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Background: The neutron distribution of neutron-rich nuclei provides critical information on the structure of
finite nuclei and neutron stars. Parity violating experiments—such as PREX and CREX—provide a clean and
largely model-independent determination of neutron densities. Such experiments, however, are challenging and
expensive, which is why sound statistical arguments are required to maximize the information gained.
Purpose: We introduce a new framework, the “transfer function formalism,” aimed at uncertainty quantification,
model selection, and experimental design in the context of neutron densities.
Methods: The transfer functions (TFs) are built analytically by expressing the linear response of the objective
function (e.g., χ 2) to small perturbations of the data. Using the TF formalism, we are able to analyze the expected
overall uncertainty—quantified in terms of bias and variance—of the mean square radius and interior density of
48Ca and 208Pb.
Results: Using relativistic mean field models as a proxy for the weak-charge density—and assuming that a total
of five measurements could be performed on the weak form factor of 48Ca and 208Pb—we identify the optimal
models and experimental locations that minimize the uncertainty in the extraction of the radius and interior
density. We also explore the use of the TF formalism to understand the influence of prior distributions for the
model parameters, as well as the optimization of model hyperparameters not constrained by the data.
Conclusions: We establish how the choice of experimental locations and the model that is used can have a
significant impact on the final uncertainties of the extracted quantities of interest. For challenging experiments
such as CREX and PREX, a proper quantification of such uncertainties is critical. We have demonstrated how
the TF formalism provides several advantages for this type of analysis.
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I. INTRODUCTION

Nuclear saturation, the existence of an equilibrium den-
sity, is a hallmark of the nuclear dynamics. Shortly after
Chadwick’s discovery of the neutron, the semiempirical mass
formula of Bethe and Weizsäcker [1,2] was conceived to pre-
dict the binding energy of atomic nuclei. Using only a handful
of parameters, the semiempirical mass formula provides a
remarkably good description of the masses of stable nuclei by
regarding the atomic nucleus as an incompressible quantum
drop consisting of Z protons and N neutrons (A = Z + N).
Among the earliest predictions of the semiempirical mass
formula was the A1/3 scaling of the nuclear size. Indeed,
assuming an incompressible drop at an equilibrium (or “satu-
ration”) density of ρ0 ≈ 0.15 fm−3 yields a root-mean-square
radius of

R(A) = r0 A1/3, where r0 = 3
√

3

4πρ0
≈ 1.17 fm. (1)
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While the description of atomic nuclei as an incompressible
quantum drop has stood the test of time, we now know that
at a finer scale the distribution of nucleons is much more
interesting and complex. Shell corrections, deformation, and
pairing correlations are all important dynamical effects that
impact the spatial distribution in atomic nuclei. To date,
the most precise knowledge of the nuclear density comes
from mapping the charge distribution of atomic nuclei [3,4].
Starting with the pioneering work of Hofstadter in the late
1950s [5] and continuing to this day, elastic electron scat-
tering has painted the most accurate picture of the atomic
nucleus. Our knowledge of the nuclear size, surface thick-
ness, and saturation density all originate from such studies,
that have provided some of the most stringent constraints
on nuclear properties. For example, the root-mean-square
charge radius of 208Pb is known with exquisite precision:
Rch = 5.5012(13) fm [4].

Electron scattering is an ideal tool to map the charge distri-
bution because the electromagnetic interaction is well known
and the coupling (“fine structure”) constant is small. So, in
a plane wave impulse approximation, the differential cross
section for the elastic scattering of an electron from a spinless
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target may be written as follows [6]:(
dσ

d�

)
=

(
dσ

d�

)
Mott

Z2F 2
ch(Q2), (2)

where Z is the electric charge of the nucleus and Q2�0
is the square of the spacelike four-momentum transfer. The
Mott cross section represents the scattering of a relativistic
(massless) electron from a spinless and structureless target,
and is given exclusively in terms of kinematical variables and
the fine structure constant. Deviations from the structureless
limit are encoded in the charge form factor, which has been
normalized to 1 at zero momentum transfer, Fch(Q2 =0)=1.
The distribution of electric charge in a nucleus—which is
carried mostly by the protons—is obtained from the Fourier
transform of the charge form factor.

This favorable situation stands in stark contrast to our
knowledge of the distribution of weak charge, which is dom-
inated by the neutrons because the weak charge of the proton
is small [7,8]. Probing neutron densities has traditionally re-
lied on hadronic experiments involving strongly interacting
probes, such as pions, protons, and alpha particles, that are
hindered by uncontrolled approximations related to the re-
action mechanism, medium modifications to the underlying
two-body interaction, and hadronic distortions. For a recent
review on this topic see Ref. [9] and references contained
therein. For symmetric (N =Z) nuclei, the expectation is
that both proton and neutron densities will have the same
shape, with the proton distribution extending slightly farther
out because of the Coulomb repulsion. However, for heavy
neutron-rich nuclei—which best illustrate the notion of nu-
clear saturation—the excess neutrons are pushed out against
surface tension, creating a neutron-rich skin. Indeed, the inte-
rior baryon density of 208Pb is expected to be fairly constant
and close to ρ0. As such, the interior baryon density of 208Pb
may provide the physical observable that is most closely re-
lated to ρ0 [10].

It is also possible to measure weak charge densities with
much smaller systematic uncertainties by relying on elec-
troweak probes that offer a clean and model-independent
alternative to strongly interacting probes. However, this
requires a more challenging and sophisticated class of ex-
periment, such as coherent elastic neutrino-nucleus scattering
(CEvNS) or parity violating electron nucleus scattering. The
enormous advantage of these electroweak experiments is that
the weak Z0 boson couples preferentially to neutrons because
of the small weak charge of the proton [7,8]. For example, in
the case of CEvNS the cross section is directly proportional to
the square of the weak charge form factor. That is [11,12],(

dσ

dT

)
= G2

F

8π
M

[
2 − 2

T

E
− MT

E2

]
Q2

wkF 2
wk(Q2), (3)

where GF is Fermi’s constant, Qwk =−N + (1 − 4 sin2θW)Z is
the weak charge of the nucleus written in terms of the weak-
mixing angle, and the weak form factor has been normalized
to F 2

wk(Q2 =0)=1. The remaining quantities are all of kine-
matical origin: E is the incident neutrino energy, T the nuclear
recoil energy, and Q2 =2MT . In particular, at forward angles
the differential cross section is proportional to the square of

the weak charge of the nucleus Q2
wk ≈N2. The approximate

N2 scaling is the hallmark of the coherent reaction and the
main reason for the identification by Freedman of CEvNS as
having favorable cross sections [13], even if it took more than
four decades for its experimental confirmation [14,15].

Although CEvNS holds enormous promise in the deter-
mination of neutron densities, the parity-violating electron
program has become a precision tool in the determination
of both hadronic/nuclear structure and electroweak physics.
Following the 30-year-old idea by Donnelly, Dubach, and
Sick who proposed the use of parity violating electron scat-
tering (PVES) as a clean probe of neutron densities [16], the
pioneering Lead Radius EXperiment (PREX) at the Jeffer-
son Laboratory (JLab) extracted the weak radius of 208Pb,
providing for the first time model-independence evidence
in favor of a neutron-rich skin [17,18]. To reach the orig-
inal goal of a ±0.06 fm determination of the weak radius
of 208Pb, the follow-up PREX-II campaign has now been
completed and has delivered on the promise to determine
the neutron radius of 208Pb with a precision that is about
three times better than the original PREX measurement.
By combining both experiments the following value for the
neutron skin thickness of 208Pb was reported [19]: Rskin =
Rn − Rp = (0.283 ± 0.071) fm. This result challenges several
experimental measurements and theoretical predictions that
systematically underestimate the newly reported value of Rskin

[9]. At the same time, the ongoing CREX campaign will
provide the first electroweak determination of the weak radius
of 48Ca [20,21]. Beyond JLab, the Mainz Energy recovery
Superconducting Accelerator (MESA), envisioned to start op-
erations by 2023 [22], may be able to determine the weak
radius of both 48Ca and 208Pb with increased precision [9].
Besides its intrinsic value as a fundamental nuclear-structure
observable, the neutron skin thickness of 208Pb, defined as the
difference between the neutron and proton root-mean-square
radii Rskin ≡Rn−Rp, is strongly correlated to the slope of the
symmetry energy at saturation density [23–26]. The symmetry
energy at saturation density is a fundamental parameter of
the equation of state of neutron-rich matter that impacts the
structure, composition, and cooling mechanism of neutron
stars [27–33].

A parity violating asymmetry emerges from the difference
in the scattering between right- and left-handed polarized
electrons. In a plane wave impulse approximation, the parity
violating asymmetry from a spinless target may be written as
follows [16]:

APV (Q2) = − GF Q2

4πα
√

2

QwkFwk(Q2)

ZFch(Q2)
, (4)

where α is the fine structure constant and the nuclear con-
tribution enters as the ratio of the weak to the charge form
factor. Given that Fch is known from (parity conserving) elec-
tron scattering measurements, the parity violating asymmetry
determines the weak form factor which, in turn, is dominated
by the neutron distribution.

To date, PREX, PREX-II, and CREX have focused on
extracting the weak radius Rwk from a single measurement
at a relatively low momentum transfer. Yet additional features
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of the weak charge density can be revealed by measuring the
parity violating asymmetry at higher momentum transfers. In
particular, if APV could be measured at several momentum
transfers, then the entire weak charge form factor and its
associated density could be determined. Such an experimen-
tal program may require measurements of APV at about six
values of Q2, a task that may be feasible for 48Ca [34]. For
208Pb, such a task is significantly more challenging given
that at high momentum transfer the elastic cross section is
small because of the strong suppression from the nuclear form
factor. Nevertheless, with two experimental points it may be
sufficient to gain valuable insights into the weak charge form
factor of 208Pb over a significant range of momentum transfers
[10,35]. Regardless, with asymmetries of the order of one
part per million [17,18], PVES experiments are both highly
expensive and enormously challenging, so robust statistical
arguments—above and beyond a compelling physics case—
should be made in the quest for an optimal experimental
design. Such is the central goal of the present paper.

In this paper, we present a novel statistical analysis—the
“transfer function formalism”—inspired from the treatment of
noise in signal processing theory [36]. In such a framework,
the transfer function is a general function that models a device
output for each possible input. In our particular case, we
define the transfer function in terms of coefficients that encode
the linear part of the response of the fitted model parameters
to small changes in the data inputs. We have already imple-
mented an early version of these ideas to estimate the bias and
variance of models within the proton puzzle context [37] and
in Ref. [38] to estimate the effect of dispersive corrections on
the 12C elastic cross section.

Within the transfer function formalism, the noise is prop-
agated in the measured observable to the uncertainty in the
quantity of interest. Given that each single measurement in the
data has an associated transfer function, an important feature
of the formalism is that we can identify those critical points,
if any, that are responsible for driving most of the uncertainty.
For example, in this paper we are interested in quantifying the
statistical error in the extracted weak charge radii of both 48Ca
and 208Pb from the experimental error in their corresponding
weak charge form factor. Values of the form factor with higher
transfer functions will propagate their errors more efficiently
to the total variance of the calculated weak charge radii. Using
the transfer function (TF) formalism, we aim to quantify the
ability of seven different models to accurately determine both
the interior (saturation) density and mean square radius of
the weak charge distribution. Given that the electric charge
distribution of both nuclei is accurately known, we are able
to validate our formalism against known data before making
predictions for the unknown weak charge distribution.

The performance of the seven models is evaluated in terms
of bias and variance [39], similar to the approach implemented
in [37,40] to extract the charge radius of the proton from
electron scattering data. The “bias-variance tradeoff” is an
important concept in statistics and machine learning that ad-
dresses the complexity of a model. If the model is too simple,
it will result in a poor description of the data (underfit =
high bias). If the model is too complex, it will be extremely
sensitive to the random dispersion in the data (overfit = high

variance). The bias-variance tradeoff is the inevitable conflict
that ensues when trying to simultaneously minimize these two
critical sources of error.

The rest of this paper is organized as follows. Section II
includes a brief review of the main concepts involved in
the discussion of nuclear form factors and density distri-
butions. We also discuss statistical concepts related to our
proposed formalism, such as Bayesian inference and bias-
variance tradeoff. Section III presents a detailed account of
the transfer function formalism and how it is implemented in
the context of the bias-variance tradeoff. Section IV contains
a compilation of our main results. We start this section by
testing and validating our method using the experimentally
known charge densities of both 48Ca and 208Pb as a proxy for
the unknown weak charge densities. Finally, Sec. V presents
our final remarks and vision for the future. In addition, we pro-
vide several Appendices that contain useful information in the
form of supporting tables and figures, as well as mathematical
proofs of the central concepts that have been developed.

The core idea of the transfer function formalism is that,
for small perturbations in the input of a system, the response
of the system is perturbed a proportional amount. This idea is
clearly not new and it has been implemented in many scientific
and engineering problems for centuries (consider for example
the concept of Green’s functions). On the statistics front, we
have found several related concepts such as the adjoint method
[41, p. 203], the influence functions [42, p. 45], and the sensi-
tivity of the system response [43, Sec. III F], for example. On
the nuclear physics front, we have found studies such as [44]
which by using expressions similar to the transfer functions
analyze the sensitivity of the model parameters to different
observables within the context of optical potentials. However,
despite our best efforts, we were not able to find a direct
application to model selection, the analysis of the influence
of priors, and the description of both bias and variance, such
as the one we developed in this work.

II. THEORETICAL BACKGROUND

A. Nuclear density and form factor

The electric charge density ρch(r) and the weak charge
density ρwk(r) describe the spatial distribution of electric
charge and weak charge in the atomic nucleus, respectively.
In the case of ρch(r), elastic electron scattering experiments
determine the ground state charge density by measuring the
differential cross section, which for a spinless nucleus is given
by Eq. (2). In the case of the weak charge density, the aim is to
extract the weak charge form factor from measuring the parity
violating asymmetry given by Eq. (4).

Having extracted the corresponding form factors Fch and
Fwk from experiments, the nuclear charge density and weak
charge density are obtained trough a Fourier transform. To
simplify the notation, no subscripts (either “ch” or “wk”) will
be included henceforth, except when this omission may create
confusion. The density and form factor are related as follows:

ρ(r) =
∫

d3q

(2π )3
eiq·rF (q), (5)
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where |q|=q =
√

Q2 in the limit in which the nuclear recoil
can be ignored. For a spinless nucleus the density distribution
is spherically symmetric so it becomes

ρ(r) = 1

2π2r

∫ ∞

0
F (q) sin(qr)q dq. (6)

Alternatively, the inverse Fourier transform can be written as

F (q) = 4π

q

∫ ∞

0
ρ(r) sin(qr)r dr. (7)

Note that we have adopted the following normalization condi-
tion for both electric and weak distributions:

F (q=0) =
∫

ρ(r)d3r = 1. (8)

Finally, the mean squared radius of the spatial distribution is
given by

R2 ≡ 〈r2〉 =
∫

ρ(r)r2d3r = 4π

∫ ∞

0
ρ(r)r4dr. (9)

B. Models, parameters, and errors

Several parametrizations (or models) exist in the literature
to describe nuclear densities and their associated form factors
[45]. In this paper, we study the performance of seven models
in total: Fourier-Bessel [46], Helm [47], symmetrized Fermi
function (SF) [48] of two, three, and four parameters, and
two hybrid models obtained from combining the SF with a
Fourier-Bessel expansion (SF + B) and the SF with a sum of
Gaussians (SF + G). Note that we did not consider the origi-
nal sum of Gaussians model [49] since certain conditions were
difficult to implement within the transfer function formalism.
Moreover, we found that for the small number (five) of data
points here considered, the sum of Gaussians did not provide
a good fit to the data. Appendix B describes in detail the seven
models employed in this work.

We assume that we have collected J experimental data
points that we write as Y ={(q j, y j, σ j )}, where q j is the
jth value of the momentum transfer, y j is the value of the
form factor at q j , and σ j is the associated experimental error.
In turn, we refer to the set of K calibration parameters of
any particular model as ω={ωk}. Finally, we denote as m=
m(ω) the quantity of interest that we want to estimate from
the given experimental data. Such quantity, for example, the
mean square radius of the weak-charge distribution, depends
on the selection of experimental points through the fitted
parameters ω.

1. Standard fitting protocol

A traditional approach used to estimate the optimal set
of parameters ω that best describes the observed data is to
minimize the sum of the squares of the residuals between
the experiment and the model predictions. The residuals are
contained in an objective (or cost) function χ2 defined as
follows:

χ2 =
J∑

j=1

(F (q j,ω) − y j )2

σ 2
j

, (10)

where F (q j,ω) represents the model predictions of the form
factor. The optimal set of fitted parameters is obtained by
minimizing the objective function and is denoted by ω0 ≡
argmin(χ2). Fundamental to the quantification of the model
uncertainties is the behavior of the objective function in the
vicinity of the optimal point ω0. Such a behavior is imprinted
in the Hessian matrix of χ2 which is computed from its second
derivatives evaluated at the optimal value. That is, matrix
elements of the K × K Hessian matrix are given by

Hi,k ≡ 1

2

(
∂2χ2

∂ωi∂ωk

)
0

=
J∑

j=1

1

σ 2
j

[(
∂F (q j,ω)

∂ωi

)(
∂F (q j,ω)

∂ωk

)

+ [F (q j,ω) − y j]
∂2F (q j,ω)

∂ωi∂ωk

]
0

. (11)

The inverse of the Hessian matrix, H−1, often called the error
or covariance matrix, is used to estimate uncertainty and cor-
relations associated with the fitted parameters as well as with
other quantities [50]. For example, the square of the standard
error (or standard deviation) of m(ω) is given by

�m2 = ∇mH−1∇m|ω0 , (12)

where ∇m is the gradient of m with respect to the parameters
ωk , and all quantities are evaluated at ω = ω0.

2. Bayesian approach

An alternative framework to estimate model parameters
and to quantify their statistical properties which has been
gaining popularity in the physics community is the Bayesian
approach [51,52]. Within this framework, the posterior distri-
bution of model parameters ω given the experimental data Y
is given by Bayes’s theorem:

P(ω|Y ) = P(Y |ω)P(ω)

P(Y )
, (13)

where P(Y |ω) is the likelihood that a given set of model
parameters describes the experimental data, P(ω) is the prior
distribution of model parameters, and P(Y ) is the evidence,
which can be treated as a normalization constant to en-
force

∫
P(ω|Y )dω = 1. The prior distribution encapsulates

our prior knowledge (or beliefs) of the distribution of model
parameters. Such prior beliefs will be refined as a result
of the additional experimental information contained in the
likelihood, which ultimately yields an updated distribution of
model parameters P(ω|Y ).

Once the posterior distribution P(ω|Y ) is obtained, the
average value of any quantity m and its associated error may
be estimated from integrating over the probability distribution.
That is,

〈m〉 =
∫

m(ω)P(ω|Y )dω, (14a)

�m2 =
∫

(m(ω) − 〈m〉)2P(ω|Y )dω, (14b)

024301-4



FROM NOISE TO INFORMATION: THE TRANSFER … PHYSICAL REVIEW C 104, 024301 (2021)

where 〈m〉 denotes the average—or central—value of m. In
the case of the likelihood, it is often assumed that it is related
to the χ2 function introduced in Eq. (10) as follows:

P(Y |ω) = e−χ2(Y,ω)/2. (15)

Hence, reference to the maximum likelihood is equivalent
to the minimum value of χ2. For the prior distribution it is
common to assume an uncorrelated Gaussian distribution of
model parameters, namely,

P(ω) = e−φ2(ω)/2, where (16a)

φ2(ω) =
K∑

k=1

(
ωk − ω0

k

σk

)2

, (16b)

where ω0
k is our prior estimate for the central value of ωk

and σk is the estimated uncertainty. Small values of σk will
make the distribution sharply peaked around ω0

k and the fitting
procedure more “prior driven.” Conversely, large values of
σk reflect a large uncertainty in the model parameters so the
fitting procedure becomes more “data driven.” Under the prior
and likelihood definitions, the posterior distribution takes the
following form:

P(ω|Y ) = e−χ̃2(Y ,ω)/2 = e−(χ2(Y ,ω)+φ2(ω))/2, (17)

where χ̃2 now encodes contributions from both the likeli-
hood and the prior. For an optimal point ω0 =argmin(χ̃2),
the behavior of χ̃2 around the minimum is encoded in the
augmented Hessian matrix H̃ defined as

H̃i,k ≡ 1

2

(
∂2χ̃2

∂ωi∂ωk

)
0

= Hi,k + δik
1

σ 2
k

, (18)

where H is the Hessian of χ2 defined in Eq. (11) and δik is
the Kronecker delta. If the adopted prior includes correlations
between the different parameters, then Eq. (16b) will be writ-
ten as a quadratic form φ2(ω)=ω�−1ω, where the matrix �

contains the (prior) covariances between parameters. In such
a case Eq. (18) would have to be modified accordingly.

C. Bias, variance, and MSE

Our objective is to identify which of the seven models
defined in Sec. II B will best perform—using a criterion to
be precisely defined shortly—in extracting the radius and
interior density when faced with real experimental data on
the weak charge form factor. Given that the experimental
results have yet to be published, we rely on synthetic data
generated by a set of five covariant energy density function-
als that we refer to as generators: nFtrue(q) (n=1, . . . , 5).
The particular set of accurately calibrated functionals are
RMF012, RMF016 (commonly referred to as FSUGarnet),
RMF022, RMF028, and RMF032 [33]. The main difference
among these generators is the assumed value for the yet to
be accurately determined neutron skin thickness of 208Pb;
for example, RMF022 predicts a neutron skin thickness of
∼0.22 fm. For each data point generated for the weak charge
form factor there is an associated error σ j which resem-
bles realistic experimental uncertainties. Once a generator is

selected, any observable of interest m can be calculated di-
rectly from the synthetic data.

As in Refs. [37,40], we evaluate the performance of each of
the seven models using a bias-variance tradeoff criterion. Bias
is understood as the discrepancy between the true value of m
(coming from one of the generators nFtrue) and the extracted
value. In contrast, the variance is the spread in the extracted
value of m as given by the square of the standard deviation
(SD); see Eqs. (12) and (14b). Thus, we quantify the perfor-
mance of a model by combining the bias and variance into the
mean squared error (MSE), defined as

MSE2(m, q, σ, n) ≡ Bias2 + Variance. (19)

Note that we have highlighted the dependence of the MSE on
the quantity m, the locations of the momentum-transfer points
q, the associated experimental errors σ, and the generator
index n. The MSE is a good indicator of the score, as it cap-
tures the bias vs variance tradeoff often present in predictive
models across the fields of statistics and machine learning
[39]. Finally, we define the squared average of the MSE by
combining the predictions from the n different generators:

〈MSE〉2(m, q, σ ) = 1

N

N∑
n=1

MSE2(m, q, σ, n). (20)

The same formula may be used to obtain the squared av-
erage of the bias and variance from the different “truths”
(generators).

An abstract representation of these concepts is illustrated
in Fig. 1. On the entire function space depicted with the blue
surrounding box, the truth region (in green) is assumed to be
spanned by the set of all generators, with the blue triangle
within this region representing a single member of such family
(for example RMF022). The set of possible functions adopted
to reproduce the data are also displayed. For example, model 1
(in purple) could be the symmetrized Fermi function whereas
model 2 (in orange) could be the Bessel expansion. In turn,
the purple and red stars are the members of these respective
families that are obtained after fitting the data generated by
the blue triangle. The corresponding stars are associated with
specific values of their parameters ω. Under some metric
which depends on our choice for m, the “distance” from the
stars to the triangle will represent the bias. In the example, the
bias is larger for model 1. Due to the unavoidable errors in
the experimental data, there will be uncertainty in the exact
location of both stars. This uncertainty is represented by the
dashed contour which size illustrates the variance for each
model; in this example the variance is larger for model 2.
Once we allow the blue triangle to explore the “truth space,”
the combination of the accumulated bias and variance makes
the score, as indicated in Eq. (20). The task is to identify the
model with the best score, which emerges from a compromise
between the bias and variance.

A possible approach to calculate the bias and variance for
each model would be to create many noisy realizations of
the data to accumulate enough statistics and then apply the
standard fitting protocol described in Sec. II B 1 [40]. An al-
ternative approach would be to directly compute the Bayesian
integrals highlighted in Sec. II B 2 [35]. In the following
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FIG. 1. Abstract representation of the impact of bias and variance
on recovering information. The entire function space is represented
by the blue enclosing square. The green blob represents the col-
lections of all the truths (generators) such as RMF012 while the
blue triangle is one of its members. The purple and yellow blobs
represents all the possible members (for different parameters sets)
from model 1 and model 2 respectively. The purple and red stars are
two particular members of those groups. The bias is shown as the
distance between the recovered members (the stars) of each model
and the blue triangle. The variance is shown as the dashed contours
surrounding each star.

section we present a third option: a new formalism that—
under certain assumptions—can speed up these calculations,
aid in the identification of “critical” points in the data, provide
a highly intuitive picture of the propagation of the uncertainty,
and be extended from model selection to model building.

III. TRANSFER FUNCTION FORMALISM

We want to understand how the uncertainty—both in terms
of bias and variance—gets propagated from the experimental
data Y to the observable of interest m. To do so, we invoke the
“transfer functions,” a central concept in signal processing and
control theory [36]: if we can make a linear map connecting
an arbitrary change in the input to the associated change in the
output, then analyzing the dynamic response of the system be-
comes straightforward. Note that for nonlinear systems such
map is not possible. Nevertheless, if the changes in the input
are “small,” then linearizing the system around its equilibrium
point might suffice for most practical purposes [36].

In our case, the “system” is the χ2 fit in which the inputs
are the experimental data Y and the output could be either
the model parameters ω or any quantity m. Under the transfer
function formalism we assume that, once the minimum ω0 of
χ2(ω) is found, then small changes in the value of the data
y j will also produce small changes in both the parameters and
any observable m. That is, we assume that the response of
the system to the perturbation is linear. To this end, our main

objective is to write

δm =
J∑

j=1

TFm
j δy j, (21)

where δm is the small change in the observable m in response
to small changes δy j in the experimental data y j . The transfer
functions (TF), denoted by TFm

j , encode the changes in m as
a result of a change δy j in a given individual input y j . That
is, there is a total of J transfer functions for each observable
m. The adopted notation uses a subscript for the jth observa-
tion y j and a superscript for the responding quantity m. We
can now expand TFm

j in terms of the model’s parameters as
follows:

TFm
j ≡ ∂m

∂y j
=

K∑
k=1

∂m

∂ωk

∂ωk

∂y j
= ∇m · TFω

j , (22)

where TFω
j is a K-dimensional vector with its components

being the transfer functions connecting a small change in each
observation y j to the response of the kth model parameter ωk .
That is, in analogy to Eq. (21) we obtain

δωk =
J∑

j=1

TFωk
j δy j . (23)

As we show in Appendix A, the general expression for TFω
j

is given by

TFω
j = H−1∇F (q j,ω)σ−2

j , (24)

where the gradient ∇F (q j,ω) is taken with respect to the
model parameters ω. In the following subsections, we use the
transfer functions to calculate both the variance and bias of
any quantity of interest m.

One important point to note is that to calculate the transfer
functions in Eq. (24) we need to compute first and second
derivatives of the model F (q j,ω). This is straightforward
for the simple parametric models we use in this work (see
Appendix B), but could become an issue if we use more com-
plex models such as the RMF. These complex models, which
account for the nuclear dynamics to calculate densities and
form factors, use iterative procedures over nonlinear coupled
differential equations to produce densities. For such cases,
instead of calculating derivatives directly, one could resort to
other options available such as performing finite differences
[53], automatic differentiation [54], or derivative-free opti-
mization methods such as POUNDERS [55].

A. Variance calculation

Equation (21) allows us to write the linear response of any
quantity δm to a given set of small changes in the observations
δy. We interpret the errors in the experimental data as in-
dependent, Gaussian distributed random variables with mean
zero and standard deviation σj . Hence, in this scenario, if we
identify the perturbations δy j as these Gaussian independent
experimental errors, the variance in δm may be obtained by
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adding each term in Eq. (21) in quadrature:

�m2 =
J∑

j=1

(
TFm

j

)2
σ 2

j , (25)

where the transfer functions TFm
j are evaluated in the model’s

parameters that are obtained from the original central values
of the experimental points Y (δy = 0). This is analogous to
a Taylor series expansion in which the derivatives of the
expanded function are evaluated at the unperturbed variable.
Note that Eq. (21) may still be used to calculate the variance
even in the more general case when there are correlations
or the distribution is not Gaussian. However, in this case we
would have to perform the appropriate integrals on δm, as a
function of δy, times the joint probability distribution P(δy).

One of the main advantages of Eq. (25) is that it separates,
up to some degree, the contribution from each observation y j

to the entire variance �m2. As we show in Sec. IV A, this
separation allows us to identify those data points having undue
influence on the variance. This information could be valuable
in experimental design through the optimal allocation of re-
sources, such as beam time in scattering experiments (see Sec.
IV in Ref. [34]). Note that the Hessian H−1 in TFm

j effectively
mixes all observations, so it is not possible to cleanly isolate
the contribution from each data point. Nevertheless, Eq. (25)
provides a more efficient and natural way of addressing the
influence of each data point as compared to other well-known
approaches, such as those represented by Eqs. (12) and (14a).
We also note that, in comparing the variance calculated in
Eq. (25) to that obtained from the standard approach in
Eq. (12), the results are identical in the limit in which the
nonlinear part of the Hessian matrix [the terms proportional
to second derivatives of F in Eq. (11)] may be ignored. We
give a formal proof of this statement in Appendix A. In cases
in which the model parametrizations depend nonlinearly on
the model parameters, then the variances will differ.

So, which (if any) of the two approaches is correct in the
event that the calculated variances differ from each other?
Although the answer is not obvious, the transfer function for-
malism seems to be in agreement with those analyses in which
many realizations of the data are generated via Monte Carlo
sampling [40]. The traditional approach in Eq. (12) deviates
from the observed Monte Carlo results, an issue generally
discussed in statistics under the name of “model misspecifi-
cation” (for more information on this topic see theorem 5.23
and example 5.25 in Ref. [56]). However, we note that the
accuracy of both approaches deteriorates as the errors in the
data become large enough for the nonlinearities to become im-
portant. In such a case, the Gaussian approximation, namely,
the notion that the entire χ2 landscape may be described by
the second derivatives at the minimum, is no longer valid.

As a final remark, we note that the variance computed as in
Eq. (25) changes with the location of the momentum transfers
q j . This change happens not only because the experimental
errors σ j may change with q j , but also because the transfer
functions themselves depend on the location of qj . Indeed,
by exploring the available q range, we could find the opti-
mal locations that minimize the variance of the quantity of
interest. In this way, we can answer a fundamental question

in experimental design: given the available resources, how do
we select the optimal locations of q j to minimize the statistical
uncertainty? [35]. When exploring the q range we must be
aware that the fitted parameters ω will also change, which in
turn will impact the value of each of the transfer functions
TFm

j introduced in Eq. (22). This suggests the need to refit the
optimal parameters every time a new set of q j is considered.
As we shall see below, one of the important results of the
present formalism is that, under certain assumptions, refitting
may be skipped altogether.

B. Bias calculation and the central function

In this section we study the bias as explained in Sec. II C.
That is, the discrepancy between the true value of the ob-
servable of interest m and the one extracted by the model.
A traditional way of calculating the bias would be to fit the
model parameters to the data Y ={(q j, y j, σ j )} by minimizing
Eq. (10), and then calculate m(ω0). Alternatively, we may
compute 〈m〉 from Eq. (14a). In both cases the bias is obtained
by subtracting the true value mtrue. Regardless of the approach,
we must either refit the model parameters or perform the
integrals over the posterior distribution for every combination
of points q j that we want to test. The main reason to explore
the behavior of both the bias and the variance as we change the
q j locations is that we may be interested in finding the optimal
locations that minimize the mean squared error defined in
Eq. (19). As we will show shortly, once we cast the bias
calculation under the TF framework, it is possible to avoid
refitting as we explore different sets of q j locations.

As indicated in Eq. (25), the main sources that contribute to
the variance are the individual data errors σj , which get propa-
gated to the quantity of interest through the transfer functions.
To write the corresponding expression for the bias in the
context of the TF formalism, we must identify the sources
that replace σj in the variance equation. To do so, we first
study how the fitted parameters obtained from minimizing χ2

evolve in the parameter space, as the observations q j move in
their available momentum transfer range. We refer henceforth
to the obtained parameters for a given set of locations qj as the
“empirical” parameters ωe. Note that we employ the specific
notation ωe, rather than the more general ω0 defined after
Eq. (10). The set ωe refers exclusively to parameters obtained
directly from data (or pseudodata) without any perturbation,
while the set ω0 represents the minimum of χ2 in any situa-
tion, even when we perturb the data by small amounts δy.

As an example, we show in Fig. 2 how ωe evolves as
the location of a single measurement changes. In this case,
the model being fitted is the two-parameter (ω = [c, a]) sym-
metrized Fermi function. We assume that measurements can
be made at two different values of the momentum transfer, one
fixed at q1 =0.7 fm−1 and the other one q2 that is allowed to
move along the orange curve in the [1.25, 2.2] fm−1 range.
The value of the weak form factor of 48Ca at each of these
two points is predicted using the generator RMF012 [33].
The four possible locations of the second point q2, labeled
respectively as 1,2,3, and 4, are displayed as green circles on
the orange curve. Each of these locations, in combination with
q1 determines a single optimized value ωe. The associated
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FIG. 2. Evolution of ωe as the second location q2 is moved in
the orange region. The model being fit is the symmetrized Fermi
function of two parameters: ω = [c, a]. The inset plot shows how
the orange curve gets mapped into the parameter space, highlighting
four locations in green. Although not easy to observe in the plot
the mapping “folds into itself” in the parameter space. The red star
represents the central parameters [see the text before Eq. (26)], while
the purple ellipse represents the 95% confidence interval for a fit
using q = {0.7, 1.8} fm−1 but with y values dictated by the central
function [see the text after Eq. (26) and in Fig. 3].

values of ωe, one for each choice of q2, are displayed in the
inset as the green stars in the parameter space. We expect that
as the value of the second point changes, so will the value
of any derived quantity m, which will ultimately result in a
change to the bias.

As can be seen in Fig. 2 the four empirical parameters ωe

displayed with the green stars do not move too far away from
some central value ωc (shown as a red star). From this central
location and using the transfer functions, we can describe
the entire trajectory of the empirical parameters—particularly
how they deviate from the central value ωc to first order
(ωe ≈ωc + δω) for a given set of J observations. That is,

δω =
J∑

j=1

TFω
j η j, (26)

η j ≡ y j − F (q j,ωc). (27)

We refer to η j as the quantity that is now driving the change
in the parameters to distinguish it from an arbitrary perturba-
tion δy j . The transfer functions in Eq. (26) are evaluated at the
central parameters ωc and in the “data” created by F (q,ωc).
The main idea that we are exploiting is that the minimum of
χ2

c defined as

χ2
c (ω) =

J∑
j=1

(F (q j,ω) − F (q j,ωc))2

σ 2
j

, (28)

where is ωc =argmin(χ2
c ) since χ2

c (ωc)=0. This expression
for χ2

c is identical to the one defined in Eq. (10), but with the
real observations y j replaced by F (q j,ωc). From Eq. (26) we
can say that, if the values of F (q j,ωc) are perturbed such that
F (q j,ωc)→F (q j,ωc)+η j =y j , then the central parameters
ωc will respond by moving by ωc → ωc + δω ≈ ωe.

If this last approximation, ωe ≈ωc + δω, is accurate
enough for our purposes, then we can say that me =m(ωe) may
be approximated by the central value mc =m(ωc) plus a small
correction δm:

me = mc + δm = mc +
J∑

j=1

TFm
j η j . (29)

With these tools at hand, we can write the bias for the quantity
of interest m as follows:

Bias (m) ≡ me − mt =
[

mc +
J∑

j=1

TFm
j η j

]
− mt , (30)

where mt is the true value of m and the TFm
j are evaluated

at the central parameters ωc. We note that, if mc − mt is
negligible, the bias is completely driven by the η j , analogous
to how the variance in Eq. (25) was driven by the errors σ j .

Using the same model and generator as in Fig. 2, we dis-
play in Fig. 3 an estimate of the bias using the interior density
of 48Ca as the observable of interest. As in Fig. 2, we keep
the value of the first point fixed at q1 = 0.7 fm−1 and select
the second point at q2 = 1.8 fm−1, which corresponds to the
third point in Fig. 2. Equation (26) is then used to approximate
the empirical parameters, which in turn provide an estimate
for the empirical density ρ(r)Emp, which is depicted as the
blue dashed line in Fig. 3(a). The deviation of the empirical
density from the central density ρ(r)Cen can be understood
in terms of the η j’s: the difference between the central form
factor F (q,ωc) and the true form factor F (q)True evaluated at
q1 and q2. To appreciate these minor differences, we enlarge
a window around q2 and show η2 =y2−F (q2,ωc) in the inset
of Fig. 3(b). The hollow blue circle corresponds to F (q2,ωc)
while the filled one corresponds to F (q2)True.

Under the linear approximation assumed in Eq. (26), these
η j will move the central ωc [red star in the inset of Fig. 3(a)]
towards the approximated empirical parameters ωe (blue star).
Since this is a nonlinear model, Eq. (26) is indeed just an
approximation and the change in the parameters in this case
was underpredicted. This can be seen when comparing the
position of the blue star in Fig. 3 with the green star (3) in
Fig. 2. Nevertheless, the empirical density is not too different
from the density shown in Fig. 3(a).

We close this section by discussing the selection of ωc.
In principle, the precise location of ωc should not have a
significant impact on our calculations provided that the actual
change δω is linear in η j . In the interest of clarity, and given
that the experimental observable is the form factor but we
are interested in extracting the spatial density, we distinguish
between two main choices for ωc:

(1) Central function fit: We define ωc as the value that min-
imizes the L2 norm between the model F (q,ω) and the
true function F (q)true in the momentum transfer space
q, as in Figs. 2 and 3. The expectation is that ωc should
be relatively close to most of the possible obtainable
parameters for different locations of the data. We refer
to these parameters as ωCen.

(2) Optimal fit: We define ωc as the parameters that make
the central estimation mc as close as possible to the
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FIG. 3. Example of the change in the central parameters driven
by deviations between the central and the true form factors. (a) Re-
constructed density from ωc, reconstructed density from ωe using
Eq. (26), and the true density (red, blue, and black lines, respec-
tively). The inset plot shows the locations in the parameter space
of ωc and the estimated ωe (red and blue stars, respectively). Also
shown in purple is the 95% confidence ellipse when fitting the pa-
rameters to the central data {[q1, F (q1,ωc )], [q2, F (q2, ωc )]} using
the errors described in Sec. IV. (b) Central form factor F (q, ωc ) and
true form factor (red dashed and black lines, respectively). The inset
plot shows a close-up of the difference between these two curves (η2)
in the neighborhood of q2 = 1.8 fm−1.

true value mt . For example, if we are interested in
modeling the interior density, ωc should be chosen
by fitting the models directly to the spatial density,
effectively minimizing the L2 norm between the model
density ρ(r,ω) and the true density ρ(r)true. Note that
this procedure is not feasible in the case of real data
given that scattering experiments can only access the
form factor directly and not the density. However, the
advantage of this option is that, if mc−mt is negligible,
then the total bias is dominated by the η j , making
easier the search for the optimal locations. We refer to
these parameters as ωOpt, and will use them extensively
in Sec. III E.

C. Mean squared error

Having constructed the bias and variance within the TF
formalism, we write the mean squared error (MSE) as

MSE2 =
(

(mc − mt ) +
J∑

j=1

[
TF (m)

j

]
η j

)2

+
J∑

j=1

[
TF (m)

j

]2
σ 2

j .

(31)

Recall that the MSE is the quantity that we aim to optimize
in an effort to find a compromise between the bias and the
variance. For the specific quantity of interest m, the MSE will
depend on the selected data points q j (e.g., the momentum-
transfer points), the associated errors σ j , and the input values
y j (e.g., the weak form factor), with the last quantity drawn
from experimental data or pseudo data generated by mean
field models. The equations developed in the TF framework
enable us to address the expected MSE for a given set of
experimental data and then report which model has the lowest
error, as implemented in Ref. [40]. However, if the experiment
is still in its design phase, then the TF formalism may be used
to optimize the MSE not only with respect to the model, but
also relative to the location of the data and the distribution of
errors.

Naturally, a unique set of central parameters ωc will be
associated with a given model (e.g., Fourier-Bessel) and gen-
erator (e.g., RMF012). Thus, unless we suspect that variations
under different choices of model and generator are negligible,
each MSE should be calculated with its own parameters ωc.
Indeed, these parameters ωc are necessary for the numerical
calculation of each TFm. Moreover, it is important to note
that the TFm

j from the bias term in Eq. (31) are evaluated at
the central parameters ωc, while the TFm

j associated with the
variance are not. From our construction in Sec. III A, these
TFm

j should be evaluated at the parameters associated with
the observed data (the empirical parameters ωe defined in
Sec. III B). There are two options on how to obtain ωe. One
may select ωe directly from Eq. (26) in the event that the
linear relationship encoded in the equation provides a good
approximation. However, if we suspect that the linear ap-
proximation is not accurate, for example when dealing with a
strongly nonlinear model, then we should resort to a numerical
algorithm informed by the data Y every time the data locations
change. This will allow to calculate the bias directly from the
empirical parameters with no need for Eq. (30). Indeed, to
guarantee numerical accuracy, we use this last option for all
the nonlinear models that we explore in this paper, while we
resort to Eq. (30) for linear models. For example, in the case
shown in Fig. 3, the calculated change in m = ρ(0) from the
central value using the TF, underestimates the true change by
around 30%. In Sec. III E we describe an important implemen-
tation of Eq. (30) that would not be possible with a numerical
optimizer and which can be useful even when dealing with
nonlinear models.

D. Priors under the TF formalism

If we have Gaussian priors of the form presented in
Eq. (16a), then we can treat each prior term as a pseudo
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FIG. 4. (a) Recovered densities using the SF + G model for two different data locations. The generated (“true”) 48Ca weak density is
shown in black, while the orange and blue dashed lines are the SF + G obtained densities for the two data sets q0 and q1. The red dashed
line is obtained by the same SF + G model on q1, but with the hyperparameter γ set to 1.4 fm instead of 0.7 fm. The blue band is associated
with the scale λρ . (b) The locations of the two data sets in orange and blue. These data sets only differ on the location of the fourth point q4.
The black line shows the difference between the true function (RMF012) and the optimal function [F (qj, ωOpt )]. The red band represents the
scale λF .

observation. These priors act in the same way as true obser-
vations in χ2: [F (ω, q j ) − y j]/(σ 2

j ), by pulling the value of
ω in a particular direction in the parameter space. The new
H̃ defined in Eq. (18) should be used when calculating the
observation’s transfer functions defined in Eq. (24).

The effect of the priors will not only be the conversion of
H to the new H̃, but each prior estimate value ω0

k will have its
own transfer function as if it were an observation:

TFω
k ≡ ∂ω

∂ω0
k

= H̃−1Ikσ
−2
k , (32)

where Ik is the kth column of the identity matrix of size K × K
(a vector with 0 in every entry except with a 1 on entry k).
Ikσ

−2
k is analogous to ∇F (ω, q j )σ−2

j when calculating TFm
j .

We use the subindex k to denote that what we are perturbing
is not y j , but rather the prior estimate value ω0

k . In the case
where the prior contains correlations then Eq. (16b) is written
as quadratic form φ2(ω) = ω�−1ω. In this case Ikσ

−2
k will be

replaced by the kth column of the matrix �−1.
These transfer functions of the priors “observations” will

appear at the same level as regular observations in the vari-
ance and bias equations (25) and (30). For the bias part,
the associated η j , which we will call η̃k , is defined as the
difference between the value of [ωc]k (the k entry of the central
parameters) and the prior “observation” ω0

k .

E. Reconstruction bias and the optimal function

In this section, we describe the estimation of a nonintuitive
bias which we call the reconstruction bias, that strongly de-
pends on the q j locations.

This reconstruction bias is closely related to what we ob-
served in the example in Fig. 3. When dealing with incomplete
data (a few q j points on the entire form factor curve, for
example), the empirical parameters ωe we recover might devi-
ate considerably from the best parameters that reproduce the
entire true function [ωCen in the case of F (q)true or ωOpt in the
case of ρ(r)true]. As a consequence, the second term inside the

brackets in Eq. (30) could grow substantially. This will result
in a significant bias even in flexible models which in principle
could reproduce the true function almost perfectly.

For illustration purposes, in this section we use the gen-
erator RMF012. Figure 4(a) shows the recovered 48Ca weak
density using the SF + G model with two sets, q0 and q1,
of five data points each (blue and orange dashed lines). The
first data set is q0 = [0.77, 1.30, 1.82, 2.41, 3.06] fm−1, while
the second one is identical to the first except for the fourth
location: q1 = [0.77, 1.30, 1.82, 2.70, 3.06] fm−1, as seen in
Fig. 4(b).

The blue and orange SF + G model in Fig. 4(a) has its
hyperparameter controlling the size of the Gaussians set to
γ = 0.7 fm, close to the nucleon size (Appendix B shows a
detailed description of the SF + G model and its hyperparam-
eters). The orange curve has a clear bias in the interior density.
This is the reconstruction bias. It is not the same type of bias,
as shown, for example, by the SF model which by definition
has a flat interior and cannot reproduce the interior structure
of 48Ca.

To better analyze this phenomenon, we use the optimal
function, i.e., the parameter set ωOpt from the SF + G model
that creates the density in the r space that is closest to the true
density. By definition, any deviation from ωOpt will result in
a stronger bias. We want to understand this increase in bias
in terms of the difference δω ≡ ω − ωOpt. To simplify our
analysis, we just focus on ρ(0).

Figure 4(b) shows the difference in momentum space
between the optimal function F (q,ωOpt) and the true
(RMF2012) F (q)True. The blue points are situated exactly at
the locations where both functions have the same value, while
the fourth orange point is at a place where these functions
differ.

Similar to what we developed in Sec. III B, we can imagine
that our data are currently centered at the optimal function
F (q,ωOpt) (the minimum of χ2 is currently at the opti-
mal parameters). The y j values are slightly perturbed from
their starting values by small quantities η j now defined
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as

η j ≡ F (q j )True − F (q j,ωOpt). (33)

Using our TF formalism, we can write how much ρ(0)
changes to first order due to these displacements, when com-
pared to the predicted ρ(0) by the optimal function. Since just
ηy4 is nonzero, we have

δρ(0) = [
TF (ρ(0))

4

]
ηy4 . (34)

Therefore, if we move q4 around in the q space while
leaving the other four q j in place, those locations with a
high product value TF (ρ(0))

4 ηy4 will create a strong bias. Such
is the case shown in Fig. 4(a) by the orange curve. In this
particular example, if we want to maintain a bias of less
than 5% [δρ(0) < 5%], we can only locate q4 in around 15%
of the possible momentum transfer range [0, 3.5] fm−1 (see
Appendix C for more details).

Let us call λF the expected scale for the size of η j for
our range of qj values. Let us call λρ the desired threshold
we want for our accuracy in the estimation of ρ(0). Figure 4
shows these two scales as the red and blue bands, respectively.
Replacing the transfer function by its explicit expression in
Eq. (34), we will maintain that threshold in ρ(0) as long as∣∣∇ρ(0)H−1∇F (q4)/σ 2

4

∣∣ � λρ

λF
. (35)

For our particular problem, we can set λF ≈ 3 × 10−4

and λρ ≈ 1.5 × 10−4 fm−3 [roughly 5% of ρ(0)], which
makes the ratio λρ

λF
= 1

2 fm−3. For the SF + G model at

q4 = 2.7 fm−1, the product TF (ρ(0))
4 η4 ≈ 1.3 fm−3, which im-

plies that the reconstruction bias falls outside of our tolerable
range λρ .

In an actual experiment, we would not know ahead of time
the optimal q j locations where TF (ρ(0))

j η j is small. Therefore,
we could not use a model like SF + G with such a limited q
range and strong reconstruction bias.

For the SF + G, the situation seems to be mainly driven
by the first Gaussian with R1 = 0, which scales as γ −3 in the
ρ space. Based on this, we decided to double the size of γ ,
from γ = 0.7 fm, to γ = 1.4 fm (which is the value we use in
Sec. IV B).

Using this new value of γ , the new transfer function prod-
uct value at q4 = 2.7 fm−1 is TF (ρ(0))

4 η4 ≈ 0.3 fm−3 and the
reconstruction bias is reduced considerably.1 This is shown
by the red dashed line in Fig. 4(a). Moreover, with this new
value of γ , q4 can be allocated in around 30% of the possible
momentum transfer range [0, 3.5] fm−1 while maintaining a
bias of less than 5% (see Appendix C for more details).

We close this section with two important remarks regarding
this type of analyses. First, they could ultimately serve not
only to model selection, but to model building. In many cases,

1To be rigorous, we should now move the other qj values to the
locations where the new optimal model is equal to the true function.
Since they are almost in the same location, we decided to keep them
in the same place to simplify the discussion.

a hyperparameter (such as γ ) might be fixed to a suboptimal
value that hinders rather than helps the extraction of informa-
tion from experimental data.

Second, these analyses can give an estimate of the impact
of the reconstruction bias which is impossible to get by just fo-
cusing on the statistical errors in experimental data. Consider
the purple 95% confidence ellipse in Figs. 2 and 3 centered
at ωc, the red star. This ellipse does not contain the actual
estimated parameters from the data, i.e., the green star (3) in
Fig. 2 (let us recall that the blue star in Fig. 3 is just the linear
approximation). The reverse is also true: the ellipse centered
at the true empirical parameters (not shown) will not contain
the red star, which reproduces the true weak charge density in
Fig. 3 better than the approximated empirical blue density.

The errors σ j and the deviations η j are two unrelated
scales. Confidence ellipses are usually related to the errors σ j

but the reconstruction bias is related to the η j . There is no
reason for the ellipse obtained from the true data to contain
ωOpt, i.e., the set of parameters in our model that best describe
the real curve that generated that data. However, this is of-
ten the assumed scenario when extracting information from
experiments.

IV. RESULTS: ANALYZING CHARGE AND WEAK
CHARGE DENSITIES

In this section, we discuss in detail the process used to
select the optimal models and the impact that varying the loca-
tions of the selected momentum transfers q j will have on the
extracted densities of both 48Ca and 208Pb. In particular, we
are interested in describing the root-mean-square radius and
interior density of the charge and weak charge distributions.

The calculation of the MSE for the charge radius is
straightforward as it involves a single, well-defined quantity.
For the interior density, we allocate 30 grid points between
r =0 fm and r =3 fm for 48Ca, and between r =0 fm and
r =5 fm for 208Pb. The MSE for the interior density is then
constructed by averaging in quadrature the single MSE for
each individual point. That is,

MSE[Interior]2 ≡ 1

30

30∑
i=1

MSE[ρ(ri )]
2. (36)

We then combine both the radius and interior MSE into a
single quantity known as the figure of merit (FOM):

FOM2 ≡
(

MSE[Radius]

�R

)2

+
(

MSE[Interior]

�ρ

)2

, (37)

where �ρ and �R are natural scales associated with each
quantity; roughly 5%–10% and 1% for the interior density and
radius, respectively; see Table I. By adjusting these scales, the
FOM could be made more sensitive to the radius or the interior
density. Note that for both 48Ca and 208Pb the densities have
been normalized to 1 rather than to the number of nucleons.

To simplify the analysis, we assume that the errors in
the experimental data for both the charge and weak-charge
form factor depend only on their assumed value at the se-
lected momentum transfers. For example, following [35],
we assume a constant value of σ (q)=0.005 for 208Pb.
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TABLE I. Natural scales for the uncertainties in the interior den-
sity and radius for 48Ca and 208Pb.

�ρ (fm−3) �R (fm)

48Ca 0.000 15 0.04
208Pb 0.000 08 0.06

For the case of 48Ca we adopt the prescription given in
Ref. [34] for the errors at the selected five momentum trans-
fers [q1, q2, q3, q4, q5]. When required, a simple function of
the form σ (q)= Max(0.000 57, 0.0081−0.003q) is used to
interpolate between the selected q values. Once the data set
and the selected model are specified, the FOM depends solely
on the location of the momentum transfers. In the following
subsections we illustrate how the value of the FOM can be
minimized by optimizing such locations and how the TF for-
malism is the ideal tool for interpreting the results and further
reducing the uncertainties, for example, by identifying critical
measurements for error reduction.

A. Electric charge densities

To test the new formalism we start by analyzing the well
known experimentally determined electric charge density of
48Ca and 208Pb [3,45]. We illustrate the power and flexibility
of the transfer functions formalism by describing the 48Ca
data using a Fourier–Bessel expansion and a SF model in
the case of 208Pb. Following the prescription of Ref. [34], we
assign the starting values of the momentum transfer for 48Ca at
q0 = [0.9, 1.35, 1.8, 2.24, 2.69] fm−1. Similarly, for the case
of 208Pb, we fixed the two starting locations as in Ref. [35] at
q0 = [0.5, 0.8] fm−1.

We show in Fig. 5 results obtained before and after op-
timizing the location of the momentum-transfer points. We
display the original locations in blue and their shift to their
optimal locations in orange, where the FOM is minimized
subject to the following constraints: q j � 3.5 fm−1 for 48Ca
and q j � 2 fm−1 for 208Pb. Beyond these limits, we assume

TABLE II. MSE results for the interior and radius for 48Ca and
208Pb for their respective original locations q0 and optimal locations
qm. Each quantity has been divided by its respective natural scale as
defined in Table I.

48Ca 208Pb

Interior Radius Interior Radius

MSE (q0) 1.27 1.37 0.27 0.77
MSE (qm) 1.26 0.94 0.32 0.63

that the experimental challenge to measure such small cross
sections can not be met. This may be better appreciated by
displaying the form factor in a logarithmic plot, as in Fig. 6;
note that the cross section is proportional to the square of the
form factor. Note that the minimization of the FOM was done
by running the Python NUMPY optimization library with the
“TNC” method for ten different seeds including the original
q0 choice. In Table II, we show results for the MSE for both
nuclei in terms of their natural scales. The MSE in the interior
was not substantially reduced for 48Ca and it even increased
by ∼20% for 208Pb, as can be seen by the slightly larger error
bands in Fig. 5. On the other hand, the MSE for the radius was
improved by ∼30% for 48Ca and by ∼20% for 208Pb. These
results are driven by our selection of scales which favored an
improvement in the radius rather than in the interior density.
Also, the radius is an easier quantity to constrain than the in-
terior density. Note, however, that even minimizing the FOM
with only the interior term does not significantly improve the
interior density.

Finally, listed in Tables III and IV in Appendix D are the
numerical values of the TF j times the respective error σ j

for the density at r =0 fm and the radius for two sets of
locations of the momentum transfer, namely, original q0 and
optimal qm. These individual values illustrate how much each
measurement is currently impacting the variance in the radius
and in the density at r =0. Note that in Eq. (25) each term
TF jσ j is added in quadrature. Therefore, the final variance is
not linear on each component. Indeed, the quadrature equation

FIG. 5. Optimization of the FOM for 48Ca using a Fourier-Bessel expansion (a) and for 208Pb using the symmetrized Fermi function (b).
The original locations of the momentum transfer q0 (blue points) are displaced to qm (orange points) to minimize the FOM. The inset plots
show the reconstructed charge densities with their respective error bands.
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FIG. 6. Same as in Fig. 5, but now for the absolute value of the form factor using a logarithmic scale. The black curve represents the
respective experimental charge form factor [3,45] and, for clarity, the central curves are displayed as dashed lines, whereas the error bands are
shown as colored bands.

will enhance the effect of bigger numbers with respect to
their smaller counterparts. For example, in the case 48Ca with
the optimized set, the variance in ρ(0) is dominated by the
observations at q2 and q3, whereas for the radius the vari-
ance is largely driven by the form factor at q1. A similar
analysis for 208Pb reveals that the variance in ρ(0) is driven
by q2, whereas the measurement at q1 dominates the vari-
ance in the radius. Given that the radius is obtained from
the slope of the form factor at zero momentum transfer and
the interior density is controlled by the large-q behavior of
the form factor, the previous results are fully consistent with
our expectations. Note that as the errors in the observations
change, these statements might no longer hold true. Our main
conclusion is that to reduce the final variance on each quan-
tity m within this hypothetical experimental design—and to
first approximation—these are the critical data locations that
should be targeted for error reduction.

B. Weak charge densities

We now proceed to compare the performance of each of
the seven models mentioned in Sec. II B in reproducing the
interior density and radius of the weak charge distribution
of 48Ca and 208Pb. Appendix D presents the corresponding
analysis for the charge densities.

Given that there is no experimental information on the
weak charge form factors of 48Ca and 208Pb, we use Eq. (20)
to calculate the squared average MSE from the five differ-
ent generators obtained from Ref. [33], namely, RMF012,
RMF016, RMF022, RMF028, and RMF032. As in the pre-
vious section, we start with five fixed locations q0 and
then optimize these values to qm to minimize the average
FOM. We apply the same restrictions as in the example
of the charge density: q j �3.5 fm−1 for 48Ca and q j �
2 fm−1 for 208Pb. Note that since the goal is to minimize
the average mean square error of all five generators, the re-
sulting optimal values qm only depend on the choice of the
model. The starting locations for the momentum transfer in
the case of 48Ca are once again fixed at q0 = [0.90, 1.35,

1.8, 2.24, 2.69] fm−1, whereas for 208Pb they are now chosen
at q0 = [0.63, 0.94, 1.26, 1.57, 1.88] fm−1. Note that these
values correspond to the special choice of qν ≡νπ/Rcut for
ν ∈ [2, 6], with the cutoff radius Rcut = 7 fm for 48Ca [34] and
Rcut =10 fm for 208Pb.

In Figs. 7 and 8 we display the performance of the seven
models employed in the text to describe the weak charge
of 48Ca and 208Pb, respectively. Shown in each figure are
the resulting bias, standard deviation (SD), and MSE for the
interior density (three bars on the left of each panel) and the
weak charge radius (three bars on the right of each panel).
The corresponding figures for the electric charge density are
shown in Figs. 12 and 13 in Appendix D. We note that for a
fixed model we obtained very similar results regardless of the
particular RMF generator; as an example see Figs. 14 and 15
in Appendix E. This suggests that the conclusions that we
draw within each model are robust, at least within the (RMF)
family of generators considered in this study.

We want to highlight two main points from these results.
First, changing the data locations (i.e., the selection of the
various momentum transfers) has a significant impact on the
performance of the model. For example, in the description
of the weak charge density of 208Pb the performance of
the Helm model improves by nearly a factor of two. Sec-
ond, we observe large variations in the model performance
when the original fixed locations q0 are adopted. Indeed, for
48Ca the Bessel-Fourier expansion outperforms the SF + B
model by about a factor of 2. Such large discrepancy is of-
ten mitigated by selecting the optimal locations qm for each
model; see the dramatic improvement in the description of the
weak charge radius of 208Pb when the optimal locations are
adopted.

Based on these two points, we can conclude that the
optimal model will strongly depend on the data structure,
regarding both locations and errors. We should expect that
variance driven models (like the Bessels) will outperform bias
driven models (like the SF) in cases where the data errors
are small. Nevertheless, for the number of experimental mea-
surements and errors assumed in this example, we conclude
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FIG. 7. Comparison of the performance of the seven models used in the text for recovering the interior density and weak charge radius of
48Ca as generated from a form factor “measured” at five points. The three columns to the left of each model show the bias, SD, and MSE for
the interior density, whereas the three columns to the right display the bias, SD, and MSE for the radius. All quantities have been divided by
their natural scales: �ρ(Ca) = 0.00015 fm−3 and �R(Ca)=0.04 fm. The solid columns represent the optimal locations qm, whereas the light
borderless columns were obtained from the starting q0 points.

that the Helm and SF models are best suited for the simul-
taneous extraction of the radius and interior density of both
nuclei. This could be expected for the case of 208Pb given
that both the Helm and SF models are characterized by a
flat interior density that provides our closest connection to
the saturation density of infinite nuclear matter [10]. It might
come as a surprise that these flat models outperform more
flexible models like the Bessel-Fourier expansion which better
describes the interior shell oscillations of 48Ca. The reason
behind this finding is that we aim to minimize the MSE,
which involves a combination of the bias and the variance.

On average (mean value), the Bessel model will provide a
more genuine representation of the interior oscillations of the
weak charge density of 48Ca. However, the noise level as
quantified by the variance is so high that the expected devi-
ation is large enough to make more desirable a flat description
with smaller error bands. Figure 9 shows, for the weak charge
density of 48Ca generated by RMF012, the extracted density
by the Bessel and SF models. The Bessel expansion uses the
original q0 locations proposed in [34], while the SF model
uses the optimized locations qm presented in Table IX in
Appendix E.

FIG. 8. Comparison of the performance of the seven models used in the text for recovering the interior density and weak charge radius of
208Pb as generated from a form factor “measured” at five points. The three columns to the left of each model show the bias, SD, and MSE for
the interior density, whereas the three columns to the right display the bias, SD, and MSE for the radius. All quantities have been divided by
their natural scales: �ρ(Pb)=0.000 08 fm−3 and �R(Pb)=0.06 fm. The solid columns represent the optimal locations qm, whereas the light
borderless columns were obtained from the starting q0 points.
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FIG. 9. Extracted weak density of 48Ca from the RMF012 gen-
erator using the Bessel and SF models. The Bessel model uses the
original momentum transfers q0, while the SF model uses its cor-
responding optimized values qm. For the data and errors assumed,
our analysis supports flat models like the SF or Helm, over the more
flexible ones such as the Bessel expansion.

To better illustrate our result for 48Ca, consider that the
RMF012 generator in Fig. 9 predicts a weak charge density
that is slightly enhanced at r =0 relative to the average interior
density and then drops from the average around r ≈1.2 fm.
We could then ask, how probable is it to conclude the opposite
[i.e., ρ(0) � ρ(1.2)] even after adopting the optimal locations
qm for the Bessel model? To answer that question, let us define
the new quantity of interest m ≡ ρ(1.2) − ρ(0) and investi-
gate the probability that m � 0. Once the optimal qm values
are adopted, an average value of m = −2.3 ×10−4 fm−3 is
obtained, suggesting that ρ(0) > ρ(1.2), in agreement with
the predictions from the RMF012 generator. But what about
the variance in this result? The variance of this quantity can
be calculated using the TF formalism from Eq. (25) as

�m2 =
5∑

j=1

(
[∇ρ(1.2)−∇ρ(0)]H−1∇F (q j,ω)σ−2

j

)2
σ 2

j , (38)

where we have used Eqs. (22) and (24) to write the explicit
form of TFm

j . Following this procedure, we obtain a standard
deviation of �m=2.2 × 10−4 fm−3. We note that the third
measurement at q3 =1.73 fm−1 has the largest impact on the
the variance, followed by appreciable contributions from q4 =
2.12 fm−1 and q5 =2.55 fm−1; see Table V in Appendix D
for the values of qm. Hence, under the assumption that the
errors are Gaussian distributed random variables, we can infer
that ρ(0)�ρ(1.2) in ∼15% of the experimental realizations.
That is, if the experimental noise (primarily in q3, q4, and q5)
cannot be significantly reduced, we will conclude the incorrect
oscillation structure in the interior density of 48Ca in one out
of six experiments.

For the interior density of 208Pb, the best overall score
was achieved by the SF model with a total MSE of 0.21×
�ρ(Pb)=1.68×10−5 fm−3, where �ρ(Pb) is defined in
Table I. Using again RMF012 as an example of a gener-
ator, we observe that the total variance in ρ(0) is mainly
driven by the third observation, having a value of |TFρ(0)

3 σ3|=
0.14×�ρ(Pb). Taking ρ(0) as a representative value of the
interior density, this implies that the measurement at q3 =
0.77 fm−1 should be primarily targeted for error reduction in
order to improve the uncertainty in the saturation density ρ0.
We underscore that the interior density of 208Pb is a genuine

experimental observable that provides the closest connection
to the saturation density of infinite nuclear matter. For a recent
analysis on how a measurement of the interior density of 208Pb
could constrain ρ0 see Ref. [10].

In the case of the weak charge radii of both nuclei, we
found that they can be accurately determined using the Helm
model: an MSE of 0.45×�R(Ca)=0.018 fm for 48Ca and
of 0.45×�R(Pb)=0.027 fm for 208Pb, with both values of
�R listed in Table I. In the case of 48Ca, and relying again
on RMF012, the total variance in R is uniformly distributed
among the first three observations at q1 =0.51, q2 =0.63, and
q3 =0.77 fm−1, with values of |TFρ(0)

j σ j |≈0.2×�R(Ca). In-
stead, for 208Pb we found that the total variance in R is driven
by the two points closest to the origin, namely, q1 =0.37 and
q2 =0.40 fm−1, with values of |TFρ(0)

j σ j |=0.29×�R(Pb).
To improve the uncertainty in the weak charge radii, the
observations at these “low-q” points should be targeted for
error reduction. These results are hardly surprising given that
the weak charge radius is defined in terms of the slope of
the associated form factor at the origin. It is worth noting
that the weak charge radius of 208Pb, when combined with
the corresponding (electric) charge radius into a neutron skin,
provides a stringent constraint on the slope of the symmetry
energy L, and ultimately on the radius of neutron stars [28].
In particular, a 1% determination of the weak charge radius
of 208Pb translates into an uncertainty of about 40 MeV in the
slope of the symmetry energy [57].

C. The role of priors

The incorporation of priors lies at the heart of Bayesian
statistics. Priors allow us to include physical biases and in-
tuition as well as information from previous experiments.
Moreover, priors play the important role of serving as leverage
to reduce the variance of a model at the expense of increasing
its bias [41,58]. This can be particularly beneficial for models
such as the Bessel-Fourier expansion or SF + G, whose MSE
is largely driven by the variance given the level of noise in the
generated data.

In this section, we briefly explore the impact of an in-
formed prior on the performance of the SF + G model as
it pertains to the weak charge density of 48Ca. As we
did earlier, we use the RMF012 generator to produce syn-
thetic data. The proposed locations of the measurements
are the original five values of the momentum transfer: q0 =
[0.9, 1.35, 1.8, 2.24, 2.69] fm−1. Note that the implementa-
tion of priors was discussed in Sec. II B 2 and extended to the
TF formalism in Sec. III D. The SF + G model consists of the
two-parameter symmetrized Fermi function plus three Gaus-
sians “bumps” to account for shell oscillations in the interior.
The Gaussians are centered in the interior at three different lo-
cations: [R1, R2, R3]= [0, 1.3, 2.6] fm. We analyze three prior
options for the amplitude of the Gaussians (A1, A2, A3), while
we leave the two intrinsic parameters of the SF model uncon-
strained. First, we consider a null prior that we refer to as P0.
Such “prior” effectively reproduces the original unconstrained
SF + G model. Second, we consider a fairly uninformed prior,
defined in such a way that the deviation from a flat density at
the peak of each Gaussian is of the order of ∼0.0003 fm−3,
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FIG. 10. (a) Reconstructed weak density of 48Ca for the generator RMF012, the model SF + G and three sets of priors. P0 (in blue), P1 (in
green), and P2. (b) Scores on the interior density in terms of bias, SD, and MSE for the three choices of prior. The numerical values have been
divided by the natural scale of �ρCa = 0.000 15 fm −3.

or roughly 10% of the average interior density. We call this
prior P1 and is given by the following parameter centers and
standard deviations:

ω0 = [0, 0, 0] and σ = [0.005, 0.027, 0.08]. (39)

Finally, we consider an extremely restrictive prior (P2) that
forces the value of all three Gaussian amplitudes to zero
(A1 =A2 =A3 =0), effectively reproducing the original flat SF
model without oscillations. For an example on the incorpora-
tion of priors see Appendix F.

The reconstructed weak charge density of 48Ca for the
three choices of priors is displayed in Fig. 10(a), with P0 (in
blue) displaying the largest variance, P1 (in green), and P2

(in orange) displaying the smallest variance but the largest
bias. The overall performance for each choice is quantified in
Fig. 10(b). These results are an interesting example of the bias
vs variance tradeoff: the model without prior (P0) reproduces
the true (RMF012) curve almost perfectly, but displays a huge
error band, whereas the model with the most restrictive prior
(P2), or effectively with the fewer number of parameters, has
the largest bias but the smallest error bands (variance). Note
that P0 and P2 have almost the same overall MSE score. Also
note that since what can be measured is the form factor as a
function of the momentum transfer, the reconstructed spatial
density in the interior does not have to be well constrained
if there are not enough data. This is the main reason that the
orange curve (P2) that fails to reproduce the interior oscilla-
tions, also fails to reproduce the average interior density. The
model with the P1 prior provides the best overall MSE score.
Indeed, its MSE score is even better than any of the average
MSE scores of the models studied in Sec. IV B, for fixed q0
locations.

We can analyze the behavior of the MSE directly from the
transfer function formalism as the prior is modified. To do
so, let us focus on the interior density ρ(0). Stronger priors
constrain more effectively H̃−1, thereby reducing the impact
of the transfer functions TFρ(0)

j of each data point. This effec-
tively reduces the propagation of experimental uncertainty σ j

towards the calculated variance in ρ(0). The tradeoff is due to
the fact that the inclusion of a strong prior will push away the
central value of ρ(0) from what the central values of the data
(y j) suggest, resulting in an increase of the total bias in ρ(0).

Such a change can be written to first approximation as

δρ(0) =
3∑
k

TFρ(0)
k η̃k, (40)

where the η̃k are now defined as the difference between the
parameter’s value without priors and the new prior centers ω0

k .
Appendix F includes tables with the numerical values of

the transfer functions for ρ(0) and clarifies their meaning in
more detail. The important fact is that, as the prior strength
increases from P0 to P2, the numerical value of the TFρ(0)

j
for each observation q j tends to decrease, sometimes by an
order of magnitude. This leads to a dramatic decrease in the
total variance in the interior density. On the other hand, as the
prior strength increases, the prior transfer functions TFρ(0)

k
become stronger. This allows each prior center ω0

k to push
away the value of ρ(0) from what the data suggest, effectively
increasing the bias.

The example highlights how a well chosen prior could be
crucial to reduce uncertainties. However, if the prior strength
is excessively high, there is the risk of overlooking new dis-
coveries or making erroneous conclusions. A more in-depth
analysis is required to optimize the prior strength and structure
for each particular problem in order to effectively reduce the
MSE for a set of given truths.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a novel statistical framework—
the transfer function (TF) formalism—and applied it to the
extraction of nuclear densities from the associated form fac-
tors obtained from electron-scattering data. From this new
perspective, we explored model selection and model building,
the impact of data locations and errors, the role of priors,
and the bias vs variance tradeoff. Given the importance of
the PREX and CREX campaigns at JLab in constraining the
density dependence of the symmetry energy and in bridging
ab initio descriptions to density functional theory, we focused
our analysis on 48Ca and 208Pb. In particular, the two ob-
servables of interest explored in this work were the mean
square radii and interior densities of both neutron-rich nuclei.
We evaluated the performance of seven models in faithfully
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reproducing these two observables, from noisy experimental
data on the electric form factor and noisy pseudodata gen-
erated from a variety of relativistic mean field models for
the case of the weak-charge form factor. The performance
of the various models was quantified in terms of the mean
squared error (MSE) defined as a combined score obtained
from incorporating both the bias and the variance.

For both the charge and weak charge densities we showed
that, for the adopted noise level assumed in the data, the
best performance was obtained with the simpler SF and Helm
models that are characterized by a flat interior density. More
complex models such as the SF + G or a Fourier-Bessel
expansion did not perform as well. Whereas both of these
more complex models are able to reproduce the interior shell
oscillations of both nuclei, they are hindered by a very high
variance, which ultimately results in a high MSE score. In this
regard, we suggest that it will be difficult for any of the models
used in this paper—at least in their present form—to faithfully
reproduce the shell oscillation of both nuclei, particularly in
the case of 48Ca where the oscillation structure is expected to
be more pronounced. Indeed, when using the Fourier-Bessel
expansion as in [34], we estimated that there is a 15% chance
of predicting the wrong oscillating structure in the interior
of 48Ca, namely, peaks become valleys and valleys become
peaks.

In the context of experimental design, we illustrated how
to use the TF formalism to identify those critical observations
that are driving most of the uncertainty in our estimations. The
identification of those critical points could help in the design
of future experiments to allocate more resources (e.g., beam
time) to those critical locations to maximize the information
gained from such experiments. Within our assumed experi-
mental error distributions and momentum transfer range, and
within the family of RMF generators we used, our final recom-
mendation would be to use the SF or Helm models to extract
the weak charge densities and radius of 48Ca and 208Pb. The
optimized locations qm for these models, which are the opti-
mal experimental measurements, are displayed in Tables IX
and X of Appendix E.

Finally, we explored the impact of priors on the extracted
weak charge density of 48Ca under the SF + G model. As
the influence of the prior increased, so did the bias while the
variance was reduced, as expected from the bias vs variance
tradeoff.

As mentioned during the derivation of the transfer function
formalism, knowledge of first and second derivatives of the
model F (q j,ω) is needed to compute the transfer functions
in Eq. (24) and perform all the analysis we have showed.
If analytic expressions for these derivatives are not available
(for example, if we are using a computationally complex
model), then other options to estimate derivatives could be
used such as performing finite differences [53], automatic dif-
ferentiation [54], or derivative-free optimization methods like
POUNDERS [55].

Going forward, there are several directions that are worth
exploring. First, it would be interesting to integrate the TF
formalism directly into model building. We believe questions
such as what makes a model better than others?, could be
tackled from the TF perspective. Answering which model is

better at extracting data has become a central question in nu-
clear physics, for example in the context of the proton puzzle.
Yan et al. investigated this question and provided fundamental
insights to the analysis by the PRaD Collaboration. This sem-
inal work—which inspired a great portion of the development
of the TF formalism—identified the models optimally suited
to extract the proton radius, but did not elaborate on what
made those model successful. We believe the TF formalism
could be used to make significant advances in that direction.
As shown in this paper, the TF formalism seems to be ideal
to identify the delicate interplay between signal and noise.
Understanding the TF distribution of successful models could
help not only in identifying but also in creating, some sort
of “optimal” model. This technique could be applied beyond
density reconstruction from scattering data as implemented in
this paper, to more general problems that involve the calibra-
tion of model parameters from experimental data.

Another fruitful direction of investigation is the role of
priors and hyperparameters. Hyperparameters, such as γ and
the Gaussian locations for the SF + G, or the Bessel cut off
radius Rcut and number of coefficients, can drastically impact
the performance of a model. In the context of the TF for-
malism, we could ask questions like: Given six observations,
is it better in terms of an overall MSE score to have five
or six adjustable Fourier-Bessel coefficients? How does the
answer scale with the number of data points? We believe it
is possible to create a framework using the TF formalism that
can tackle this type of questions in a robust and direct manner.
This would allow to conduct a more informed search in the
hyperparameter space of each model instead of just by trial
and error. Our work showed that the incorporation of priors
can have a dramatic effect on a model’s performance. After
all, priors are essential ingredients of the Bayesian formalism
as they encode prior beliefs before additional experimental
evidence becomes available. A more in depth study should be
carried out to identify how to optimize the hyperparameters
that define the priors. To reach robust conclusions, such a
research project should include more generator functions from
other nuclear model families. We are confident that the TF
formalism can guide this optimization procedure as well.

Finally, a third possible application of the TF formalism is
related to the recent use in nuclear physics of Bayesian frame-
works for combining different competing models to improve
over the predictions of single models [59]. Within the context
of nuclear densities, using the MSE score should allow us
to test the circumstances under which the mixing of several
models outperforms the predicting power of a single model. It
would be interesting to explore in the future the generalization
of the TF formalism to Bayesian model mixing.
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FIG. 11. Bias increase in ρ(0), when using the SF + G model, as a function of the location of the fourth measurement q4 for γ = 0.7 fm
(a) and γ = 1.4 fm (b). (a.1) and (b.1) show in black the calculated δρ(0) (as an absolute percentage) using Eq. (C1). The blue and orange
points correspond to the two original data sets while the blue dashed line represents the threshold |δρ(0)| = 5%. (a.2) and (b.2) show the true
form factor in black as well as the measurement locations for both sets. The red rectangles encompass the regions where, if q4 is located,
|δρ(0)| > 5%.
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APPENDIX A: MATHEMATICAL PROOFS
ON THE TF FORMALISM

1. Transfer functions structure

This subsection presents a formal proof of the structure of
the transfer functions [Eq. (24)], namely that the first-order
change coefficients on the parameters ω due to a perturbation

TABLE III. 48Ca electric form factor momentum transfer loca-
tions qj and transfer functions TF j absolute values of the density
at r = 0 fm and radius for two data sets: original q0 and optimized
qm. Both transfer functions have been normalized by their respective
natural scales defined in Table I.

qj (fm−1) [q0] 0.90 1.35 1.80 2.24 2.69
[qm] 0.65 1.26 1.73 2.12 2.55

|TFρ(0)
j σ j | [q0] 0.84 1.02 1.44 1.07 0.65

[qm] 0.65 1.18 1.40 0.90 0.72

|TFR
j σ j | [q0] 0.88 0.80 0.58 0.32 0.12

[qm] 0.82 0.34 0.26 0.15 0.03

on observation y j are

TFω
j = H−1∇Fjσ

−2
j , (A1)

where H−1 is the inverse of the Hessian matrix of χ2/2
defined in (11) and ∇Fj is the gradient with respect to
the parameters ω of the function F being fit evaluated at
observation y j .

Let us assume that we are at the minimum ω0 of the
unperturbed χ2/2. At this point, the condition of a minimum
implies that the first derivative of χ2/2 with respect to all ωk

TABLE IV. 208Pb electric form factor momentum transfer loca-
tions qj and transfer functions TF j absolute values of the density
at r = 0 fm and radius for two data sets: original q0 and optimized
qm. Both transfer functions have been normalized by their respective
natural scales defined in Table I.

qj (fm−1) [q0] 0.50 0.80
[qm] 0.41 0.84

|TFρ(0)
j σ j | [q0] 0.14 0.18

[qm] 0.17 0.25

|TFR
j σ j | [q0] 0.59 0.48

[qm] 0.54 0.31
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FIG. 12. Seven models comparison for recovering the interior density and mean charge radius from the charge form factor data on 48Ca.
The bias, SD, and MSE for each model are shown in their respective three left columns for the interior density and in the three right columns for
the radius. All quantities have been divided by their natural scales: �ρCa = 0.000 15 fm−3 and �RCa = 0.04 fm. The solid columns represent
the optimal locations qm, while the borderless ones represent the starting q0.

(K in total) should be zero:

1

2

∂χ2

∂ωk

∣∣∣∣
(ω0,y0 )

≡ Gk (ω, y)|(ω0,y0 ) = 0, (A2)

where we use the notation y ≡ (y1, . . . , yn) to refer to the
group of all J observations, and the subscript “0” to refer to the
unperturbed variables. We call Gk (ω, y) the first derivative of
χ2/2 with respect to parameter ωk . The Gk are the following
functions of both the parameters and the observations:

Gk (ω, y) =
J∑
j

(Fj − y j )

σ 2
j

∂Fj

∂ωk
. (A3)

Now, if we perturb observation y j by a small amount δy j

the minimum of χ2/2 will move accordingly. If we want to
preserve all K equations (A2) (there is one equation for every
parameter), then the values of all ωk should change a small
amount as well δωk to compensate. Quantitatively, this means
(to first order)

δy j
∂Gk

∂y j
= −

K∑
i

δωi
∂Gk

∂ωi
. (A4)

We can arrange all K equations into a matrix form:

∂G1

∂y j
δy j = −

(
∂G1

∂ω1
δω1 + ∂G1

∂ω2
δω2 + · · · + ∂G1

∂ωK
δωK

)
,

FIG. 13. Seven models comparison for recovering the interior density and mean charge radius from the charge form factor data on 208Pb.
The bias, SD, and MSE for each model are shown in their respective three left columns for the interior density and in the three right columns for
the radius. All quantities have been divided by their natural scales: �ρPb = 0.000 08 fm−3 and �RPb = 0.06 fm. The solid columns represent
the optimal locations qm, while the borderless ones represent the starting q0.
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TABLE V. Optimal locations qm for each model when optimizing
the figure of merit in Eq. (37). These qj values correspond to the solid
bars results in Fig. 12 for the charge density of 48Ca. All values are
in units of fm−1.

qj (fm−1) q1 q2 q3 q4 q5

Bessels 0.65 1.26 1.73 2.12 2.55
Helm 0.68 0.71 1.39 2.09 2.10
SF 0.44 0.62 1.24 2.09 2.79
SF3 0.56 0.90 1.20 1.84 2.50
SF4 0.50 1.10 1.92 2.12 2.59
SF+B 0.67 1.31 1.80 2.43 3.20
SF+G 0.63 1.25 1.78 2.17 2.80

∂G2

∂y j
δy j = −

(
∂G2

∂ω1
δω1 + ∂G2

∂ω2
δω2 + · · · + ∂G2

∂ωK
δωK

)
,

...
...

...

∂GK

∂y j
δy j = −

(
∂GK

∂ω1
δω1 + ∂GK

∂ω2
δω2 + · · · + ∂GK

∂ωK
δωK

)
,

where, since the Gk were already first derivatives of χ2/2,
we can recognize the Hessian matrix ∂Gi

∂ωk
= Hi,k . We also

recognize ∂Gk
∂y j

= − ∂Fj

∂ωk
σ−2

j . We therefore have

−∇Fjσ
−2
j δy j = −Hδω,

[
H−1∇Fjσ

−2
j

]
δy j = δω,

where, since the perturbation δy j can be made arbitrary small,
we must conclude that the quantity in brackets is what were
looking for. These are the linear coefficients connecting a
small change in y j with the small change in every parameter
ωk , proving Eq. (A1).

This was a constructive proof of the transfer function
structure. Another approach would be to use Newton’s min-
imization method to find the location of the new minimum
of χ2/2 once we make the perturbation y j → y j + δy j . New-
ton’s method involves the same ingredients shown in Eq. (A1),
namely the gradient and Hessian of the scalar objective func-
tion (χ2/2). The reason why the gradient does not involve all
observation but just the jth component is because in Eq. (A3)
only the term multiplying δy j survives. Everything else gets
canceled by the definition of the minimum.

Finally, a third approach results by invoking the implicit
function theorem on the minimum conditions of χ2/2. Those
are K equations and each one is a function of the J observa-
tions and K parameters, where K � J . Under these conditions,
there exists a map in a vicinity around (ω0, y0) from the bigger
set of variables (the observations) to the smaller set (the pa-
rameters). The coefficients of this linear map (first derivatives)
are precisely given by (A1) (see [60, pp. 41–42]).

2. Comparing the transfer function variance with the standard
approach’s variance

This subsection presents a formal proof of the statement
discussed at the end of Sec. III A. When the Hessian matrix

TABLE VI. Optimal locations qm for each model when optimiz-
ing the figure of merit in Eq. (37). These qj values correspond to the
solid bars results in Fig. 13 for the charge density of 208Pb. All values
are in units of fm−1.

qj (fm−1) q1 q2 q3 q4 q5

Bessels 0.37 0.86 1.20 1.60 1.80
Helm 0.41 0.43 0.83 0.88 1.31
SF 0.42 0.43 0.83 0.87 0.88
SF3 0.23 0.41 0.88 1.07 1.16
SF4 0.25 0.36 0.70 1.22 1.51
SF+B 0.38 0.87 1.27 1.75 1.97
SF+G 0.36 0.90 1.29 1.68 1.91

(11) only involves the linear part of the model,

Hi,k =
J∑

j=1

1

σ 2
j

[(
∂F (q j,ω)

∂ωi

)(
∂F (q j,ω)

∂ωk

)]
, (A5)

then the variance calculated using the standard approach (12)
and the variance calculated using the transfer function formal-
ism (25) are identical, namely

�m2 = ∇mH−1∇m, (A6)

�m2 =
J∑
j

[∇m H−1∇F (q j,ω)σ−2
j

]2
σ 2

j . (A7)

Let us recall that we have J observations and K parameters
with K � J . To prove this statement, we first observe that the
matrix H is built by the sum of J tensor products between the
gradients ∇Fjσ

−1
j with themselves:

H =
J∑
j

[∇Fjσ
−1
j

] ⊗ [∇Fjσ
−1
j

]
. (A8)

Therefore, H can be written as the product of a matrix F and
its transpose as:

H = FFT , (A9)

where F is a K × J matrix which columns are the gradients
of F :

F = (∇F1σ
−1
1 ∇F2σ

−1
2 · · · ∇FJσ

−1
J

)
. (A10)

We decompose F and FT into their QR decomposition (see
Theorem 2 in [61]):

F = RT QT , FT = QR, (A11)

where Q and R are a J × K and a K × K matrix, respectively.
The Q matrix is an orthonormal matrix meaning: QT Q = IK,K ,
where IK,K is the K × K identity matrix. Under these condi-
tions, we have that

∇mH−1∇m = ∇m[RT QT QR]−1∇m

= ∇mR−1(RT )−1∇m = ||(RT )−1∇m||2.
(A12)

Therefore, under the standard approach Eq. (A6) is calcu-
lating the norm squared of the vector (RT )−1∇m in RK . Let
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TABLE VII. Numerical values for the data displayed in Fig. 12: model comparison for the electric charge density of 48Ca.

q0 qm

Interior Radius Interior Radius

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

Bessels 0.15 1.26 1.27 0.05 1.37 1.37 0.19 1.24 1.25 0.00 0.96 0.96
Helm 0.50 0.54 0.73 0.72 0.73 1.03 0.51 0.55 0.75 0.12 0.49 0.50
SF 0.59 0.51 0.78 1.28 0.85 1.54 0.48 0.49 0.68 0.37 0.67 0.77
SF3 0.62 0.83 1.04 1.33 1.04 1.68 0.34 0.66 0.74 0.29 0.84 0.88
SF4 0.75 1.00 1.25 0.31 4.38 4.40 0.73 1.01 1.25 0.08 1.38 1.38
SF+B 1.47 3.00 3.35 0.42 1.46 1.52 0.12 1.46 1.47 0.30 0.86 0.92
SF+G 0.37 1.48 1.52 0.32 1.71 1.74 0.26 1.39 1.41 0.13 0.97 0.98

us now work with Eq. (A7) and obtain a similar structure but
in RJ .

Given how F is defined, we realize that

F · e j = ∇Fjσ
−1
j , (A13)

where e j = (0, 0, . . . , 1, . . . , 0) is the jth vector in the canon-
ical base of RJ with all entries as 0 except for an entry of 1 in
position j.

Therefore, in Eq. (A7), we can replace ∇Fjσ
−1
j by F · e j

and obtain

J∑
j

[∇mH−1F · e j]
2

=
J∑
j

[∇mR−1(RT )−1RT QT · e j]
2

=
J∑
j

[(∇mR−1QT ) · e j]
2 = ||Q(RT )−1∇m||2, (A14)

where the last term is the norm of the vector Q(RT )−1∇m
calculated in RJ . But, since the matrix Q is orthonormal, it
preserves norms when taking vectors from RK to RJ . We must
conclude that this expression is also the norm of the vector
(RT )−1∇m in RK , which proves that Eqs. (A6) and (A7) are
identical.

APPENDIX B: MODEL DESCRIPTIONS

This section presents detailed information about the seven
models we studied in this work. For each model, we provide
its analytic form (if available) as a function of its parameters in
both coordinate space ρ(r) and momentum space F (q); a nor-
malization condition (if any), that restricts the parameters; the
mean squared radius R as a function of the parameters when
available; and the values of the model’s hyperparameters, if
any, used in this work.

Fourier-Bessel. Under this formalism [46], the density is
written as

ρFB(r) = H (Rcut − r)
N∑

ν=1

aν j0(qνr), (B1)

where j0 denotes the zeroth-order spherical Bessel function
of the first kind, aν are the free parameters, qν = νπ/Rcut, and
Rcut is such that ρ(r) = 0 for r > Rcut. This last condition is
enforced by the Hevisde theta function H .

The form factor can be expressed analytically as

FFB(q) =
N∑

ν=1

aνGν (q), where (B2)

Gν (q) ≡ 4π (−1)ν j0(qRcut )
Rcut

q2 − q2
ν

. (B3)

TABLE VIII. Numerical values for the data displayed in Fig. 13: model comparison for the electric charge density of 208Pb.

q0 qm

Interior Radius Interior Radius

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

Bessels 0.44 1.95 2.00 0.02 1.88 1.88 0.48 1.82 1.89 0.08 0.74 0.74
Helm 0.17 0.22 0.28 0.30 0.91 0.96 0.14 0.19 0.24 0.04 0.41 0.41
SF 0.17 0.22 0.28 0.20 1.06 1.08 0.16 0.19 0.24 0.09 0.42 0.43
SF3 0.15 0.58 0.60 0.55 1.40 1.50 0.10 0.45 0.46 0.19 0.59 0.62
SF4 0.19 0.73 0.76 0.17 3.59 3.59 0.18 0.76 0.78 0.09 0.72 0.72
SF+B 0.17 2.86 2.86 0.36 1.60 1.64 0.17 2.43 2.44 0.21 0.69 0.72
SF+G 0.13 2.64 2.64 0.35 1.72 1.75 0.17 2.50 2.51 0.19 0.74 0.76
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TABLE IX. Optimal locations qm for each model when optimiz-
ing the figure of merit in Eq. (37). These qj values correspond to the
solid columns results in Fig. 7 for the five generated weak charge
densities of 48Ca. All values are in units of fm−1.

qj (fm−1) q1 q2 q3 q4 q5

Bessels 0.71 1.32 1.81 2.28 2.65
Helm 0.51 0.63 0.77 1.44 2.93
SF 0.74 0.92 1.36 1.67 2.50
SF3 0.54 1.32 1.69 1.87 2.42
SF4 0.44 1.41 2.10 2.82 2.88
SF+B 0.61 1.26 1.78 2.32 3.03
SF+G 0.57 1.18 1.69 2.06 2.68

The normalization condition translates to

FFB(0) =
N∑

ν=1

(−1)ν+1 4πRcut

q2
ν

aν = 1. (B4)

The mean square radius is obtained as

R2 = 4π

N∑
ν

aν

(−1)νR5
cut (6 − ν2π2)

ν4π4
. (B5)

In this work, we use Rcut = 7 fm when analyzing 48Ca, and
Rcut = 10 fm when analyzing 208Pb. We use a total of five
adjustable aν for both nuclei which translates to six Bessels
(N = 6) due to the normalization condition.

Helm density. The Helm density [47] is

ρH (r) = 1

2
ρ0H

[
erf

(
r + R0√

2σ

)
− erf

(
r − R0√

2σ

)]

+ 1√
2π

(
σ

r

)
ρ0H

×
{

exp

[
− (r + R0)2

2σ 2

]
− exp

[
− (r − R0)2

2σ 2

]}
,

(B6)

where

ρ0H ≡ 3

4πR3
0

, (B7)

where R0 and σ are the adjustable parameters, and erf(x) is
the error function:

erf(x) ≡ 2√
π

∫ x

0
e−z2

dz. (B8)

The Helm form factor is built by the product of two form
factors: a uniform “box” density inspired by the fact that nu-
clear matter in nuclei saturates, and a Gaussian falloff which
takes into account the finite size of the nucleons:

FH (q) = 3
j1(qR0)

qR0
e−q2σ 2/2, (B9)

where j1 is the spherical Bessel function of first order, j1(x) =
sin(x)

x2 − cos(x)
x .

TABLE X. Optimal locations qm for each model when optimiz-
ing the figure of merit in Eq. (37). These qj values correspond to the
solid columns results in Fig. 8 for the five generated weak charge
densities of 208Pb. All values are in units of fm−1.

qj (fm−1) q1 q2 q3 q4 q5

Bessels 0.37 0.84 1.21 1.61 1.80
Helm 0.37 0.40 0.84 1.23 1.24
SF 0.37 0.40 0.77 0.84 1.36
SF3 0.38 0.43 0.87 1.03 1.17
SF4 0.32 0.52 0.68 0.81 1.09
SF+B 0.37 0.84 1.25 1.70 1.94
SF+G 0.32 0.82 1.23 1.65 1.85

The radius is given by

R2 = 3
5 R2

0 + 3σ 2. (B10)

Symmetrized Fermi function. The symmetrized Fermi func-
tion [48] is constructed as fSF (r) ≡ fSF (r) + fSF (−r) − 1,
where fSF is the traditional Fermi function [62]. Its density
and form factor are expressed as

ρSF (r) = ρ0SF
sinh(c/a)

cosh(r/a) + cosh(c/a)
, (B11)

FSF (q) = 3

qc[(qc)2 + (πqa)2]

[
πqa

sinh(πqa)

]
×

[
πqa

tanh(πqa)
sin(qc) − qc cos(qc)

]
, (B12)

where the normalization constant is

ρ0SF = 3

4πc(c2 + π2a2)
, (B13)

where the parameters a and c represent the surface diffuseness
and half-density radius, respectively. The radius R is given by

R2 = 3
5 c2 + 7

5 (πa)2. (B14)

Symmetrized Fermi function of three and four parameters.
Based on the two parameter symmetrized Fermi density, we
can build three-parameter and four-parameter densities as

ρSF3(r) = ρ0SF3(1 + wr2)
sinh(c/a)

cosh(r/a) + cosh(c/a)
,

(B15)

ρSF4(r) = ρ0SF4(1 + wr2 + ur4)
sinh(c/a)

cosh(r/a) + cosh(c/a)
.

(B16)

The parameters w and u are introduced to add flexibility
near r = 0 to the densities and to reproduce oscillations. Due
to the size of their expressions, the normalization constants
ρ0SF3 and ρ0SF4, the form factors and the radius equations are
not included here but can be calculated analytically.

Symmetrized Fermi function plus Bessels (SF + B) and plus
Gaussians (SF + G).

By construction the two parameter symmetrized Fermi
function ρSF (r) exhibits a flat behavior in the interior, so it
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TABLE XI. Numerical values for the data displayed in Fig. 7: model comparison for the five generated weak charge densities of 48Ca.

q0 qm

Interior Radius Interior Radius

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

Bessels 0.09 1.26 1.26 0.06 1.31 1.31 0.08 1.30 1.31 0.30 0.87 0.92
Helm 1.22 0.50 1.32 1.08 0.87 1.39 0.70 0.56 0.90 0.03 0.45 0.45
SF 1.09 0.47 1.19 0.87 1.04 1.37 0.62 0.41 0.74 0.24 0.76 0.81
SF3 1.20 0.86 1.47 2.14 1.18 2.44 0.60 0.93 1.11 1.04 0.94 1.40
SF4 0.94 1.39 1.68 2.71 1.70 3.22 0.63 1.62 1.74 1.23 1.10 1.65
SF+B 0.70 2.37 2.47 1.04 1.83 2.10 0.17 1.47 1.48 0.90 0.95 1.31
SF+G 0.19 1.44 1.45 1.02 2.25 2.47 0.22 1.35 1.36 0.82 1.11 1.38

cannot describe shell oscillations (small bumps and valleys
around the saturation density background). As a different ap-
proach to adding parameters as in Eqs. (B15) and (B16), we
propose to use the following hybrid models.

SF + B:

ρSFB(r) =
(

1 −
NB∑
ν=1

(−1)ν+1 4πRcut

q2
ν

aν

)
ρSF (r)

+ H (Rcut − r)
NB∑
ν=1

aν j0(qνr),

where j0 is the spherical Bessel function of the first kind and
H the Heaviside theta function. We set Rcut = 3.3 fm for 48Ca
and Rcut = 5 fm for 208Pb. Rcut in this context specifies the
region where we believe the interior oscillations are impor-
tant. We use a total of three adjustable coefficients aν which
in this case correspond to three Bessels (NB = 3) since the
normalization is enforced automatically. We have therefore a
total of five parameters including a and c from the SF model.

SF + G:

ρSFG(r) =
(

1 −
NG∑
i=1

Ai

)
ρSF (r)

+ 1

2π3/2γ 3

NG∑
i=1

Ai g(r, Ri ), (B17)

where g(r, Ri ) is defined as

g(r, Ri ) = 1

1 + 2R2
i /γ

2
(e−(r−Ri )2/γ 2 + e−(r+Ri )2/γ 2

). (B18)

The amplitudes of the Gaussians Ai act as adjustable pa-
rameters. In our case they are not restricted to be positive in
contrast with [49]. We use a total of three Gaussians (NG = 3),
giving us five adjustable parameters including a and c from
the SF model. The hyperparameter γ , which represents the
common width of the Gaussians, is set to γ = 1.4 fm for both
nuclei (see Sec. III E for a discussion of this value). The center
of each Gaussian is denoted by Ri and we chose the following
values:

R = [0, 1.3, 2.6] fm for 48Ca,

R = [0, 2, 4] fm for 208Pb . (B19)

The main idea behind these expansions is that the principal
behavior of the nuclear density is modeled by the symmetrized
Fermi density, while the fine details are modeled by either a
sum of Bessels or Gaussians. Both Rcut and the Ri are chosen
in such a way that they cover the region where we expect the
oscillations around a flat density to be important.

The Bessel approach has the disadvantage that the to-
tal density ρSFB(r) will present a discontinuity at r = Rcut.
This “kink,” while nonphysical, might not preclude the entire
model from describing nuclear densities.

TABLE XII. Numerical values for the data displayed in Fig. 8: model comparison for the five generated weak charge densities of 208Pb.

q0 qm

Interior Radius Interior Radius

Bias SD MSE Bias SD MSE Bias SD MSE Bias SD MSE

Bessels 0.20 1.95 1.96 0.40 1.82 1.86 0.36 1.83 1.87 0.05 0.70 0.71
Helm 0.10 0.23 0.25 0.59 1.11 1.26 0.11 0.21 0.24 0.01 0.45 0.45
SF 0.09 0.22 0.24 0.28 1.40 1.43 0.09 0.19 0.21 0.25 0.47 0.53
SF3 0.15 0.59 0.61 0.51 1.99 2.06 0.10 0.40 0.41 0.29 0.62 0.69
SF4 0.14 0.77 0.78 0.61 4.08 4.13 0.14 0.60 0.62 0.21 0.83 0.86
SF+B 0.13 2.70 2.70 0.46 2.19 2.24 0.15 2.40 2.41 0.31 0.78 0.84
SF+G 0.19 2.56 2.57 0.47 2.50 2.54 0.26 2.48 2.49 0.27 0.82 0.87
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FIG. 14. Bessel model bias, standard deviation (SD), and MSE across the five different generators for the weak charge of 48Ca. The last
group of columns shows the square average of the five generators. Within each generator, the first three columns refer to the interior density
while the second three refer to the radius. All quantities have been divided by their natural scales defined in Table I.

The form factors for both densities can be expressed in
analytic form:

FSFB(q)

=
(

1 −
NB∑
ν=1

(−1)ν+1 4πRcut

q2
ν

aν

)
FSF (q) +

NB∑
ν=1

aν Gν (q),

(B20)

FSFG(q) =
(

1 −
NG∑
i=1

Ai

)
FSF (q) +

NG∑
i=1

Ai g̃(q, Ri ), (B21)

where Gν (q) is defined in Eq. (B3), and g̃(q, Ri ) is defined as

g̃(q, Ri ) = e−q2γ 2/4 1

1 + 2R2
i /γ

2

(
cos(qRi ) + 2R2

i

γ 2
j0(qRi )

)
.

(B22)

The SF + B radius is given by

R2 =
(

1 −
NB∑
ν=1

(−1)ν+1 4πRcut

q2
ν

aν

)(
3

5
c2 + 7

5
(πa)2

)

+ 4π

NB∑
ν=1

aν

(−1)νR5
cut (6 − ν2π2)

ν4π4
. (B23)

The SF + G radius is given by

R2 =
(

1 −
NG∑
i

Ai

)(
3

5
c2 + 7

5
(πa)2

)

+
NG∑
i=1

Ai
3γ 4 + 4R4

i + 12γ 2R2
i

2(γ 2 + 2R2
i )

.

FIG. 15. SF model bias, standard deviation (SD), and MSE across the five different generators for the weak charge of 208Pb. The last group
of columns shows the square average of the five generators. Within each generator, the first three columns refer to the interior density while
the second three refer to the radius. All quantities have been divided by their natural scales defined in Table I.
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TABLE XIII. Absolute value transfer function values for the
density at r = 0 fm (|TFρ(0)

j σ j |/�ρCa) for the five locations q0 =
[0.9, 1.35, 1.8, 2.24, 2.69] fm−1 in units of the natural scale �ρCa.
Each TF has been multiplied by its respective σ j to somehow repre-
sent a fraction of the total standard deviation SD. The three different
prior options are explored for the SF+G model.

q1 q2 q3 q4 q5

P0 1.06 0.46 2.38 0.35 1.10
P1 0.68 0.78 0.64 0.47 0.20
P2 0.40 0.16 0.16 0.09 0.20

APPENDIX C: DETAILS ABOUT THE SF + G
RECONSTRUCTION BIAS ANALYSIS

This section provides a more detailed view at the recon-
struction bias for the SF + G model discussed in Sec. III E.
Let us recall that we are analyzing how much the placement of
the fourth measurement q4 impacts the change in ρ(0) through
the transfer function formalism:

δρ(0) = [
TF (ρ(0))

4

]
ηy4 . (C1)

Figures 11(a.1) and 11(b.1) show this calculated δρ(0)
in black (as an absolute percentage) as q4 moves along the
possible momentum transfer range [0, 3.5] fm−1 while the
other q j remain in position. The SF + G model with the hy-
perparameter γ = 0.7 fm is displayed in (a.1) while γ = 1.4
fm is used in (b.1). The x axis of both plots shows the two
original data sets of q0 = [0.77, 1.30, 1.82, 2.41, 3.06] fm−1

(blue), and q1 = [0.77, 1.30, 1.82, 2.7, 3.06] fm−1 (orange),
which only differ in their q4 value.

In Fig. 11(a.1) it can be observed that for most locations
the calculated |δρ(0)|% exceeds the 5% threshold (the blue
dashed line). On the other hand, for (b.1) the black curve is
overall lower, showing a wider region where |δρ(0)| � 5%.
This overall reduction is the reason why we chose γ = 1.4 fm
to perform the analysis in Sec. IV.

The “spikes” where |δρ(0)| grows abruptly appear when
we aim to move q4 to the other q j locations, effectively mea-
suring twice in the same spot. Since we have five parameters
and five observations, this results in a non-invertible Hessian
for χ2, which blows up the transfer function TFρ(0)

4 . It is
interesting to note that, even though there is not an observation
located at q = 0 fm−1, a “spike” can still be observed. This
is because by definition all model form factors must respect
F (0) = 1. Therefore a measure at q = 0 fm−1 provides no
new information, resulting in a noninvertible Hessian as well.

Figures 11(a.2) and 11(b.2) show the true form factor
(RMF012) in black and the observation locations as the blue
and orange points, where (a.2) is for γ = 0.7 fm and (b.2) is
for γ = 1.4 fm. The red squares represent “forbidden zones”:
regions in the q space where if we place the fourth location q4

we obtain a bias in ρ(0) bigger than 5%. For (a.2) these zones
occupy around 85% of the total q range, while for (b.2) they
occupy around 70%.

By the construction in Sec. III E, locating q4 at the blue
point q = 2.41 fm−1 will result in almost zero bias since the
optimal form factor and the true form factor have the same

value (η4 = 0). As q4 moves away from this location, we
expect the bias to increase. A “bad” model will present a
bias that grows too quickly, while a “good” model will be
more tolerable. As can be observed in Fig. 4, for the same
q4 = 2.7 fm−1, the SF + G with γ = 0.7 fm (orange dashed
curve) fails to be within the λρ band, while the SF + G with
γ = 1.4 fm (red dashed line) stays within. In Fig. 11(a.2) the
orange point is covered by the red rectangle. This is not the
case for (b.2).

It should be noted that changing the hyperparameter γ

from 0.7 to 1.4 fm can impact the locations where η j = 0
since now the optimal function will be different. Nevertheless,
in the case we studied here the change in these locations was
negligible, a fact that simplified our discussion.

APPENDIX D: DETAILS ABOUT THE 48Ca AND 208Pb
CHARGE EXAMPLES AND MODEL COMPARISON

This Appendix presents tables and details relevant to
the 48Ca and 208Pb charge density example developed in
Sec. IV A. It includes the results of applying the same analysis
on model comparison developed in Sec. IV B to the electric
charge densities of both nuclei instead of their weak densities
counterparts.

Tables III and IV show for the 48Ca and 208Pb examples,
respectively, the original locations q0 as well as the locations
qm that minimize the FOM defined in Eq. (37). Tables III
and IV also show the numerical values of the TF times the
respective error σ j for the density at r = 0 fm and the radius
for both data sets q0 and qm. Let us recall that it is the total
interior density [the 30 grid points in Eq. (36)] that goes in the
FOM, Eq. (37). We are using ρ(0) as a representative of the
total interior density. All of the transfer function values have
been divided by the natural scales defined in Table I.

By adding in quadrature each element in the rows of
Tables III and IV (the transfer functions values times the
respective errors), the total variance in ρ(0) or R can be
calculated from Eq. (25), in units of the natural scale. In this
sense, each number in the table represents the contribution
of that measurement to the total variance in that quantity.
This allows us to identify, for example, that the variance in
R in the case of qm for 48Ca is completely driven by the
first observation q1 = 0.9 fm−1, while the contribution of the
last point q5 = 2.69 fm−1 is negligible. From an experimental
design point of view, this means that if our main goal is to
reduce the uncertainty in the radius, we must allocate the
resources accordingly and reduce the error bar on q1 rather
than reducing the error bars in the other locations.

Figures 12 and 13 show, for 48Ca and 208Pb, respectively,
the results for comparing the seven models defined in Sec. II B
to recover the interior charge density and charge radius.
The numerical values shown in these Figures are written in
Tables VII and VIII. Tables V and VI show the associated
optimal locations qm for every model for 48Ca and 208Pb,
respectively.

We judge each model by their individual bias, stan-
dard deviation, and MSE both in the original locations q0
as well as the optimized locations qm where the FOM is
minimized. As we did in Sec. IV B, the starting locations
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are q0 = [0.9, 1.35, 1.8, 2.24, 2.69] fm−1 for 48Ca and q0 =
[0.63, 0.94, 1.26, 1.57, 1.88] fm−1 for 208Pb.

We observe trends similar to the one displayed by Figs. 7
and 8 when comparing models for the weak charge densi-
ties. Changing the data locations can result in an important
reduction of the MSE, for example by a factor of 2 by the
SF in the 48Ca radius. There are also significant variations
in performance among the models, for example a factor of 3
between the SF + B and SF + G when compared to the Helm
model when extracting the interior density of 208Pb for q0.
Once again, for the data range and errors we have assumed,
the Helm and SF model seem to outperform all of the other
options in both nuclei.

Finally, it is interesting to analyze the distribution of op-
timal locations qm for the seven models in Tables V and VI.
Let us recall that we limited the maximum value of any qj

to be less than 3.5 fm−1 for 48Ca and less than 2 fm−1 for
208Pb. Although there is no clear pattern, both the SF and
Helm models seem to have overall smaller values of q j , while
the models involving Bessels seem to be more in the high
end. Depending on the experiment details and constraints,
some regions of the q space would be easier to access than
others. In that case, a more detailed analysis could be done
to optimize a modified version of the FOM in which we take
into account the experimental budget. It is very likely that the
FOM would not be extremely sensitive to the exact locations
of qm. Therefore, an adjustment of each q j could result in
a substantial reduction of the experimental budget while the
FOM deteriorates just a small amount.

APPENDIX E: DETAILS ABOUT THE 48Ca AND 208Pb
WEAK CHARGE ANALYSIS

This Appendix presents tables and details relevant to the
48Ca and 208Pb weak charge density model comparison de-
veloped in Sec. IV B. The numerical values associated with
Figs. 7 and 8 are shown in Tables XI and XII, respectively.
Tables IX and X show the associated optimal locations qm for
every model for 48Ca and 208Pb, respectively.

As done in Appendix D, we can analyze the distribution
of these optimal locations qm. We observe a similar structure
from their charge counterparts: no clear pattern but both SF
and Helm models seem to have overall smaller values of qj ,
while the models involving Bessels seems to be more in the
high end.

Since parity violating experiments are extremely expen-
sive and challenging, the experimental constraints and budget
should definitely be considered in a more detailed analysis to
optimize a modified version of the FOM. We again anticipate
that the FOM will not be extremely sensitive to the exact
locations of qm, and that an adjustment of each q j could result
in a huge impact on the budget while the FOM deteriorates
just a small amount. This analysis could also change our
conclusions regarding the optimal models. For example, for
the weak results of 208Pb, the Helm model seems to have a
better FOM combination than the SF, but it could be that the
qm from the SF model are more experimentally accessible than
those from the Helm model.

TABLE XIV. Absolute value prior transfer function values for
the density at r = 0 fm (|TFρ(0)

k σk |/�ρCa) for the three amplitudes
in units of the natural scale �ρCa. Each TF has been multiplied by
its respective σk [see Eq. (39)] to somehow represent a fraction of the
total SD. The finite prior is the only one considered.

A1 A2 A3

P1 0.89 0.24 0.58

Finally, Figs. 14 and 15 show, as an example, the detailed
results of the Bessels model for 48Ca and the SF model for
208Pb, respectively, across the five different generators used in
Sec. IV B. The last columns on each figure show the squared
average [see Eq. (20)] of each quantity (bias, SD, and MSE),
which corresponds to the single values displayed in Figs. 7
and 8 in the main text. As can be seen, the variations among
different generators are very small. We interpret this as a sign
that our conclusions are robust at least within the family of
generators we considered in this study.

APPENDIX F: DETAILS ABOUT THE ROLE OF PRIORS

This section presents tables with the numerical values of
the transfer functions of both the data and the priors related
to what was discussed in Sec. IV C. Let us recall that we are
using the SF + G model with three scenarios for the prior. In
terms of their strength these are (1) P0: no prior (unconstrained
SF + G); (2) P1: the specified prior in Eq. (39); and (3) P2:
a very restrictive prior which makes the SF + G practically
behave as the SF model without Gaussians.

Table XIII shows the numerical value of |TFρ(0)
j σ j |/�ρCa

for the five different locations and for the three different
priors. Let us recall that the FOM in Eq. (37) is calculated
using the entire interior density, but in this section we are
focusing in ρ(0) as a representative. For each scenario, the
total contribution of the data in the variance on the density at
r = 0, namely �ρ(0)2, is obtained by adding the numbers in
Table XIII in quadrature.2 In this sense, each number in the
table reflects how much that particular data point uncertainty
σ j contributes to the total band that surrounds ρ(0) in Fig. 10,
in units of the natural scale �ρCa from Table I.

It can be observed that, as the prior strength increases, the
influence of each data point uncertainty σ j tends to decrease,
in some cases even by an order of magnitude. This reflects
the fact that models constrained by priors, which are in some
sense less complex, will present a smaller variance. From
the transfer function point of view, this is driven by a more
constrained H̃ [see Eq. (18)].

To get a complete picture in terms of standard deviation,
we must also look at the variance introduced by the addition
of the prior itself. In Eq. (16a), we can see that each Gaussian
prior has an associated center ω0

k , and “error” σk which are
analogous to the true observations y j and true error σ j of

2The position r = 0 fm is only one of the 30 grid points in Eq. (36).
The total interior MSE will receive contributions not only from ρ(0).
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TABLE XV. Prior transfer function values for the density at r =
0 fm (TFρ(0)

k ηωk /�ρCa) for the three amplitudes in units of �ρCa.
Each TF has been multiplied by its respective η̃k to represent its
fraction of the prior-induced bias.

A1 A2 A3

P1 5.1 −0.17 −2.7
P2 10 0.64 −11

the data in Eq. (10). Although H̃ is more constrained, we
now have to take into account the transfer functions (TFρ(0)

k )
associated with the fact that in principle ω0

k could fluctuate
around its center by as much as σk (to 1 sigma).

The scenario without prior P0 does not present these trans-
fer functions. The scenario with the extremely constrained
prior P2 does not present the transfer functions either since
it is as if the parameters associated with the Gaussians were
not there in the first place (also, we have observed that numer-
ically TFρ(0)

k σk → 0 when σk → 0). Table XIV shows in the
case of the intermediate prior P1 the numerical value of these
TFρ(0)

k times their respective uncertainty σk in terms of the
natural scale �ρCa. The total variance in ρ(0) for the model
with this prior is calculated by adding in quadrature these
values plus the ones associated with the data in Table XIII.

We can also describe the induced bias by the inclusion
of a prior, i.e., how the estimated central value of ρ(0) is
impacted by the new prior. This description is done in terms
of the prior transfer functions TFρ(0)

k by analyzing how the
parameters ωP0 (those obtained in the absence of a prior) move
to either ωP1 or ωP2 (the fitted parameters when using prior P1

or P2). The reasoning is similar to the discussion about the η j

and how they moved the fitted parameters ω away from the
optimal value ωOpt.

Suppose that we are currently at ωP0 and we add a prior
term to χ2 [converting it to χ̃2 defined in Eq. (17)] in such
a way that the centers ω0

k fall exactly at the value of their
respective parameters ωP0{k}; then the central value of the
fitted parameters will not change by the addition of that prior.

As a concrete example, let us assume that when the data are
fitted the value of the first unconstrained parameter of (A1) is
ωP0{1} = 0.005. Then, if we add to the total χ2 a prior term
of the form

(ω1 − 0.005)2

σ 2
1

, (F1)

and fit the parameters again, we will obtain the same values for
all the parameters (the Hessian would be more restricted, but
the center location will be intact). Now, let us imagine that we
“perturb” the value of the center ω0

k (in the example 0.005),
and move it to the original location of the prior we want to
enforce (either ωP1 or ωP2 ). This change, which we call η̃k ,
will now produce a change in the value of the parameters and
therefore, in ρ(0):

δρ(0) = TFρ(0)
k η̃ωk , (F2)

where η̃k ≡ ω0
k − ωP0{k}, the difference between the parame-

ter’s value without priors and the new prior centers. Table XV
shows in units of �ρCa, the predicted change δρ(0)k =
TFρ(0)

k η̃ωk driven by the inclusions of the prior in the three
amplitudes of the Gaussians for P1 and P2.

To obtain the total predicted change in ρ(0) (in units of
�ρCa), we must add all numbers in each row. Due to the fact
that they alternate signs for this example, the total change
in the case with the stronger prior P2 ends up being smaller
than the intermediate strength. However, we can appreciate
that as the prior strength increases, the influence of its transfer
functions increases by a factor between 2 and 4. We interpret
this as an increase in the bias of the model as compared to its
priorless counterpart.

Finally, note that Eq. (F2) is just a linear approximation.
Nonlinear models will deviate from the predictions of this
linear approximation if the parameters change considerably.
In this particular case, the predictions on δρ(0) are within
≈40% of the true change ρ(0) obtained when refitting the
parameters with the new priors. Even though the numerical
accuracy is not perfect, these types of analysis can help in
better estimating the bias vs variance tradeoff when including
priors.
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