of blocking levels for neutrons of
171Yb. The single-particle levels in shadows (orange area) are used
to construct the SLAP MPCs. λ represents the Fermi surface. The
dashed lines illustrate the blocking levels. “bk1” represents the case
of blocking the Fermi surface; “bk2” represents the case of blocking
the first level above the Fermi surface; “bkn” represents the case of
blocking the (n − 1)th level above the Fermi surface.
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FIG. 6. The heat capacities of neutrons for 171Yb (the left col-
umn) and 171Yb∗ (the right column) with different levels blocked
and total as functions of temperature with (the first row) and without
(the second row) pairing. “bk1” represents the case of blocking the
Fermi surface; “bk2” represents the case of blocking the first level
above the Fermi surface; “bk6” represents the case of blocking the
fifth level above the Fermi surface as illustrated in Fig. 5.

curve with pairing of the neutrons for 171Yb mainly comes
from the contribution of bk1, bk2, and bk3, while bk4–bk6

only make a numerical contribution to the total heat capacity
and have little effects on the shape of the curve. The total heat
capacity of the neutrons for 171Yb∗ mainly comes from the
contribution of bk1 and bk2. bk3–bk6 also only make a nu-
merical contribution to the total heat capacity curve. Similarly,
for 171Yb, it can be seen that the total heat capacity curve
without pairing of the neutrons also mainly comes from the
contribution of bk1, bk2, and bk3. In the case of 171Yb∗, the
total heat capacity of its neutrons is mainly derived from the
contribution of bk1 and bk2. Therefore, our calculations show
that it is very important to correctly handle the blocking of the
single-particle level near the Fermi surface when studying the
thermodynamic properties of odd-A nuclei.

D. Seniority component

In order to provide a microscopic picture of the nuclear
pairing transition, it is interesting to explore how many
Cooper pairs would be broken with the increasing tempera-
ture in nuclei 171Yb, 171Yb∗, and 172Yb. Here we follow the
definition of the seniority component in Ref. [77]:

χs = Z−1
∑
β∈{s}

η(Eβ )e−Eβ/T . (19)

The seniority component just represents the contribution with
each seniority number of the excited states. Since SLAP
method can accurately deal with blocking by removing the
levels occupied by the odd nucleon from MPCs, we can

FIG. 7. The seniority components χs of neutron for 171Yb (black
solid line), 171Yb∗ (red dashed line), and 172Yb (blue dotted line) with
different seniority numbers s = 0 (a), s = 2 (b), s = 4 (c), and s = 6
(d) as functions of temperature. Insert: the locally enlarged subfigure
with seniority numbers s = 6 at high temperatures.

study the seniority components of odd-A nuclei and even-even
nuclei under the same framework. In Fig. 7, the seniority
components s of neutrons for 171Yb, 171Yb∗, and 172Yb with
different seniority numbers s = 0 (a), s = 2 (b), s = 4 (c), and
s = 6 (d) are shown as functions of temperature. We could see
that the s = 0 states contribute nearly 100% below T ≈ 0.3,
0.1, and 0.17 MeV for 171Yb, 171Yb∗, and 172Yb, respectively.
This is again consistent with the vanishing heat capacity at
low temperatures as shown in Fig. 1. With the temperature
T � 0.3, 0.1, and 0.17 MeV respectively, the contribution of
the s = 0 states falls down, while the contribution of the s = 2
states goes up. This corresponds to the first inflection point
in the heat capacity curve of 171Yb and 172Yb. However, the
inflection point of the s = 2 states of 171Yb∗ does not have an
accurate correspondence in the heat capacity curve, indicating
once again that the pairing transition from the superfluid state
to the normal state was suppressed by the blocking effect in
171Yb∗. Due to the influence of the single-particle level struc-
ture, the S-shaped heat capacity curve of 171Yb, which should
have been smoothed out by the blocking effect, appears. It is
worth noting that the increasing rate of the contribution from
the high excitation states with s = 2 of 171Yb starts to de-
crease at T ≈ 0.6 MeV. Thus, the increasing of corresponding
seniority component becomes slower. This also corresponds
to the second inflection point of the neutron heat capacity
curve for 171Yb at T ≈ 0.6 MeV in Fig. 1. Similar to 171Yb,
the increasing rate of the contribution from the high excited
states with s = 2 of 172Yb starts to decrease at T ≈ 0.3 MeV,
so the heat capacity curve of 172Yb has a second inflection
point at T ≈ 0.3 MeV. Above T � 0.4 MeV and 0.6 MeV
respectively, the contributions of s = 4 states and s = 6 states
of 171Yb, 171Yb∗, and 172Yb start to increase. The states with
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FIG. 8. Neutrons (the left column) and protons (the right col-
umn) level densities for 171Yb (the top row), 171Yb∗ (the middle
row), and 172Yb (the bottom row) with different seniority numbers
s = 0, 2, 4, 6, 8, 10, 12 and the total contribution as functions of ex-
citation energy. Insert: the slope of level density curves with different
seniority numbers s = 2, 4 as functions of excitation energy.

s = 6 have almost no contributions between T ≈ 0 MeV and
T ≈ 0.8 MeV, and contribute less than 8% at T ≈ 1 MeV.

The level density has been introduced to characterize pair-
ing transition in hot nuclei. In our calculations, the number
of the excited states of nuclei can be obtained after the di-
agonalization of Hamiltonian [Eq. (5)]. It is nothing but the
degeneracy of the excited states, and can be studied in terms
of different seniority contributions. In Fig. 8, the neutron
and proton level densities for 171Yb (the top row), 171Yb∗
(the middle row), and 172Yb (the bottom row) with s =
0, 2, 4, 6, 8, 10, 12 and the total contributions as functions of
excitation energy are shown. Additionally, in order to reflect
the fluctuations of energy level density more intuitively, the
slope of level density curves with different seniority numbers
s = 2, 4 are displayed as representatives with insert figures. It
is worth noting that the level densities of 171Yb and 171Yb∗
neutrons are greater than that of 172Yb. For odd-A nuclei, we
are able to consider the blocking effect accurately. In a naive
picture, different excited states can be configured by the same
MPC and different blocking levels. Therefore, the number of
excited states of odd-A nuclei is more than that of even-even
nuclei. In the previous work [77], obvious protrusions can
be seen in the level density curves with s �= 0 states. In our
work, although no obvious protrusions can be seen on the
plots of energy level density, the changing rate of level density
with excitation energy (Eβ) also fluctuates to a certain extent.

FIG. 9. Neutron (the left column) and proton (the right column)
entropy subtract by ln Z for 171Yb (the top row), 171Yb∗ (the middle
row), and 172Yb (the bottom row) for different seniority numbers
s = 0, 2, 4, 6, 8, 10, 12 and the total contribution as functions of
temperature. Insert: ln Z as functions of temperature.

From the insert figures, we can see that the derivatives of the
s = 2 and 4 level density curves for neutrons have peaks near
Eβ ≈ 4 and Eβ ≈ 6 MeV, respectively. It shows that the level
density curves of s = 2 and 4 states change significantly with
Eβ in the vicinity of Eβ ≈ 4 and Eβ ≈ 6 MeV. Similarly, in
the case of protons, the level density curves corresponding to
the s = 2 and 4 states for protons vary considerably around
Eβ ≈ 3 and Eβ ≈ 7 MeV. The peaks at 4 (s = 2) and 6 MeV
(s = 4) for neutrons and 3 (s = 2) and 7 MeV (s = 4) for
protons are ascribed to the contributions of corresponding
one-pair-broken and two-pair-broken states.

With the help of defined seniority components, the ther-
modynamic properties of hot nuclei can be studied as well.
The equation of entropy is shown in Eq. (16). According to
the definition of the seniority component, the average energy
can be decomposed into contributions of different seniority
components easily. Then we can study the contributions of
different seniority states to the entropy of hot nuclei. In Fig. 9,
the neutron and proton entropy subtracted by ln Z for 171Yb
(the top row), 171Yb∗ (the middle row), and 172Yb (the bottom
row) with different seniority numbers s = 0, 2, 4, 6, 8, 10, 12
and the total contribution as functions of temperature are
illustrated. The curves of ln Z for neutrons and protons as
functions of temperature are also shown in the insert figures.
It can be found that the total entropy minus ln Z for neutrons
of 171Yb and 172Yb are zero at T � 0.1 and T � 0.17 MeV
respectively, while that of 171Yb∗ is almost never zero up to
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T = 1 MeV. The total entropy minus ln Z for protons is zero
at T � 0.2 MeV. For neutrons of 171Yb and 172Yb, the s = 2
states contribute at T > 0.3 and T > 0.17 MeV respectively,
and for protons of 171Yb, 171Yb∗, and 172Yb, the s = 2 states
contribute at T > 0.2 MeV. For all of the curves, the s = 4
states appear at T > 0.45 MeV. However, other higher se-
niority states do not contribute to the entropy up to T = 1
MeV. It can be understood by the fact that the s = 0 states
do not absorb any energy. Particles just undergo transitions
among single-particle levels. However, for those s �= 0 states,
the entropy increases with respect to temperature because they
need extra energy to break particle pairs. These procedures
are irreversible. Due to the limitation of model space, higher
seniority contributions to the entropy are not presented up to
1 MeV.

V. SUMMARY

In summary, the hot nuclei 171Yb and 172Yb have been
investigated by the CDFT with PC-PK1 effective interac-
tion. The pairing correlations of odd-A and even-even nuclei
have been treated by the uniform framework, namely the
shell-model-like approach in which the particle numbers are
conserved exactly and in which the blocking effect is treated
accurately. The thermodynamic quantities have been evalu-
ated in the canonical ensemble theory.

It is found that the one-pair-broken states and two-pair-
broken states aplay crucial roles in the appearance of the S
shape of the heat capacity curve in 172Yb. Moreover, due to
the effect of the particle-number conservation, our calculation

of the pairing gap indicates a gradual transition from the
superfluid to the normal state. The calculation results of the
pairing gap in odd-A nuclei indicate the weak transition of
pairing correlations from the superfluid state to the normal
state in the hot nucleus compared to the even-even nucleus.
This shows that the S-shaped heat capacity curve of 171Yb
does not correspond to the pairing transition. However, the
CDFT results show that the single-particle level density for
neutrons near the Fermi surface of 171Yb is much smaller than
that of 171Yb∗. A relatively larger energy gap has been found
above and below the Fermi surface of neutrons for 171Yb.
Therefore, when the same temperature is raised, 171Yb is more
difficult to generate pairing excitation.

We also find that it is very crucial to correctly handle the
blocking of the single-particle levels near the Fermi surface
when studying properties of odd-A nuclei. The blocking ef-
fect gives an explanation to the almost linear increasing heat
capacity of 171Yb∗. Although the contributions of different
seniority states will still show S-shaped curves, it is sup-
pressed by the blocking effect in 171Yb∗. However, due to the
influence of the single-particle level structure, the S-shaped
heat capacity curve of 171Yb appears, which should have been
smoothed out by the blocking effect.
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