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Density dependence of the quark condensate in isospin-asymmetric nuclear matter
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We compute the density dependence of the quark condensate and how it changes under the influence of
isospin-asymmetric nuclear matter. This is achieved by the calculation of the relevant Feynman diagrams
using in-medium chiral perturbation theory. We find that the absolute value of the quark condensate decreases
in nuclear matter by around 35% at normal nuclear density, in agreement with previous model-independent
calculations. We also present an quantitative estimation of the difference of up- and down-quark in-medium
condensates.
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I. INTRODUCTION

The dynamical breaking of chiral symmetry (DBχS) is an
intriguing phenomenon in the low-energy spectrum of quan-
tum chromodynamics (QCD). One of the order parameters of
this symmetry breaking process is the quark condensate 〈q̄q〉.
In the symmetric phase, the value of the quark condensate
is zero, and after the symmetry breaking phase transition, it
acquires a finite value. It is expected that in extreme environ-
ments of the QCD phase diagram, e.g., at high temperature
and high densities, the chiral symmetry will be at least par-
tially restored.

One way to confirm DBχS is therefore to investigate the
partial restoration of the chiral symmetry in nuclear matter.
Recent experimental results [1–3], as well as theoretical cal-
culations based on these results [4,5], have revealed that the
quark condensate should decrease by about 30% at the satura-
tion density. In fact, this decrease of the quark condensate had
been predicted by a model-independent low-density relation
[6], according to which the sign of the experimentally avail-
able πN-σ term determines whether the quark condensate
increases or decreases in nuclear matter. As the σπN term
extracted from πN scattering data has been found to have
a positive sign [7], the quark condensate should decrease in
nuclear matter—at least in the low-density region. Hitherto,
it remains an open question up to which densities the low-
density formalism can be applied.

This work is an extension of a previous work [8], where
the quark condensate in symmetric nuclear matter was cal-
culated based on the chiral Ward identity for the in-medium
quark condensate proposed in Ref. [5]. The main distinction
of the present work is, that we consider the more general case
of isospin-asymmetric nuclear matter, where the densities of
protons and neutrons can be varied independently. Previously,
the so-called large-mN limit, where expressions are expanded
in powers of inverse nucleon masses, has been employed. This
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enables an analytical calculation of the integrals encountered,
but in some cases the large-mN limit leads to deviations com-
pared to the full expression. In the present work we also found
that more diagrams are necessary to fully describe the quark
condensate. This includes topologically similar diagrams with
different interaction vertices, as well as topologically distinct
diagrams. These diagrams become especially important in
isospin-asymmetric nuclear matter. In addition, we estimate
the difference of the condensates for the up and down quarks
in isospin-asymmetric nuclear matter in the linear density
approximation.

There have been several other works that investigated
the in-medium corrections to the density dependence of the
quark condensate after Refs. [9,10] introduced in-medium
chiral perturbation theory. Reference [11] investigated the
in-medium quark condensate in pure neutron matter, where
only small deviations to the linear behavior have been re-
ported. The authors furthermore suggest that a restoration of
the chiral symmetry might be favored in environments with
a large neutron surplus, e.g., neutron stars. In Ref. [12], the
authors used in-medium chiral perturbation theory in order to
calculate the density dependence of the quark condensate in
isospin-symmetric nuclear matter. In particular, they included
one- and two-pion exchanges, as well as � contributions and
their results are in good agreement with this work. Further-
more, Ref. [13] investigated the temperature dependence of
both 〈ūu + d̄d〉 and 〈ūu − d̄d〉 at zero density, as well as chiral
susceptibilities, using explicit isospin breaking through mu �=
md and electromagnetic interactions in order to study chiral
symmetry restoration. Let us note that the quark condensate
plays an integral role in other contexts, too. For instance,
there have been investigations on the response to a magnetic
field [14,15], or a mechanism to generate neutrino masses
[16]. Reference [17] pointed out that the wave function renor-
malization of the Nambu-Goldstone boson is a significant
in-medium effect when chiral symmetry is partially restored.
Finally, we note that by using the formalism described in
this work, it is also possible to calculate in-medium hadron
properties, e.g., in-medium pion properties [18]. However, in
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the present scope, we will exclusively focus on the in-medium
quark condensate.

The structure of this paper is as follows. In Sec. II A, we
explicitly show how to calculate the in-medium quark con-
densate 〈ūu + d̄d〉∗ from the SU(2) chiral Ward identity. In
Secs. II B and II C, we introduce in-medium chiral perturba-
tion theory and present the Lagrangian. In Sec. II D, we list
the Feynman diagrams that are used to calculate the quark
condensate, and also their respective integral representation.
In Sec. III we show our numerical results for the in-medium
quark condensate. In Sec. IV, we show a quantitative es-
timation of 〈ūu − d̄d〉∗, for which we use an SU(3) chiral
Lagrangian. Section V is devoted to the summary and con-
clusion.

II. METHODS

We use in-medium chiral perturbation theory with an
SU(2) chiral Lagrangian up to second order in the chiral
counting. The goal is to calculate the pseudoscalar two-point
correlation function, which leads us to the in-medium quark
condensate as shown in Sec. II A. We next describe in-medium
chiral perturbation theory in Sec. II B, and subsequently dis-
cuss our Lagrangian in Sec. II C. In Sec. II D, we derive the
relation between the in-medium quark condensate and the
pseudoscalar two-point correlation functions.

A. In-medium ward identity

In this section, we show how to calculate the nuclear den-
sity dependence of the in-medium quark condensate. To do
this, we follow Ref. [8] and use the chiral Ward identity.
We start with the divergence of the following time-ordered
product:

∂μ
[
TAa

μ(x)Pb(0)
] = T

[
∂μAa

μ(x)Pb(0)
]

+ δ(x0)
[
Aa

0(x), Pb(0)
]
, (1)

where the axial vector current Aa
μ(x) is the Noether current of

the SU(2) chiral transformation and the pseudoscalar fields
Pa(x) are defined in terms of the quark fields as Pa(x) =
q̄(x)iγ 5τ aq(x) with the Pauli matrices τ a for the isospin space.
We assume isospin symmetry for the up- and down-quark
masses. We can use the partially conserved axial current
(PCAC) relation ∂μAa

μ(x) = mPa(x) with m the quark mass,
and evaluate the whole equation between the in-medium vac-
uum |
〉, which is the ground state of the nuclear matter:

∂μ�ab
5μ(x, 0) = m�ab(x, 0)

+ δ(x0)〈
|[Aa
0(x), Pb(0)

]|
〉. (2)

Here we abbreviated

�ab
5μ(x, 0) = 〈
|TAa

μ(x)Pb(0)|
〉, (3)

�ab(x, 0) = 〈
|TPa(x)Pb(0)|
〉. (4)

We perform a Fourier transformation to momentum space,

−iqμ�ab
5μ(q) = m�ab(q) +

∫
d3x e−iq·x〈
|[Aa

0(x), Pb(0)
]|
〉,

(5)

and take the soft limit qμ → 0. This allows us to integrate
over the last term, which gives the corresponding conserved
Noether charge according to Qa

5 = ∫
d3xAa

0(x):

−i lim
q→0

qμ�ab
5μ(q) = m�ab(0) + 〈
|[Qa

5, Pb(0)
]|
〉. (6)

In order to continue, we employ the SU(2) chiral transfor-
mation behavior of the pseudoscalar current, [Qa

5, Pb(0)] =
−iδabq̄q(0), to write the equation

m�ab(0) + i lim
q→0

qμ�ab
5μ(q) = iδab〈q̄q〉∗, (7)

where we have defined 〈
|q̄q|
〉 ≡ 〈q̄q〉∗ ≡ 〈ūu + d̄d〉∗ in
Eq. (7). In the soft limit, the second term on the left-hand side
vanishes, since we do not have any zero modes present. Con-
versely, in the chiral limit, the first term would vanish, because
m = 0, but the second term would survive owing to massless
pion modes. In summary, by calculating the pseudoscalar
two-point correlation function, Eq. (4), in chiral perturbation
theory, we can infer the density dependence of the in-medium
quark condensate. In summary, we use two QCD relations,
PCAC and the Ward identity, in order to relate the quark
condensate to pseudoscalar correlation functions, and then
use chiral perturbation theory to compute those correlation
functions.

We note that it is also possible to investigate the quark
condensate via the Hellmann–Feynman theorem by taking
derivatives of the nucleon energy density with respect to the
quark mass, see, e.g., Ref. [12] and references therein.

B. In-medium chiral perturbation theory

Chiral perturbation theory is an effective field theory, there-
fore its most fundamental quantity is the Lagrangian, which
exhibits the symmetries of QCD. We follow the in-medium
formalism initiated by Oller [9], and developed by Ref. [10].
Using the Lagrangian, we can construct the partition function
Z , which contains the information of all possible interactions.
This generating functional is defined as the transition ampli-
tude between two asymptotic in- and out-states, and can be
written as the exponential of the functional of all connected
Green functions W :

Z[J] = eiW [J] = 〈
out|
in〉. (8)

We assume that these asymptotic states are described by
Fermi seas of noninteracting protons and neutrons at times
t → ±∞. They can be written as N excitations of the vacuum,

|
〉 =
N∏
i

a†(pi )|0〉, (9)

where we include all momenta up to the Fermi momentum,
which depends on the nucleon density as

kp,n
F = (3π2ρp,n)1/3. (10)

Furthermore, a†(pi ) is a nucleon creation operator with
momentum pi and |0〉 is the zero-particle vacuum state.
Correlations between nucleons can be implemented by an
interaction Lagrangian.
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In the path integral formalism, the generating functional
Z[J] can be expressed using the Lagrangian of the system,

Z[J] =
∫

DUDNDN†〈
out|Nt→+∞〉

× ei
∫

d4x(Lπ +LN +LπN )〈Nt→−∞|
in〉, (11)

where the full Lagrangian contains a pion term, a nucleon term
and a pion-nucleon interaction term. The nucleon-nucleon
contact interactions can be also included to describe nucleon-
nucleon correlations, which can be important in O(ρ2).

The nucleon field appears bilinear in the Lagrangian, which
means it can be integrated out [9]. This results in an expansion
of Fermi sea insertions,

Z[J] =
∫

DU exp

{
i
∫

d4x

[
Lπ −

∫
d̃ pFT Tr{i
(x, y)(/p + mN )n(p)}

− i

2

∫
d̃ p d̃qFT Tr{i
(x, x′)(/q + mN )n(q)i
(y′, y)(/p + mN )n(p)} + . . .

]}
, (12)

where d̃ p = d3 p (2π )−3[2E (p)]−1 denotes a Lorentz invari-
ant integration measure, E (p) = (p2 + m2

N )1/2 is the nucleon
energy for momentum p, FT represents a Fourier transforma-
tion of spatial variables (except for x) and 
(x, y) is a nonlocal
vertex defined via in-vacuum quantities,

i
 = A[14 − G0A]−1. (13)

Here the interaction operator A and the free nucleon propa-
gator G0 are given by in-vacuum chiral perturbation theory.
The matrix n(p) implements the different Fermi momenta of
protons and neutrons,

n(p) =
[
�

(
kp

F − |p|) 0
0 �

(
kn

F − |p|)
]
, (14)

and restricts the momentum integration up to these Fermi
momenta using Heaviside step functions. We will abbreviate
these step functions as follows: �

p,n
p ≡ �(kp,n

F − |p|). Finally,
the nonlocal vertex 
(x, y) in Eq. (13) can be expanded in
terms of the interaction operator A and the in-vacuum nucleon
propagator G0 like

i
 = A + AG0A + AG0AG0A + . . . , (15)

and the pion-nucleon interaction operator A will be discussed
in the next section.

C. The chiral Lagrangian

We employ a chiral Lagrangian up to second order in
the chiral counting. There are two contributions to this La-
grangian. We have the pion Lagrangian,

L(2)
π = f 2

4
Tr{DμU †DμU + χ†U + χU †}, (16)

which describes pion-pion interactions, as well as interactions
of pions with external currents. The chiral field U is given in
terms of the pion fields π = πaτ a:

U = exp

[
iπ

y(π2)

2
√

π2

]
(π2 = πaπa). (17)

Note that the function y(π2) fulfills:

y − sin(y) = 4

3

(
π2

f 2

)3/2

. (18)

This parametetrization of the chiral field enables a simple
treatment of perturbative calculations [19–21]: The partition
function, Eq. (12), is defined in terms of the chiral field
U , so when considering loop corrections to the pion field,
one should be careful about chiral invariance of the integral
measure. Furthermore, the Adler zero condition [22] is imme-
diately fulfilled in this parametrization.

The covariant derivative Dμ acts on the chiral field as

DμU = ∂μU − irμU + iU�μ, (19)

where rμ = (vμ + aμ)/2 and �μ = (vμ − aμ)/2. In these ex-
pressions, vμ = va

μτ a/2 and aμ = aa
μτ a/2 are the external

vector- and axial-vector fields (a = 1, 2, 3).
The field χ contains the external scalar (s = saτ a, a =

0, 1, 2, 3) and pseudoscalar (p = paτ a, a = 0, 1, 2, 3) cur-
rents,

χ = 2B0(s + ip), (20)

and B0 is a low-energy constant (LEC). The quark mass is
introduced through the external scalar field by setting s = mτ 0

with the quark mass m.
The πN interaction Lagrangian is given by

LπN = −N̄AN, A =
∑
i=1

A(i), (21)

where A(i) is of chiral order O(pi ). The terms which are
relevant to the present calculation read:

A(1) = −iγ μ
μ − igAγ μγ 5�μ, (22a)

A(2) = −c1Tr{χ+} + . . . (22b)

Here, we need the definitions of the vector and axial-vector
currents:


μ = 1

2
[u†, ∂μu] − i

2
u†(vμ + aμ)u − i

2
u(vμ − aμ)u†, (23)

�μ = 1

2
u†[∂μ − i(vμ + aμ)]u − 1

2
u[∂μ − i(vμ − aμ)]u†,

(24)

where u2 = U . The scalar and pseudoscalar sources are con-
tained in χ+:

χ+ = uχ†u + u†χu†. (25)
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The full definition of A(1) and A(2) are given in Appendix A.

D. In-medium quark condensate

In this section, we will calculate the in-medium quark
condensate through �ab(0) using Eq. (7). For this purpose
we will present the Feynman diagrams for the calculation of
�ab(0). These diagrams all start and end with a wavy line,
representing an external pseudoscalar isotriplet current.

The leading contribution to the in-medium quark conden-
sate in the density expansion reads:

Π1 =
2

i=1

22 i 2

+ 2 22

(26)

Thick lines are in-medium nucleon propagators, dashed lines
are pion propagators, wavy lines are pseudoscalar currents,
and the number inside a vertex represents whether this inter-
action comes from A(1) or A(2). If no nucleon participates in
an interaction, then only L(2) yields a contribution. We have
listed all necessary interaction Lagrangians in Sec. II C. We
count the last diagram in Eq. (26) twice in order to account
for the fact that the in-medium nucleon loop can be attached
to either vertex. We now show how to apply the Feynman rules
which are needed to calculate these diagrams using the second
diagram in Eq. (26) as an example:

lim
qμ→0

(−1)L (−1)n

n
(−i)2

∫
d3 p

(2π )3

1

2p0

× Tr
{[ − iA(2)

π p

]ac
(/p + mN )n(p)

} iδac

q2 − m2
π

[
iL(2)

π p

]cb
. (27)

Here we have one fermionic loop, L = 1, one Fermi-sea prop-
agator, n = 1, and two external currents in the correlation
function, thus we get a factor of (−i)2. Due to energy-
momentum conservation, p0 = (p2 + m2

N )1/2. The relevant
terms in the Lagrangian are as follows:

A(2)
π p = −8c1B0

f
piπ i, L(2)

π p = 2 f B0π
i pi, (28)

which implies that the trace both for isospin and Dirac indices
simplifies to:

Tr{(/p + mN )n(p)} = 4m2
N

(
�p

p + �n
p

)
, (29)

and we obtain:

−iδab 16c1B2
0mN

π2m2
π

∫
d p

p2

p0

(
�p

p + �n
p

)
. (30)

As written in Eq. (7), we multiply the pseudoscalar corre-
lation function with the quark mass and also divide by the
vacuum condensate, which is given at tree level by 〈q̄q〉0 =
−2 f 2B0 + . . ., in order to obtain the contribution to the in-
medium quark condensate. The pion mass and the quark
mass are related in leading order chiral perturbation theory
via m2

π = 2mB0 + . . ., which fixes the value for B0. After
multiplying this diagram by 2 and adding the other diagram
in Eq. (26), the result is as follows:

m�ab
1 (0)

〈q̄q〉0
= iδab 4c1mN

π2 f 2

∫
d p

p2

p0

[
�p

p + �n
p

]
. (31)

This integral can be evaluated analytically:∫ kF

0
d p

p2√
p2 + m2

N

= kF

2

√
k2

F + m2
N − m2

N

2
arctanh

⎛
⎝ kF√

k2
F + m2

N

⎞
⎠, (32)

so we can expand it in the large-mN limit as follows:

mN

π2

∫
d p

p2

p0

[
�p

p + �n
p

]

= ρ − ρ5/3 1 + r5/3

10m2
N

[
35π4

(1 + r)5

]1/3

+ O
(

1

m3
N

)
, (33)

where we abbreviate the neutron-to-proton ratio r = ρn/ρp.
Since the expression in Eq. (31) is invariant under the ex-
change of kp

F and kn
F , it is consequently also invariant under

the exchange of ρp and ρn. This symmetry is also present in
the other diagrams.

The next-to-leading contributions in the density expansion
are given by �2, �3, and �4:

Π2 = 2

22

1 1
+

22 2

1 1

(34)

which lead to the following terms:

m�ab
2,1(0)

〈q̄q〉0
= iδab g2

Am2
N

5(2π f )4

∫
d pdkd cos θ

p2k2

p0k0

p0k0 − pk cos θ − m2
N[

(p − k)2 − m2
π

]2

(
�p

p�
p
k + 4�p

p�
n
k + 4�n

p�
p
k + �n

p�
n
k

)

+ iδa3δb3 g2
Am2

N

10(2π f )4m2
π

∫
d pdkd cos θ

p2k2

p0k0

4m2
π

(
pμkμ − m2

N

)
[
(p − k)2 − m2

π

]2

(
�p

p − �n
p

)(
�

p
k − �n

k

)
, (35a)

m�ab
2,2(0)

〈q̄q〉0
= iδab g2

Am2
N

10(2π f )4m2
π

∫
d pdkd cos θ

p2k2

p0k0

p0k0 − pk cos θ − m2
N[

(p − k)2 − m2
π

]2

[
a1

(
�p

p�
p
k + �n

p�
n
k

) + a2
(
�p

p�
n
k + �n

p�
p
k

)]

+ iδa3δb3 g2
Am2

N

10(2π f )4m2
π

∫
d pdkd cos θ

p2k2

p0k0

[
2m2

π − 6(p − k)2
](

pμkμ − m2
N

)
[
(p − k)2 − m2

π

]2

(
�p

p − �n
p

)(
�

p
k − �n

k

)
. (35b)
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Here we abbreviated:

pμkμ = p0k0 − pk cos θ, (36a)

a1 = 2(p − k)2 + m2
π , (36b)

a2 = −2(p − k)2 + 4m2
π , (36c)

and can simplify (p − k)2 = 2m2
N − 2p0k0 + 2pk cos θ .

The next set of diagrams cancel each other in the soft limit,
where the external pion momentum goes to zero:

Π3 = 2 2

+ 2
2

i=1

22 i

+
2

i,j=1

2 2i j

(37)

The last diagram we consider for the next-to-leading order in
the density expansion is as follows:

Π4 =
2 21

1
(38)

which results in:

m�ab
4 (0)

〈q̄q〉0
= i

g2
Am2

N

10(2π f )4m2
π

∫
d pdkd cos θ

p2k2

p0k0

× pμkμ − m2
N

(p − k)2 − m2
π

× (
�p

p − �n
p

)(
�

p
k − �n

k

)
× (−2δab + 6δa3δb3). (39)

According to Eq. (7), the pseudoscalar correlation function
�ab is only proportional to δab. Still, we also found contri-
butions proportional to δa3δb3 in Eqs. (35) and (39), but after
adding all diagrams, the contributions proportional to δa3δb3

exactly cancel each other, in accordance with chiral symmetry.
Otherwise, this would violate the chiral SU(2) symmetry be-
cause the third isospin component of the pseudoscalar current
Pa would behave in a different way compared to the other two
components: �11 = �22 �= �33.

III. RESULTS

In this section, we show our numerical results. In our
calculations, we use the following numerical values for the
low-energy constant c1 = −0.59 GeV−1, the pion decay con-
stant fπ = 92.4 MeV, and the axial coupling gA = 1.26 [8].
We also use isospin-averaged values for the pion mass, mπ =
138 MeV, and the nucleon mass, mN = 939 MeV.

For the in-medium quark condensate, the integrals in
Eqs. (31), (35), and (39) are solved numerically and the
result yields the density dependence of the quark conden-
sate, which is presented in Fig. 1. Our computed value

0.0 0.5 1.0 1.5 2.0
ρ/ρ0

0.0

0.2

0.4

0.6

0.8

1.0

〈 q̄
q〉

∗ /
〈 q̄

q〉
0

ρn/ρp = 1.5

FIG. 1. Density dependence of the in-medium quark condensate,
normalized to the vacuum condensate. The ratio of neutrons to pro-
tons is given by ρn/ρp. At normal nuclear density, ρ = ρ0, the quark
condensate is reduced by about 35% compared to its vacuum value.

of the quark condensate at normal nuclear density, which
shows a reduction of 34.3% shows good agreement with
Ref. [5], where the in-medium behavior of the quark conden-
sate was shown to be: 〈q̄q〉∗/〈q̄q〉0 ≈ (b1/b∗

1)1/2[1 − 1
2βρ] ≈

1 − 0.37 ρ/ρ0. Here the parameters take on the following
values b1/b∗

1|ρ=ρ0 ≈ 0.79 ± 0.05 and β ≈ (2.17 ± 0.04) fm3,
which were obtained from experimental data from deeply
bound pionic atoms and isospin-singlet πN-scattering ampli-
tudes, respectively. Our results are also in good agreement
with results obtained in Ref. [12] which are summarized by
Ref. [23]. They are also consistent with Ref. [24].

The density dependence of the in-medium quark conden-
sate shows a linear behavior, since the next-to-leading order
contributions in the density expansion, which lead to O(ρ4/3)
and O(ρ5/3) behavior, are much smaller. The contributions
of the individual diagrams are shown in Fig. 2. The right
two figures show that the next-to-leading order diagrams have
rather tiny contributions to the quark condensate. This is be-
cause the Fermi momentum is small compared to the nucleon
mass in low densities and the Fermi motion expansion could
be convergent. In this sense, the nucleon-nucleon correlation,
which plays a role from O(ρ2), should be important and bring
a new scale parameter.

This work is built on the foundation of Ref. [8], where
the in-medium quark condensate was calculated for isospin-
symmetric nuclear matter. In this work, we found several new
diagrams which are necessary contributions to the in-medium
quark condensate. In particular, the first diagram in Eq. (26)
with i = 1, the second diagram in Eq. (37) with i = 1 as well
as the third diagram in Eq. (37) with i �= j. Furthermore,
diagrams like the one in Eq. (38) were not considered at
all in Ref. [8]. Comparing to Ref. [12] and related works,
we include interactions from A(2), but omit 2π -exchange and
�-excitation processes, as they contribute beyond O(ρ5/3).
In order to include such processes, Ref. [12] uses a nucleon-
nucleon potential obtained from lattice QCD data.

Despite being a small contribution, the isospin-asymmetry
of the surrounding nuclear matter plays a role in the
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FIG. 2. Density dependence of the contributions to the in-medium quark condensate, normalized to the vacuum condensate. The ratio of
neutrons to protons is given by ρn/ρp. Figure 1 shows the sum of these three contributions. (a) The leading order contributions corresponding
to Eq. (31). (b) The next-to-leading order contributions corresponding to Eq. (35). (c) The next-to-leading order contributions corresponding
to Eq. (39).

in-medium quark condensate. As shown in Fig. 3, for normal
nuclear density ρ = ρ0, different values for the neutron-to-
proton ratio have a small effect on the in-medium quark
condensate. In particular, when plotted logarithmically, one
can clearly see that the plot is symmetric around the point
ρn/ρp = 1, which symbolizes isospin symmetric nuclear mat-
ter. This means, the in-medium quark condensate behaves
the same for a certain ratio ρn/ρp and for the inverse ratio
(ρn/ρp)−1 because of isospin symmetry. This can also be
seen on the far left and far right ends of the plot, which
correspond to proton matter and neutron matter, respectively.
Furthermore, there is no significant effect if we treat protons
and neutrons with different masses mp �= mn.

For interactions between nucleons the � baryons might be
an important ingredient, as suggested by Ref. [12]; however,
in this work we do not consider dynamical � interactions.
Since some � contributions are already implicitly included in
the low-energy constants, our calculations are expected to be
valid as long as dynamical � interactions are not required.
Otherwise, one would have to include the � fields in the
Lagrangian and investigate their in-medium effects.

IV. ESTIMATING THE DIFFERENCE
OF THE QUARK CONDENSATES

Finally, we present an estimation of the isospin splitting
of the quark condensate in nuclear matter, i.e., the quantity

10−3 10−2 10−1 100 101 102 103

ρn/ρp

0.65

0.66

〈q̄
q〉

∗ /
〈q̄

q〉
0

ρ = ρ0

FIG. 3. Density dependence of the in-medium quark condensate,
normalized to the vacuum condensate. The ratio of neutrons to pro-
tons is given by ρn/ρp. The in-medium quark condensate at a fixed
density is symmetric around the point ρn/ρp = 1 under the exchange
ρn ↔ ρp. The far left of this plot corresponds to proton matter,
whereas the far right of this plot corresponds to neutron matter.

〈ūu − d̄d〉∗ in leading order of the density expansion. This
splitting arises due to explicit isospin breaking, which we will
consider via mu �= md in the Lagrangian and ρp �= ρn in the
nuclear matter. There is also isospin breaking via different
hadron masses, like mp �= mn, however since these effects
yield minor corrections, (mn − mp)/(mn + mp) ≈ 10−4, we
neglect them, and instead use isospin-averaged masses. We
also omit SU(3) breaking in the meson decay constant.

The present calculation is an estimate for two reasons.
First, the values of the LECs are not fixed by scattering data,
and second, there are no dynamic meson loops included, i.e.,
this is a linear-density approximation. In order to compute
〈ūu − d̄d〉∗ in the same way as we did for 〈ūu + d̄d〉∗, we
need to extend our formalism to SU(3), since the SU(2) chi-
ral transformation of a pseudoscalar current can only yield
the sum ūu + d̄d . We note that this is not the only way to
compute the density dependence of the condensate difference.
By including explicit isospin breaking via mu �= md , one can
also use the scalar correlator 〈
|SaSb|
〉 (see, e.g., Ref. [25]).
Another way is to consider the Ward identity for the �30

5μ

correlator, which would require an extension to U (2), in order
to include a two-flavor eta meson. However, for a proper
definition of the eta meson, it is natural to go to the SU(3)
formalism.

The SU(3) current algebra between an axial-vector charge
and a pseudoscalar current is given by:

[
Qa

5, Pb(0)
] = −i

√
2

3
δabS0(0) − idabcSc(0). (40)

Here dabc are the totally symmetric SU(3) structure constants,
given by 4dabc = Tr{λa{λb, λc}}, where λa (a = 1, . . . , 8) are
the Gell-Mann matrices. For specific values of a and b, this
yields:

[
Q3

5, P8(0)
] = − i√

3
(ūu − d̄d ). (41)

In the case of explicit isospin breaking in the Lagrangian due
to mu �= md , the PCAC relation changes as follows:

∂μA3
μ(x) = mP3 + δm

√
2

3
P0 + δm√

3
P8. (42)

015202-6



DENSITY DEPENDENCE OF THE QUARK CONDENSATE IN … PHYSICAL REVIEW C 104, 015202 (2021)

where m = (mu + md )/2 and δm = (mu − md )/2. This leads
to two additional correlation functions necessary in order
to compute the density dependence of the quark condensate
compared to the δm = 0 case:

〈ūu − d̄d〉∗ = −i
√

3 m �38(0)

− i
√

2 δm �08(0) − i δm �88(0). (43)

To this end, we deviced a similar derivation as shown in
Sec. II D.

We use the following Lagrangian:

L = f 2

4
Tr{DμU †DμU + χ†U + χU †}

+ bDTr{B̄{χ+, B}} + bF Tr{B̄[χ+, B]}
+ b0Tr{B̄B}Tr{χ+} + . . . , (44)

where we listed only the terms relevant to this work. One can
identify the following relation between SU(2) and SU(3) low
energy constants: 2b0 + bD + bF = 2c1. Furthermore, there is
also a π0η8 interaction Lagrangian,

Lπ0η = −2B0 δm√
3

π0η8, (45)

which allows for π0-η8 mixing. We regard this mixing as
a perturbation and include relevant vertices in the Feynman
diagrams. We will in the following consider all diagrams
with additional pions coming from this π0-η8 mixing, since
the large mass of the η8 leads to a suppression of new η8

propagators in the soft limit.
For the chiral field, we use the Coleman-Callan-Wess-

Zumino (CCWZ) parametrization:

U = exp(i
√

2�/ f ), (46)

where the meson octet is given as � = �aλa/
√

2:

� =

⎛
⎜⎝

π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K̄0 − 2√
6
η8

⎞
⎟⎠, (47)

and the baryon octet as B = Baλa/
√

2:

B =

⎛
⎜⎝

�0√
2

+ �√
6

�+ p

�− − �0√
2

+ �√
6

n

�− �0 − 2√
6
�

⎞
⎟⎠. (48)

The SU(3) equivalent of the chiral field parametrization in
Eq. (17) is not known, but since this linear density approx-
imation does not include meson loops, the simpler CCWZ
parametrization suffices.

The interaction terms in the Lagrangian that are necessary
for the following calculations are listed in Appendix B. The

diagrams and their results are as follows:

Π38(q) = P 8 P 3
π0

+ P 8 P 3
η8

+ P 8 P 3
η8 π0

+ P 8 P 3
η8 π0

+ P 8 P 3
η8 π0

(49)

The isospin breaking in the first and second diagrams is due
to ρp �= ρn, in the third and fifth diagrams it is due to δm �= 0,
and the fourth diagram contains terms from both. Further-
more, the second diagram and the term due to ρp �= ρn in the
fourth diagram exactly cancel each other, because the pion
mass from the propagator and from the LEC B0 canceled out.
The correlation function �08 leads to two diagrams:

Π08(q) = P 8 P 0
η8

+ P 8 P 0
η8 π0

(50)

These diagrams must be isospin-even. That is because we
multiply �08 with δm, as stated in Eq. (43). Here, the first
diagram contains no isospin breaking. The second diagram
breaks isospin twice, once via δm �= 0 and once via ρp �= ρn.
Hence, this diagram yields a contribution of order O(δm2) to
the quark condensate. The pseudoscalar correlation function
�88 can be calculated using these diagrams:

Π88(q) = 2 P 8 P 8
η8

+ 2 P 8 P 8
η8 π0

+ P 8 P 8
η8 η8

(51)

These diagrams must again be isospin-even, since we multiply
�88 with δm, as stated in Eq. (43). The first diagram contains
no isospin breaking, whereas the second diagram features
isospin breaking due to δm �= 0 and ρp �= ρn. The third dia-
gram contains one term without any isospin breaking and one
with double isospin breaking due to δm �= 0 and ρp �= ρn.

In the soft limit and omitting terms beyond O(ρ) and
O(δm), which means omitting terms with triple isospin
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FIG. 4. The density dependence of 〈ūu − d̄d〉∗ is one order of magnitude smaller than the density dependence of 〈ūu + d̄d〉∗. The vertical
gray solid and dotted lines correspond to the same densities and nucleon ratios across the three plots. The dotted green lines correspond to the
effects of only the isospin-asymmetric nuclear matter. (a) The dependence of 〈ūu − d̄d〉∗ on the neutron-to-proton ratio. The isospin breaking
due to δm �= 0 leads to a reduction of around 1% at normal nuclear density, across all nucleon ratios. (b) The dependence of 〈ūu − d̄d〉∗ on
the nucleon density. The three contributions to 〈ūu − d̄d〉∗ as well as their sum are shown. For a nucleon ratio of ρn/ρp = 1.5, the up- and
down-quark condensates are almost the same. (c) Same as before, here with a ratio ρn/ρp = 10.

breaking, we get:

√
3

m�38

i〈q̄q〉0
= 2ρ

f 2
(bD + bF )

1 − r

1 + r

− 2ρ

f 2
(18b0 + 11bD + 3bF )

δm

m + 2ms
, (52a)

√
2
δm�08

i〈q̄q〉0
= −4ρ(bD − 3bF )

f 2

δm

m + 2ms
, (52b)

δm�88

i〈q̄q〉0
= ρ

f 2

[
2(9b0 + 7bD − 3bF ) + m2

π

m2
η

(bD − 3bF )

]

× δm

m + 2ms
. (52c)

In agreement with the Vafa-Witten theorem [26], our re-
sults only depend on the difference of proton and neutron
densities in the absence of explicit isospin breaking (δm = 0),
since isospin symmetry is not spontaneously broken in QCD.

For the LECs in the SU(3) Lagrangian, we chose
bD = 0.225 GeV−1, bF = −0.404 GeV−1 and b0 =
−0.609 GeV−1, which were determined in Ref. [27,28].
There, the values are listed following a calculation of octet
baryon masses using an SU(3) chiral perturbation theory
with the extended-on-mass-shell renormalization scheme and
fitting the low energy constants to lattice data. Using lattice
data, it is possible to determine the parameters m0 (the octet
baryon masses in the chiral limit) and b0 separately. Similar
values have been reported in Refs. [29–31]. We further
used a quark mass ratio of δm/m ≈ −1/3 (equivalent to
mu/md ≈ 0.46) and ms/m ≈ 27.2 and the following leading
order relations of meson masses with relation to B0:

m2
π = 2B0m, m2

η = 2
3 B0(m + 2ms), (53)

with mπ = 138 MeV and mη = 548 MeV.
The results of �38, �08, and �88 are shown in Fig. 4. The

density dependence of 〈ūu − d̄d〉∗ is one order of magnitude
smaller than the density dependence of 〈ūu + d̄d〉∗. This is

because the coefficient in 〈ūu − d̄d〉∗ is smaller by a factor of
10 than the coefficient in 〈ūu + d̄d〉∗, as

bD + bF ≈ −0.18 GeV−1, (54a)

2b0 + bD + bF ≈ −1.4 GeV−1. (54b)

We illustrate the effects of explicit isospin breaking by also
plotting the result for δm = 0. Figure 4(a) shows the de-
pendence of 〈ūu − d̄d〉∗ on the neutron-to-proton ratio. The
isospin breaking due to mu �= md leads to a reduction of
around 1% at normal nuclear density, almost independent of
nucleon ratios. Figure 4(b) shows the dependence of 〈ūu −
d̄d〉∗ on the nucleon density, in particular the three contri-
butions to 〈ūu − d̄d〉∗ as well as their sum are shown. For a
nucleon ratio of ρn/ρp = 1.5, the up- and down-quark con-
densates are almost the same. Figure 4(c) also shows the
density dependence and was calculated using a nucleon ratio
ρn/ρp = 10.

Although the explicit isospin breaking due to nonequal
quark masses in the Lagrangian provides a numerically
smaller effect than the isospin breaking from the surrounding
nuclear matter at, e.g., ρn/ρp = 1.5,

1

150
≈

∣∣∣∣ δm

m + 2ms

∣∣∣∣ 

∣∣∣∣1 − r

1 + r

∣∣∣∣ = 1

5
, (55)

this is compensated by the large number of diagrams due to
δm �= 0, which leads to a large contribution via the LECs:

−(bD + bF )
1 − r

1 + r
≈ 0.04 GeV−1, (56a)

(18b0 + 11bD + 3bF )
δm

m + 2ms
≈ 0.06 GeV−1. (56b)

Here we note that the coefficients of the LECs in Eq. (56b) are
one order of magnitude larger than the ones in Eq. (56a). This
is significant, especially since b0 is larger than the other LECs
bD and bF , which gets further enhanced by the factor of 18.
Hence, the effects of isospin breaking in the Lagrangian and
in the nuclear matter are of similar size in our calculations.
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Still, there exists a possible ambiguity in the determination of
b0, which is often absorbed in the chiral limit octet baryon
masses m0. It is possible to extract a value for b0 from scatter-
ing experiments, although such experimental data is scarce.
Such an issue is absent in the LECs bD and bF , which are
determined via Gell-Mann–Okubo mass relations.

For a nucleon ratio of 1.5, i.e., the one most accessible
to experiments via heavy nuclei, the up- and down-quark
condensates behave almost the same with increasing density,
see Fig. 4(a). The effect of explicit isospin breaking in the
Lagrangian leads to an almost constant reduction of 1% along
all nucleon ratios, but the splitting of up- and down-quark
condensates increases due to the isospin breaking of the sur-
rounding nuclear matter.

It would be interesting to discuss the experimental deter-
mination of the coefficients bD + bF etc., appearing in our
results. As is well known, the parameter c1 is determined
by the πN-σ term, which is obtained by taking the soft
limit in πN scattering, limp→0 TπN (p) = −σπN/ f 2. In a sim-
ilar way, the SU(3) coefficients could be extracted from the
ηN → π0N scattering amplitudes in the soft limit. Neverthe-
less, it would be difficult, because the η meson mass is so
large that a theoretical extrapolation to the soft limit would
have a large uncertainty. In addition, in ηN → π0N scatter-
ing, the contribution of the N (1535) nucleon resonance is
known to dominate the amplitude around the threshold. The
resonance contribution should therefore be counted in the
extrapolation.

V. CONCLUSION

We have calculated the density dependence of the 〈ūu +
d̄d〉 quark condensate in isospin-asymmetric nuclear matter
using an SU(2) in-medium chiral perturbation theory up to
second order in the chiral counting. We have found that the re-
duction of the magnitude of the quark condensate in an isospin
asymmetric nuclear matter with ρn/ρp = 1.5 agrees with the
phenomenological result obtained using experimental obser-
vations and also previous theoretical estimations. We have
also found that the effect of the isospin-asymmetric nuclear
matter is weak, but still nonzero. This is because contributions
beyond the linear density are rather small due to smaller Fermi
motion in low densities. Nucleon-nucleon correlations, which
play a role at O(ρ2), could contribute to the deviation of the
〈ūu + d̄d〉 quark condensate in the asymmetric nuclear matter
from that in the symmetric nuclear matter.

We have also estimated the difference of the up- and
down-quark condensates, 〈ūu − d̄d〉∗, in leading order of the
in-medium chiral perturbation theory by using an SU(3) chiral
Lagrangian. The isospin asymmetric nuclear matter as well
as mu �= md in the Lagrangian provided the splitting of the
the up- and down-quark condensates. We have found, nev-
ertheless, that the magnitude of the spitting is not so large
in comparison with the in-medium reduction of the quark
condensate 〈q̄q〉∗.

Future works might include nucleon-nucleon interaction
terms in the Lagrangian. This would lead to new effects
beyond the linear density and a new scale for the den-
sity expansion. It should be certainly interesting to perform

dynamical calculations in the SU(3) in-medium chiral pertur-
bation theory beyond the linear density approximation.
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APPENDIX A: PION-NUCLEON INTERACTION
OPERATOR

The πN interaction Lagrangian is given by A = A(1) +
A(2) + . . ., where A(i) is of chiral order O(pi ). The first two
terms, A(1) and A(2) read:

A(1) = −iγ μ
μ − igAγ μγ 5�μ, (A1)

A(2) = −c1Tr{χ+} + c2

2m2
N

Tr{uμuν}DμDν

− c3

2
Tr{uμuμ} + c4

2
γ μγ ν[uμ, uν] − c5χ̂+

− ic6

8mN
γ μγ νF+

μν − ic7

8mN
γ μγ νTr{F+

μν}. (A2)

Here we need the definitions of the following terms. The
vector current reads:


μ = 1

2
[u†, ∂μu] − i

2
u†(vμ + aμ)u − i

2
u(vμ − aμ)u†,

(A3)

and the axial-vector current is given by:

�μ = 1
2 u†[∂μ − i(vμ + aμ)]u − 1

2 u[∂μ − i(vμ − aμ)]u†,

(A4)

where u2 = U . Also uμ is proportional to the axial-vector
current, uμ = 2i�μ. The next terms contain scalar and pseu-
doscalar sources,

χ+ = uχ†u + u†χu†, χ̂+ = χ+ − 1
2 Tr{χ+}1, (A5)

where χ̂+ is the traceless version of χ+, i.e., the coefficient in
front of the trace is equal to the inverse of Tr{1}. The covariant
derivative of the nucleon field is given by this expression:

DμN = ∂μN + 
μN, (A6)

where 
μ is again the vector current, and, finally, we include
vector and axial-vector sources via:

F+
μν = u†F R

μνu + uF L
μνu†, (A7a)

F R
μν = ∂μrν − ∂νrμ − i[rν, rμ], (A7b)

F L
μν = ∂μlν − ∂ν lμ − i[lν, lμ], (A7c)

where rμ = (vμ + aμ)/2 and �μ = (vμ − aμ)/2.

APPENDIX B: INTERACTION TERMS

In this section, we list all the interactions in the Lagrangian
that we use in this work. The particles that interact in the
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corresponding vertex are indicated via subscripts. First, these
are the interactions coming from the chiral Lagrangian in
Eq. (16), involving only the pion field and external sources:

L(2)
π p = 2 f B0π

i pi, (B1a)

L(2)
π3 p = − B0

5 f
piπ iπ jπ j, (B1b)

L(2)
π4 = 1

10 f 2
∂μπ i∂μπ jπ kπ l (3δikδ jl − δi jδkl )

− mB0

20 f 2
π iπ iπ jπ j, (B1c)

Using the first term in the expansion of the pion-nucleon
interaction operator A in Eq. (A1), we find the following in-
teractions relevant for this work (note that the only parameter
is gA, the rest is fixed by chiral symmetry; also additionally to
the fields indicated in the subscript, a nucleon enters and exits
the vertex):

A(1)
π = gA

2 f
γ μγ 5∂μπ iτ i, (B2a)

A(1)
ππ = 1

4 f 2
γ μπ i∂μπ jεi jkτ k, (B2b)

A(1)
π3 = gA

20 f 3
γ μγ 5[3π iπ j∂μπ j − π jπ j∂μπ i]τ i. (B2c)

From the second term of the pion-nucleon interaction opera-
tor, A(2) in Eq. (A2), we get these interactions:

A(2)
π p = −8c1B0

f
piπ i, (B3a)

A(2)
ππ = 4B0c1m

f 2
π iπ i + c2

f 2m2
N

∂μπ i∂νπ
i∂μ∂ν

− c3

f 2
∂μπ i∂μπ i + ic4

f 2
εi jkτ kγ μγ ν∂μπ i∂νπ

j, (B3b)

and we also used the fact that the following vertices do not
exist: A(2)

π = 0, A(2)
π3 = 0.

Interactions obtained from the SU(3) Lagrangian, Eq. (44),
are listed below. The interactions without nucleons are as
follows:

Lp3π0 = Lp8η8
= 2B0 f , (B4)

where we also note that Lp0π0 = Lp0η = Lp8π0 = 0. The in-
teractions containing nucleons and external currents are given
below. In the following, the upper sign corresponds to a proton
(N̄N = p̄p) vertex and the lower sign corresponds to a neutron
(N̄N = n̄n) vertex:

LN̄N p8π0 = LN̄N p3η8
= ±4B0(bD + bF )√

3 f
, (B5a)

LN̄N p8η8
= 4B0(6b0 + 5bD − 3bF )

3 f
, (B5b)

LN̄N p3π0 = 4B0(2b0 + bD + bF )

f
, (B5c)

LN̄N p0η8
= −4

√
2B0(bD − 3bF )

3 f
, (B5d)

LN̄N p0π0 = ±
4
√

2
3 B0(bD + bF )

f
, (B5e)

and the interactions containing no external currents are as
follows:

LN̄Nπ0η8
= −4B0δm(2b0 + bD + bF )√

3 f 2
∓ 4B0m(bD + bF )√

3 f 2
, (B6a)

LN̄Nη8η8
= −2B0[m(2b0 + bD + bF ) + 4ms(b0 + bD − bF )]

3 f 2
∓ 2B0δm(bD + bF )

3 f 2
. (B6b)

Note that the terms in Eq. (B6a) break isospin either via
nonequal quark masses δm �= 0 or via the isospin asymmetry

of the nuclear matter (expressed by the different signs in pro-
ton and neutron interactions), while Eq. (B6b) is isospin-even.
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