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Role of baryon resonances in the π−p → ne+e− reaction within an effective-Lagrangian model
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We present a study of the reaction π− p → ne+e− for
√

s = 1.49 GeV, including nonresonant Born terms and
contributions of the N (1440), N (1520), N (1535) resonances (R), using an effective-Lagrangian model, which
we extended by a phenomenological phase factor at the RNρ vertex function. We give predictions for both the
differential cross section dσ/dminv and the spin density matrix elements of the virtual photon that decays into the
lepton pair. In the studied energy range, the cross section is dominated by the Born and N (1520) contributions.
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I. INTRODUCTION

Electromagnetic probes (photons and correlated lepton-
antilepton pairs, called dileptons) provide a unique tool to
study properties of strongly interacting matter [1–3]. Once
produced in pion-, proton-, or nucleus-nucleus collisions,
photons and dileptons leave the interaction volume essen-
tially unaffected by final-state interactions. Thus they preserve
information about the medium they were created in, includ-
ing the matter present in the hot and/or dense stage of the
reaction [4–8]. In the low-mass region (minv < 1 GeV), ex-
cess dileptons are radiated from channels involving baryons
[9–13]. A strong broadening of the ρ meson has been ob-
served in experiments spanning from a few GeV to few TeV
energy range. This trend hints at a strong coupling of the
ρ meson to baryonic resonances, being manifestations of
in-medium modifications of vector mesons [14]. A determi-
nation of the couplings of baryonic resonances to final states
involving dileptons is particularly important for the under-
standing of the dilepton emissivity of hot and dense nuclear
matter.

Dileptons produced in hadronic processes test the elec-
tromagnetic interaction of hadrons in a kinematical domain
inaccessible in electro- or photoproduction experiments. In
pion-nucleon collisions, an important contribution is given
by processes where a baryon resonance is excited and sub-
sequently decays into the final-state particles. The resulting
dilepton spectrum gives access to electromagnetic transition
form factors of these baryon resonances in the timelike region.
These form factors have been studied for the case of �(1232),
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N (1520) and N (1535) in the framework of the covariant spec-
tator quark model which takes into account contributions from
the valence quark core and the meson cloud [15–17].

The angular distribution of the lepton pair reflects the
polarization state of the virtual photon, which in turn is de-
termined by the hadronic reaction in which it was created
[18]. Neutral vector mesons have the same quantum numbers
as photons, therefore they can convert to a virtual photon.
According to the vector-meson dominance (VMD) hypothesis
[19], an essential contribution to the electromagnetic inter-
action of hadrons proceeds through an intermediate neutral
vector meson, whose properties can be studied in the dilepton
invariant-mass spectrum.

The HADES collaboration has recently carried out ex-
periments using secondary pions impinging on polyethylene
and carbon targets. The beam was provided by the SIS18
heavy-ion synchrotron at GSI in Darmstadt, Germany. The
results are extracted for the π− p reaction at the center-of-mass
(c.m.) energy of

√
s = 1.49 GeV, which lies in the second

resonance region. HADES results for pion-pair production in
π− p collisions are presented in Ref. [20]. The ρ meson, which
predominantly decays to a pion pair, contributes strongly to
the reaction π− p → nπ+π−. Similarly to dileptons, the an-
gular distribution of the pion pair reflects the polarization state
of the decaying ρ meson.

In this paper we present a model calculation of the dilep-
ton production process in pion-nucleon collisions at the
c.m. energy of

√
s = 1.49 GeV. We give predictions for the

invariant-mass spectrum of dielectrons. We also point out
how the spin density matrix of the virtual photon could
be reconstructed based on the angular distribution of lepton
pairs. Our studies are based on the previous models used in
Refs. [18,21].
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In Ref. [21] the reaction π− p → ne+e− was studied in
an effective-Lagrangian model taking into account both the
contributions with baryon resonances in the s and u channels,
and the nonresonant (Born) terms. Form factors were included
for both the resonance and the Born contributions. A version
of the VMD model was employed where electromagnetic
interactions of hadrons can proceed both via an intermediate
ρ meson and a direct coupling to the photon field. Predictions
for the dilepton invariant-mass spectrum were presented for
various beam energies.

In Ref. [18] the focus was on the angular distribution of
dileptons, which was studied in terms of anisotropy coeffi-
cients. The main conclusion was that the angular distribution
of dileptons is characteristic of the creation process, in par-
ticular the spin-parity of intermediate baryon resonances. In
that study, Born contributions were not considered, while
interactions of higher-spin baryons were treated according to
the consistent interaction scheme described in Ref. [22].

In the present calculation, we describe baryon resonances
in the same way as in Ref. [18]. We include Born contribu-
tions and employ form factors as described in Ref. [21]. We
extended the models by including a phenomenological phase
factor in the Lagrangians describing the resonance transition
to a nucleon and ρ meson. This factor influences the numerical
predictions of the model via interference effects.

The reaction πN → Ne+e− was studied for the energy
range around the ω meson production threshold in terms
of an effective Lagrangian model in Ref. [23] and in terms
of a coupled-channel approach where baryon resonances
were generated dynamically in Ref. [24]. In Ref. [23] the
dominance of resonant contributions was assumed and the
interaction Lagrangians of Ref. [25] were used. Both works
discussed the effects of ρ-ω interference.

We also note that anisotropy of dilepton emission as a
probe for polarization and a means of disentangling different
contributions was first studied in hadron reactions in Ref. [26],
and in nuclear collisions in Ref. [27].

More details about our model will be given in Sec. II and in
the Appendix. Our results will be presented in Sec. III. Finally,
in Sec. IV, we draw our conclusions and discuss possible
future directions.

II. MODEL

In this section, we briefly review the main elements of
the applied models and outline the calculation of the observ-
ables. For further details the interested reader is referred to
Refs. [18,21].

A. Kinematics and observables

The differential cross section of the process π− p → ne+e−
is given by

dσ

dminvdcosθγ ∗d	e
= minv

64(2π )4s

|p f |
|pi|

1

npol

∑
pol

|M|2, (1)

where minv denotes the mass of the virtual photon (= invariant
mass of the e+e− pair), θγ ∗ is the virtual-photon angle in
the c.m. frame with respect to the pion-beam direction, i.e.,

the scattering angle, d	e is the solid angle of the final-state
electron given in the dilepton c.m. frame, s is the square of
the c.m. energy, pi and p f are the c.m. three-momenta of the
incoming and outgoing nucleon, respectively, and npol = 2 is
the number of polarization states in the incoming channel.
The sum runs over the polarization states of all incoming and
outgoing particles.

Assuming that the virtual photon and final-state nucleon
do not interact with each other, we can separate the hadronic
and leptonic parts of the process by cutting the Feynman
diagrams at the virtual photon line. The spin averaged squared
amplitude can then be calculated as∑

pol

|M|2 =
∑
λ,λ′

ρhad
λλ′ ρ

lep
λ′λ (2)

with the spin density matrices as introduced in Ref. [18],

ρhad
λ,λ′ (s, minv, θγ ∗ ) = e2

k4
εμ(k, λ)W μνε∗

ν (k, λ′), (3)

ρ
lep
λ′,λ(minv,	e) = εμ(k, λ′)lμνε∗

ν (k, λ), (4)

describing the two subprocesses. The tensors W μν =∑
pol M

μ

hadMν∗
had and lμν = ∑

pol M
μ

lepMν∗
lep are related to

the hadronic and the leptonic part of the amplitude, re-
spectively, with Mμ

had and Mμ

lep denoting the corresponding
transition currents. The virtual photon is characterized by its
four-momentum k and polarization λ, which also enter the
polarization vector εμ(k, λ).

As pointed out in Ref. [18], the form of ρ
lep
λ′,λ can be cal-

culated from quantum electrodynamics, therefore the angular
distribution of e+e− pairs can be expressed in terms of the
hadronic density matrix elements. Making use of the Her-
miticity of ρhad

λ,λ′ we obtain for the squared amplitude
∑
pol

|M|2 ∝ (1 + cos2 θe)
(
ρhad

1,1 + ρhad
−1,−1

) + 2 sin2 θeρ
had
0,0

+
√

2 sin 2θe
[

cos φe
(

Re ρhad
1,0 − Re ρhad

−1,0

)
+ sin φe

(
Im ρhad

1,0 + Im ρhad
−1,0

)]
+ 2 sin2 θe

(
cos 2φe Re ρhad

1,−1 + sin 2φe Im ρhad
1,−1

)
,

(5)

see Eq. (15) in Ref. [18]. This makes it possible, at least in
principle, to determine the hadronic density-matrix elements
ρhad

λ,λ′ based on the angular distribution of the e+e− pairs ob-
tained in the experiments.

B. Vector-meson dominance and effective Lagrangian

The vector-meson dominance model (VMD) was initially
proposed by Sakurai to describe the coupling of a photon to
a hadronic current via an intermediate vector meson [19,28].
We employ the later version of the VMD as discussed in
Ref. [29], which also allows for a direct coupling of hadrons
to the electromagnetic field. The Lagrangian of this version of
VMD can be symbolically written as

LVMD = − e

2gρ

Fμνρ0
μν +

∑
v,w

(Lγ vw + Lρvw ), (6)
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TABLE I. Resonances and their parameters presented in this paper.

m � BRa→ Nπ BRb→ Nρ BRa→ Nγ

[GeV] [GeV] [%] gπNR [%] gρNR [%] gγ NR

N (1440) 1.440 0.350 55 − 75 0.38 <0.2 3.37 0.02 − 0.04 0.053
N (1520) 1.520 0.110 55 − 65 0.15 12.2 ± 1.9 13.9 0.30 − 0.53 0.36
N (1535) 1.530 0.150 32 − 52 0.16 3.2 ± 0.7 1.97 0.01 − 0.25 0.058

aTaken from Ref. [32].
bTaken from Ref. [20].

where Fμν = ∂μAν − ∂νAμ and ρ0
μν = ∂μρ0

ν − ∂νρ
0
μ are the

field-strength tensors of the photon and neutral ρ meson,
respectively, expressed in terms of the corresponding fields.
(In ρ0

μν we omitted the term quadratic in the ρ field because it
does not contribute to the process we study.)

The first term in Eq. (6) describes the ρ-γ transition and its
coupling constant is controlled by the parameter gρ = 4.96.
The summation in the second term runs over pairs of hadron
fields v, w, and the two symbolic terms represent both the
interaction of various hadrons with the photon and the ρ

meson, like, e.g., Lγππ or LρNN , and transition vertices of
baryon resonances (R), like LρNR.

According to the other version of VMD,

L ′
VMD = −em2

ρ

gρ

Aμρ0
μ +

∑
v,w

L ′
ρvw, (7)

hadrons couple to the electromagnetic field only via an inter-
mediate neutral vector meson. As pointed out in Refs. [28,30],
the models LVMD and L ′

VMD are equivalent in the limit when
all hadrons couple to the ρ meson with the same universal cou-
pling constant, which is equal to the parameter gρ appearing
in the denominator of the term describing the ρ-γ transition in
Eqs. (6) and (7), gρππ = gρNN = . . . = gρ . In our model this
universality does not hold, but the relative signs of the photon
and ρ meson interaction Lagrangians can be fixed based on the
requirement that the two versions of VMD become equivalent
when all the ρ meson coupling constants approach a universal
value.

For the nonresonant contributions we use the effective La-
grangians of Ref. [21]. The coupling of baryon resonances
to the pion, ρ-meson, and photon fields are described by the
effective-Lagrangian model from Ref. [18], where a consistent
treatment of higher-spin contributions according to Ref. [22]
has been taken care of. An important difference between the
present model and the models of Refs. [18,21] is that here we
fix the relative sign of hadron–photon and hadron–ρ-meson
interaction terms based on the equivalence of the two versions
of VMD in the universality limit, as discussed above. In Ap-
pendix A we list all terms of the effective Lagrangian applied
in the present model. In principle, the VMD allows for all
neutral vector mesons to couple between the hadronic current
and the photon. Here, we only consider the contribution of the
ρ0 meson.

For those terms in the effective Lagrangian that do not
contain baryon resonances we adopt the coupling constants
from Ref. [21]. For the resonant contributions we need to
fix the coupling constants gρNR, gγ NR, and gπNR individually.

This has been done by calculating the corresponding partial
decay width of the resonance and fitting it to the experimen-
tal value. Details are specified in Appendix B. Properties of
baryon resonances, including the coupling constants are given
in Table I.

C. Hadronic processes

We consider the contributions shown in Fig. 1 for the
hadronic part of the process. These include the nonresonant
s-, u-channel diagrams, the t-channel with an intermediate
pion, together with the contact term [Figs. 1(a)–1(d)] and the
diagrams with s- and u-channel baryon resonances [Figs. 1(e)
and 1(f)]. Each diagram in Fig. 1 is a sum of a direct photon
and a ρ meson contribution.

At
√

s = 1.49 GeV, the nearby baryon resonances
N (1440), N (1520), and N (1535) are expected to give
important contributions. We also included other potential
resonances in the calculations but their partial cross
sections turned out to be rather small compared to the
three aforementioned ones at this energy. We therefore
exclude them in the following discussion and the presentation
of the results for the sake of clarity.

Effective Lagrangians treat the complex hadron bound
states as pointlike particles. The non-pointlike nature of their
interactions can be taken into account by the inclusion of form
factors. For the purely hadronic vertices of Born contributions
we choose form factors according to the scheme described
in Ref. [21], which preserves gauge invariance. In Ref. [18],
where the emphasis was on the angular distribution, no form
factors were introduced. In the present study we use the form
factors described in Ref. [21] for the πNR vertices.

For electromagnetic interactions, the pointlike case is rep-
resented by the direct photon terms and deviations from it are
described by the inclusion of the intermediate ρ mesons, as
described above. This is equivalent to multiplying each elec-
tromagnetic vertex by a suitable form factor, the functional
form of which is dominated by the Breit-Wigner propagator
of the ρ mesons.

The microscopic details of hadron interactions can lead
to the appearance of extra phase factors at each vertex.
Such phase factors have been discussed in the framework
of a coupled-channel approach to meson-baryon scatter-
ing [31]. In our model, we include a phase factor as a
phenomenological free parameter for the vertices describing
the nucleon–ρ-meson decay mode of the baryon resonances
in order to explore their effect on the interference between
the direct-photon and ρ-meson contribution of each resonant
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(a) (b)

�

(c) (d)

R

(e)

R

(f)

FIG. 1. Diagrams in lowest order contributing to the process π− p → ne+e−. For clarity the emerging dilepton has been cut off in the
Feynman diagrams. The wavy line is to be understood as the coherent sum of a direct photon and a photon coupled via an intermediate ρ

meson to the hadrons. (a)–(d) are the s, u, t channels, and contact-term Born contributions, respectively. (e) and (f) show the s- and u-channel
diagrams, respectively, with an intermediate baryon resonance (R).

state. This essentially means that we make the correspond-
ing coupling constants complex via the substitution gρNR →
gρNR exp(iφρNR). This phase factor drops out when the partial
decay width of resonances to the ρN final state is calculated,
therefore only the moduli of the coupling constants can be de-
termined in the way described above. The situation is different
in the case of the Dalitz decay of resonances, R → Ne+e−,
where, due to an interference between the ρ and direct γ

contributions, the phase factor would be relevant.

III. RESULTS

We use the model outlined in Sec. II to study the dilepton
production process in pion-nucleon collisions at the energy
of recent experiments by the HADES collaboration,

√
s =

1.49 GeV. In this energy range, the nearby N (1520) resonance
is expected to strongly contribute to dilepton production due
to its strong coupling to the ρ meson. In Fig. 2 we show
the s-channel N (1520) contribution to the differential cross
section dσ/dminv as a function of the dilepton invariant mass
minv. If we do not include any extra relative phase between
the direct photon and the ρ-meson contributions then we
experience a constructive interference resulting in a smooth
invariant-mass spectrum. The maximum at minv ≈ 0.5 GeV is
due to the ρ-meson contribution. The introduction of the extra
phase in the ρ-meson contribution changes the interference
pattern, and for φρNR = 180◦ a deep minimum appears above
minv = 0.4 GeV.

Figure 3 represents our model’s prediction for the differ-
ential cross section dσ/dminv of the reaction π− p → Ne+e−
at

√
s = 1.49 GeV c.m. energy as a function of the invariant

mass minv. The largest contributions are shown, i.e., those
of the Born terms and of the baryon resonances N (1520),
N (1535), and N (1440). For the resonant contributions we
indicate the uncertainties arising from the errors on the reso-

nance widths and branching ratios. Furthermore, we show the
results obtained with two different assumptions on the extra
phase of the resonance-ρ contributions: with no extra phase
factor, and with a common phase of φρNR = 180◦ at all ρNR
vertices.

Comparing the two plots we see that the above extra phase
factor influences both the shape and the magnitude of the
differential cross section for invariant masses above 0.3 GeV.
In the coupled-channel model of Ref. [31] relative phases of
scattering amplitudes have been extracted. For instance, for
the πN → N (1520) → Nρ amplitude, a phase of φN (1520)

πρ =
−7.0◦ was obtained. This factor is, however, a product of
the phases corresponding to the πNN (1520) and ρNN (1520)
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FIG. 2. Contributions with an N (1520) resonance in the s chan-
nel to the differential cross section dσ/dminv of dilepton production.
Two of the lines indicate the direct-photon and the ρ-meson contri-
butions. The other curves show the coherent sum of the above two,
assuming different relative phases.
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FIG. 3. Differential cross section dσ/dminv of the process
π− p → ne+e− at c.m. energy

√
s = 1.49 GeV, with no extra phase

factor (a), and with a common phase factor of φρNR = 180◦ (b) intro-
duced in the ρNR vertices. The legend for line styles and fill bands
of the lower plot is valid for the upper plot too. The size of each band
corresponds to the uncertainty on the width and branching ratio of
the resonance as shown in Table I.

vertices, while the individual phase factors cannot be ex-
tracted. As already pointed out, we therefore treat the phase
factors at the ρNR vertices as free parameters. In principle,
these phases can be different for each baryon resonance. For
simplicity, we always use a common value for all resonances
in this article. However, since by far the most important res-
onance contributions are due to the N (1520), relative phases
for the other resonances would have only minor effects.

Figure 3 shows also the significance of the various con-
tributions. Independent of the phase factor, the Born terms
and the N (1520) provide the largest contributions. In the
φρNR = 0◦ case, the N (1520) is almost as strong as the Born
contribution at the large invariant mass end of the spectrum,
due to its strong coupling to the ρ meson. Integrating the
cross section over the minv > 0.3 GeV region where the con-
tribution of the ρ meson is significant, we obtain σ (minv >

0.3 GeV) = ∫
>0.3 GeV(dσ/dminv)dminv = 0.73 μb, which is a

result of a contribution of 0.28 μb from Born terms, 0.17 μb
from N (1520) terms and 0.28 μb from Born-N (1520) in-
terference. Contributions of the other two resonances are at
least an order of magnitude smaller. In the φρNR = 180◦ case
the N (1520) contribution shows a minimum around minv ≈
0.4 GeV and becomes negligible compared to the Born term.
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FIG. 4. Born contributions to the differential cross section
dσ/dminv of the process π− p → ne+e− at c.m. energy

√
s =

1.49 GeV, within the model described in this paper (solid line) and
with an extra minus sign introduced in all interaction terms involving
a ρ meson (dashed line).

In Ref. [21] no attempt was made to determine the signs
of hadron-ρ interactions, only the signs of γ NR Lagrangians
were varied in such a way that the best description of pion-
photoproduction cross-sections are achieved. In fact, both
for the Born terms and for the N (1520) contributions, a de-
structive interference occurred between the photon and the
ρ-meson contributions due to the choices of signs in the
relevant terms of the Lagrangian. In terms of the present
model, this scenario would correspond to setting φρNR = 180◦

and including an extra minus sign in the ρNN , πρNN , and
ππρ vertices. In Fig. 4 we show the interference effects
on the invariant-mass spectrum in the Born contributions.
Dotted and dash-dotted lines correspond to the Born-γ and
Born-ρ contributions, the continuous line depicts the full Born
contribution according to the model used in the present pa-
per while the dashed line shows the full Born contribution
obtained with an extra minus sign introduced in the Born-
ρ term. In the latter case the Born contribution is strongly
reduced for large invariant masses due to the destructive
interference.

In Fig. 5 we show the differential cross-section dσ/dminv

of the process π− p → ne+e− at c.m. energy
√

s = 1.49 GeV
as obtained from the modified model with φρNR = 180◦ and
an extra minus sign in the Born-ρ contribution. In this ver-
sion, the signs of interaction Lagrangians are analogous to
the model of Ref. [21]. However, the Lagrangians describing
interactions of baryon resonances are different in the present
model, and in the determination of coupling constants in-
volving baryon resonances we used updated values for their
masses and widths. Due to the destructive interference, the
Born contribution is suppressed for high invariant mass and
the N (1520) becomes dominant. As a result, the minimum
in the N (1520) contribution is visible even after coherently
summing all contributions. The resulting invariant mass spec-
trum is very similar to the one shown in Ref. [21].
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FIG. 5. Differential cross section dσ/dminv of the process
π− p → ne+e− at c.m. energy

√
s = 1.49 GeV, within the model

modified in such a way that destructive interference occurs between
the photon and ρ-meson contributions in the case of both the reso-
nance and the Born terms.

In the following we assume no extra minus sign in the
Born-ρ contribution and we regard φρNR = 0◦ as the stan-
dard value. These choices are suggested by the arguments
of Sec. II B based on the equivalence of the two versions of

VMD, and they were used in the upper plot of Fig. 3. We,
however, still explore the effects of a nonzero φρNR phase
factor.

In Ref. [18], the angular distribution of dileptons was dis-
cussed in terms of the anisotropy coefficient λθ and it was
discussed how this and other similar coefficients are related to
the polarization of the virtual photon. However, the hadronic
spin density matrix, ρhad

λ,λ′ , is itself an object representing the
virtual-photon polarization state. According to Eq. 5, elements
of this density matrix could in principle be determined based
on the experimentally observed angular distribution of dilep-
tons if sufficient statistics is available.

We used our model to give numerical predictions for the
density matrix elements ρhad

1,1 , ρhad
1,0 , and ρhad

1,−1. Figure 6 shows
these matrix elements as a function of the scattering angle θγ ∗ .
We present the results obtained from the two most important
contributions: the Born terms (a) and the s-channel N (1520)
diagram (b). At the bottom the combined result of the above
two are shown for the two cases where no extra phase factor is
assumed between the direct-γ and the ρ-meson contributions
of the N (1520) (c) and a phase factor of φρNR = 180◦ is
included (d). For each matrix element, three different curves
are plotted assuming three different values for the invariant
mass minv. On the plots one can follow how the shape of
the curves is influenced by the relative strength of the two
dominant contributions for various invariant masses.
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FIG. 6. Hadronic density-matrix elements ρ1,1 (solid lines), ρ1,0 (dashed lines), and ρ1,−1 (dash-dotted lines) obtained from the Born
contributions (a), the N (1520) resonance contributions (b), and the coherent sum of the above two assuming no extra phase factor between the
N (1520)-direct γ and N (1520)-ρ meson terms (c), and assuming a phase factor of φρNR = 180◦ (d). The lines in each set correspond to virtual
photon masses minv = 0.1 (thinnest), 0.3, and 0.5 GeV (thickest).
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IV. CONCLUSIONS AND OUTLOOK

We have presented a model study of the dilepton pro-
duction process in pion-nucleon collisions in the second
resonance region. The applied effective-Lagrangian model
is based on the earlier works of [21] and [18]. We calcu-
lated both the contributions of baryon resonances and the
nonresonant (Born) terms. For the electromagnetic interac-
tion of hadrons, we employed a version of the vector-meson
dominance (VMD) model in which hadrons couple to the
electromagnetic field both directly and via an intermediate ρ

meson. For the interaction Lagrangians involving higher-spin
resonances we used a consistent interaction scheme elimi-
nating lower-spin degrees of freedom. We fixed the relative
signs of hadron-photon and hadron-ρ interaction Lagrangians
based on the requirement that in the limit of universal coupling
constants, the VMD model used in the present study should
become equivalent to the other standard form of VMD.

We carried out numerical calculations for
√

s = 1.49 GeV
c.m. energy, which coincides with the energy of recent ex-
periments by the HADES collaboration. The Nρ coupling
strengths of the baryon resonances relevant at this energy have
been determined using the corresponding branching ratios that
were obtained from results of the same HADES experiment on
pion pair production [20].

We presented our model predictions for the differential
cross section dσ/dminv and indicated the uncertainties arising
from the insufficient knowledge of the widths and branch-
ing ratios of baryon resonances. Our results show that at
this energy the Born terms and the term with an s-channel
N (1520) resonance give the most significant contributions. In
the present calculation the N (1440) contribution is smaller
than in the model of Ref. [18], due to the very small up-
per limit for the Nρ branching ratio of N (1440) found in
Ref. [20].

We demonstrated how the introduction of a phenomeno-
logical phase factor for the resonance-nucleon-ρ vertices
influences the shape of the invariant mass spectrum. While
the overall effect on the cross section still depends on the
individual magnitudes of the respective channels, the phase
factor determines how constructive or destructive the interfer-
ence between the different contributions is. In particular, we
have shown that in the absence of such a phase factor there is a
constructive interference between the direct-photon and the ρ-
meson contributions of baryon resonances. A phase factor of
180◦ results in a destructive interference and a minimum ap-
pears in the invariant mass spectrum around minv = 0.4 GeV.
A similar minimum has been seen also in [21] where a differ-
ent choice was made for the signs of interaction Lagrangians
involving a ρ meson.

We presented predictions for elements of the spin den-
sity matrix ρhad

λ,λ′ , which represents the polarization state of
the intermediate virtual photon. The density-matrix elements
are given as a function of the scattering angle for various
fixed values of the invariant mass. These matrix elements can
in principle be determined from the angular distribution of
dileptons originating from the decay of the virtual photon.
However, for this the measurement of a multi-differential
cross section is needed with sufficient statistics: for each fixed

value of the invariant mass minv and scattering angle θγ ∗ , the
dependence of the differential cross section on the electron
angles θe and φe will determine the density matrix elements.

For high invariant masses (minv � 0.45 GeV), diagrams in-
volving an intermediate ρ meson à la VMD dominate over the
ones containing a direct coupling to the photon, as demon-
strated for the case of N (1520) contributions in Fig. 2. The
intermediate ρ meson is in the same polarization state as the
virtual photon it converts to. Predominantly ρ mesons decay
into a pion pair, therefore the intermediate ρ meson can be
studied via the π− p → nπ+π− reaction. In particular, the
polarization state and the spin density matrix of the ρ meson
might be accessible via the angular distribution of the pro-
duced pion pair. Such an analysis assumes that the ρ-meson
contribution to pion pair production can be disentangled from
other contributions.

For low invariant masses, diagrams with direct coupling to
the photon are dominant. These ingredients of the model can
be independently tested in processes involving real photons,
e.g., photoproduction experiments.

In dilepton production, both hadron-ρ and direct hadron-
photon couplings play a role, therefore the interference of
these two contributions and in particular their relative phase
can be studied. High statistics dilepton spectra obtainable in
pion-beam experiments by HADES could provide an ideal test
environment for the above effects and the present, or other
similar models.

To study properties of baryon resonances in the third res-
onance region the HADES collaboration will continue the
experimental campaign using a secondary pion beam at the
c.m. energy of

√
s = 1.76 GeV [33], serving as a precur-

sor for current and future meson beam facilities for baryon
spectroscopy [34,35]. At this energy we expect the spin-5/2
resonances N (1680) and N (1675) to contribute to the cross
section. This will most easily be visible via a different de-
pendence of spin density matrix elements on the scattering
angle θγ ∗ . Our model already includes relevant resonances
for the third resonance region and can easily be extended
to include missing ones. Preliminary calculations show that
different choices of form factors will result in more significant
differences at higher energies, therefore a careful study of
their effects will be necessary. Possible approaches to the
electromagnetic form factor of hadrons relevant for higher
energies include the extended vector-meson dominance model
of Ref. [36], where excited ρ-meson states are also included,
or the microscopic model of Refs. [15–17], where electro-
magnetic interaction of hadrons is described as a sum of
valence-quark and pion-cloud contributions.
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APPENDIX A: LAGRANGIANS

For the Born terms, i.e., the nonresonant contributions, we
chose the same Lagrangians as Ref. [21]. We use a pseudovec-
tor nucleon-pion coupling of the form

LπNN = − fπNN

mπ

ψNγ5γ
μ	τψN · ∂μ 	π, (A1)

where 	τ = (τ1, τ2, τ3) are the Pauli matrices in isospin space
and fπNN = 0.97 is a coupling constant where the value is
taken from Ref. [37]. The direct coupling of the nucleon and
the pion to the photon is given by the interaction terms

Lγ NN = −eψN

[
1 + τ3

2
/A −

(
1 + τ3

2
κp

+ 1 − τ3

2
κn

)
σμν

4mN
Fμν

]
ψN , (A2)

Lγππ = −ieAμ(π−∂μπ+ − π+∂μπ−), (A3)

where the anomalous magnetic moments of the proton and
the neutron are κp = 1.793, κn = −1.913. The interaction of
the nucleon and the pion with the ρ meson is described by
Lagrangians analogous to the above two,

LρNN = − g̃ρ

2
ψN

(
	/ρ − κρ

σμν

4mN
	ρμν

)
	τψN , (A4)

Lρππ = −g̃ρ[(∂μ 	π ) × 	π ]	ρμ, (A5)

where a value of g̃ρ = 5.96 is obtained from the width of the
ρ → ππ decay. For the tensor coupling, κρ , values between
1.99 and 2.65 have been obtained in Ref. [38] based on various
PWA solutions. Here, we use κρ = 2.3. The presence of the
derivative of the pion field in the nucleon-pion interaction,
Eq. (A1) forces us to introduce four-point interactions of the
form

LγπNN = − ie fπNN

mπ

ψNγ5γ
μ	τψAμQ	π, (A6)

LρπNN = − g̃ρ fπNN

mπ

ψNγ5γ
μ	τψ (	ρμ × 	π ) (A7)

in order to maintain gauge invariance.
In the present model we describe the baryon resonance

transition vertices by the same Lagrangians as in Ref. [18],
but we also include direct coupling terms to the photon, using
forms analogous to the corresponding interaction Lagrangians
with the ρ meson. For higher-spin resonances we employ the
consistent interaction scheme of Ref. [22]. The interaction
Lagrangians involving spin-1/2 and spin-3/2 resonances are

given by

LπNR1/2 = −2gπNR

mπ

ψR�γ μ 	T ψN∂μ 	π + H.c., (A8)

LπNR3/2 = i
2gπNR

m2
π

�
μ

R� 	T ψN∂μ 	π + H.c., (A9)

LρNR1/2 = gρNR

mρ

ψR
	T σμν�̃ψN 	ρμν + H.c., (A10)

LρNR3/2 = −i
gρNR

2m2
ρ

�
μ

R
	T γ ν�̃ψN 	ρμν + H.c., (A11)

Lγ NR1/2 = −gγ NR

2mρ

ψRσμν�̃ψN Fμν + H.c., (A12)

Lγ NR3/2 = i
gγ NR

4m2
ρ

�
μ

Rγ ν�̃ψN Fμν + H.c., (A13)

where RJ corresponds to a baryon resonance with total spin
J . � = γ 5 if JP ∈ {1/2+, 3/2−} and � = 1 otherwise, and
�̃ = γ 5�. 	T = 	τ/2 if the baryon resonance has a total isospin
equal to 1/2 (R = N∗), while 	T = 	� in case of an isospin-3/2
resonance (R = �∗). Here 	� = (�1,�2,�3) are the isospin
1/2 to 3/2 transition matrices.

In line with the consistent scheme of Ref. [22], spin-3/2
baryons are represented by the field

�μ = iγ ν (∂μψν − ∂νψμ), (A14)

where ψμ is the traditional Rarita-Schwinger field.
The propagators for the spin-1/2 particles are given by

S1/2 = i

p2
R − m2

R + i
√

p2
R�R

(/pR + mR) (A15)

and those for the spin-3/2 particles by

Sμν

3/2 = i

p2
R − m2

R + i
√

p2
R�R

(
p2

R

)Pμν

3/2(pR, mR) (A16)

with the projector

Pμν
3/2 = −(/pR + mR)

(
gμν − γ μγ ν

3

)
. (A17)

Terms in the projectors that are proportional to pμ
R have been

neglected since they cancel out when contracted with the
vertices. The general expression can be found in Ref. [21].
Furthermore we use the same width parametrization for
baryon resonances as in Ref. [21].

APPENDIX B: COUPLING CONSTANTS

We took the Breit-Wigner mass m and total decay width
� of baryon resonances from the Review of Particle Physics
[32] by the Particle Data Group (PDG). The PDG provides
an upper (u) and lower (l) value for the total widths of
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resonances and their branching ratios (BR) to the Nπ and Nγ

final state. We used BR = u+l
2 ± u−l

2 for the mean value and
the uncertainty of the branching ratios and a similar expres-
sion for the total widths. Using these we obtain the partial
widths and their uncertainties. The values and uncertainties
of the corresponding coupling constants are determined by
requiring that our model’s prediction for the partial widths
reproduces the PDG values and uncertainties.

Using a partial-wave analysis of the reaction π− p →
Nππ , the HADES experiment reported for the branching
ratios of N (1520) and N (1535) to the Nρ final state the
values (12.2 ± 1.9)% and (3.2 ± 0.7)%, respectively [20],
while for the N (1440) an upper limit of 0.2% was obtained,
which we interpret as (0.1 ± 0.1)%. The coupling strength of
the resonance to the Nρ channel can be determined based
on the decay mode R → Nρ → Nππ . From the effective-
Lagrangian model one can obtain the prediction for this decay

width via integration over the ρ-meson spectral function ac-
cording to

�R→Nππ (ρ) = �R→Nρ

= 1

4π2

∫
dminv

|pN |
m2

R

1

npol,R

∑
|MR→Nρ |2

× m2
inv�ρ (minv)(

m2
inv − m2

ρ

)2 + m2
inv�ρ (minv)2

, (B1)

where we have taken into account that the ρ meson decays to
a pion pair with ≈100% branching ratio. The ρNR coupling
constants and their uncertainties are determined by requiring
that the model reproduces the Nρ partial widths obtained by
combining the total width given by PDG and experimental Nρ

branching ratio by HADES. The coupling constants of baryon
resonances are summarized in Table I.
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