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Higher order symmetric cumulants of global collective observables in heavy ion collisions are studied.
The symmetric cumulants can be straightforwardly constructed for scalar observables: the average transverse
momentum, the multiplicity, and the squares of harmonic flow vectors. Third and fourth order cumulants are
calculated in the hydrodynamic model. A linear predictor of the average transverse momentum and harmonic
flow coefficients in a collision is used to predict the values of the cumulants from the moments of the initial
distribution. The symmetric cumulants divided by the averages (or the standard deviations) of the considered
observables can be used as a fine tool to study correlations present in the initial state of the collision.
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I. INTRODUCTION

The dense matter created in relativistic heavy ion collisions
expands rapidly. The study of the collective flow of the ex-
panding matter, modeled by the viscous hydrodynamics, can
be used to study its properties [1–3]. One of the difficulties
in this task lies in the uncertainty on the initial conditions
for the hydrodynamic evolution. To reduce the uncertainty
in the prediction of the harmonic flow coefficients, a number
of additional observables based on correlators involving four
or more particles have been proposed to constrain the initial
conditions.

The expansion in the directions transverse to the beam
direction generates the collective transverse flow. Of particular
importance are the harmonic coefficients of the azimuthal
particle distribution reflecting the azimuthal asymmetry of
the initial conditions. The average transverse momentum of
particles emitted in a collision is a measure of the overall
radial expansion. The final transverse momentum is related
to the size of the initial source [4]. Events with a smaller size
of the interaction region have larger energy density gradients
and a larger transverse push is formed in the expansion. The
scaled transverse momentum fluctuations reflect, in the first
approximation, the fluctuations of the initial size and in the
entropy deposition.

A finer tool to look at the correlations of the collective
flow observables in heavy ion collisions is given by the cor-
relation coefficient ρ(pT , v2

n ) between the average transverse
momentum pT and the harmonic flow coefficient v2

n in an
event [5]. The correlation of the elliptic or triangular flow
with the average transverse momentum is well described by
the correlations present in the initial state of the hydrody-
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namic evolution [6–8]. Thus, the correlation coefficient of
transverse momentum pT and the elliptic or triangular flow
coefficient can serve as a tool to study correlations present in
the initial state. The correlation coefficient has been measured
for Pb + Pb and p + Pb collisions by the ATLAS Collabo-
ration [9]. The experimental data on ρ([pT ], v2

2 ) in Pb + Pb
collisions are qualitatively well described by hydrodynamic
models. However, the magnitude and the sign of the correla-
tion coefficient ρ([pT ], v2

3 ) are not well described in most of
the calculations.

The study of the correlation coefficient between transverse
momentum and elliptic flow is particularly interesting in de-
formed nuclei. In central collisions of deformed nuclei the
orientation of the colliding deformed nuclei leads to specific
correlations between the initial size and the elliptic deforma-
tion [10,11]. Experimental results show a sensitivity of the
correlation coefficient ρ([pT ], v2

2 ) to the nuclear deformation
[12,13]. The transverse momentum-harmonic flow correla-
tion coefficient in peripheral events can be sensitive to initial
momentum correlation that would survive the hydrodynamic
evolution [14].

In this paper we explore higher order correlators of the
harmonic flow and of the average transverse momentum. We
study higher order symmetric cumulants [15–17] of scalar
quantities: the transverse momentum, multiplicity, and the
squares of harmonic flow vectors of different order. We
present predictions for the third and fourth order normalized
symmetric cumulants for collisions of spherical Pb + Pb and
deformed U + U nuclei in the hydrodynamic model. We pro-
pose two different ways to normalize the higher cumulants,
by the average or by the standard deviations of the observ-
ables taken in the cumulant. The calculations are compared
to the results obtained using a linear predictor based on
moments of the initial density. The higher order cumulants
calculated in the hydrodynamic model could be measured
experimentally.
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II. CORRELATIONS OF GLOBAL OBSERVABLES
IN AN EVENT

A. Model

Expanding the azimuthal dependence of particle distribu-
tions in Fourier series we can write

dN

d pdφ
= dN

2πd p

(
1 + 2

∞∑
n=1

Vn(p)einφ

)
, (1)

using the complex plane notation for the transverse plane
(p, φ). In this paper we use boost invariant calculations and the
results should be compared to experimental results obtained at
central rapidities in heavy ion collisions. Both the transverse
momentum distribution dN

d p and the harmonic flow vectors Vn

fluctuate event by event. In this paper we study event by event
correlations between moments of the distribution dN

d pdφ
inte-

grated in a range of transverse momenta, the charged particle
multiplicity

N =
∫ pmax

pmin

d p
dN

d p
, (2)

the average transverse momentum in an event

pT = 1

N

∫ pmax

pmin

pd p
dN

d p
, (3)

and the harmonic flow coefficients

Vn = 1

N

∫ pmax

pmin

d pVn(p)
dN

d p
. (4)

The complex numbers Vn = vnein�n describe the flow magni-
tude vn and the flow angle �n for the harmonic flow of order
n. The average over a sample of events in a given centrality
bin is denoted by 〈· · · 〉, e.g., the averages of the multiplicity
〈N〉, transverse momentum 〈pT 〉, and flow harmonics

vn{2} = √〈VnV �
n 〉 (5)

can be calculated.
We use the two-dimensional version of the hydrodynamic

code MUSIC [18–20] with shear viscosity η/s = 0.08 for the
hydrodynamic expansion phase. For the initial conditions
in Pb + Pb collisions at

√
sNN = 5.02 TeV we use a two-

component Glauber Monte Carlo model [21] to calculate the
initial entropy density in each event. The details of the model
for the initial density can be found in Ref. [5]. The initial
density in the transverse plane s(x, y) in each event can be
characterized by specific moments, the eccentricities

εnei	n = −
∫

r dr dφ rns(r, φ)einφ∫
r dr dφ rns(r, φ)

, (6)

the RMS radius

R2 =
∫

r dr dφ r2s(r, φ)∫
r dr dφ s(r, φ)

, (7)

and the entropy per unit rapidity,

S =
∫

r dr dφ s(r, φ). (8)

FIG. 1. The correlation coefficient of the average transverse mo-
mentum and the elliptic flow coefficient in Pb + Pb collisions as a
function of centrality. The experimental data are from the ATLAS
Collaboration [12] (blue points). The red squares denote the results
of the hydrodynamic simulations, the black triangles show the results
for the correlation coefficient corrected for multiplicity fluctuations
(13), and the blue dashed line with stars shows the correlation coef-
ficient obtained from the linear predictor (15).

B. Transverse momentum: Harmonic flow correlations

Event by event correlations between the average transverse
momentum and the harmonic flow can be measured using the
correlation coefficient [5]

ρ
(
pT , v2

n

) = Cov
(
pT , v2

n

)
√

Var(pT )Var
(
v2

n

) (9)

with the covariance

Cov
(
pT , v2

n

) = 〈pT VnV
�

n 〉 − 〈pT 〉〈VnV
�

n 〉 (10)

and the variances

Var(pT ) = 〈
p2

T

〉 − 〈pT 〉2, (11)

Var
(
v2

n

) = 〈(VnV
�

n )2〉 − 〈VnV
�

n 〉2. (12)

The covariance in the numerator of the correlation coefficient
(9) is a three particle correlator, but the variance of the flow
harmonic (12) is a four particle correlator. The experimental
estimators for covariance and the variances in (9) involve up
to three or four sums over particles in the event, with self-
correlations excluded [5].

The results for the transverse momentum-elliptic flow
correlation coefficient ρ(pT , v2

2 ) are shown in Fig. 1. The sim-
ulated correlation coefficients present a qualitatively similar
trend to the experimental data of the ATLAS Collabora-
tion [12]. In particular, the correlation coefficient ρ(pT , v2

2 )
decreases in the most central collisions, and in peripheral
collisions the correlation coefficient changes sign.

It should be noted that the change of sign of ρ(pT , v2
2 ) hap-

pens in the simulation for more central collisions than in the
data. The measured correlation coefficient for the triangular
flow ρ(pT , v2

3 ) is small and is shown in Fig. 2. The simulation
does not fully describe this feature of the experimental data.
The discrepancies observed between the data and simulations
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FIG. 2. Same as in Fig. 1, but for the triangular flow.

results for ρ(pT , v2
n ) may indicate that some physics of the

dynamics in the model or some essential correlations in the
initial state are missing. At very low multiplicities some corre-
lations may be due to nonflow contributions and/or the initial
flow, but it is difficult to explain why a significant discrepancy
for ρ(pT , v2

2 ) is visible also for mid-central collisions.
The correlation between the average transverse momentum

and the flow harmonics is partially due to correlations of those
quantities with the event multiplicity. The experimental data
are presented in narrow bins of centrality, where this effect
is reduced. The dependence of the variance or covariance of
studied observables on the fluctuations of a third variable,
e.g., the multiplicity, can be taken into account by calculating
the partial variance or covariance [22]. The partial correlation
coefficient

ρ
(
pT , v2

n • N
) = ρ

(
pT , v2

n

) − ρ(pT , N )ρ
(
N, v2

n

)
√

1 − ρ(pT , N )2
√

1 − ρ
(
v2

n, N
)2

(13)

is an estimate of the correlation coefficient at fixed multiplic-
ity [21]. The results for the partial correlation coefficients are
shown in Figs. 1 and 2 (black triangles). The correction is
sizable for the elliptic flow correlation coefficient ρ(pT , v2

2 ).
The partial correlation coefficient is closer to the experimental
data. Generally, if the dependence of an observable O, in a
given bin, on multiplicity is approximately linear, the correc-
tion to O can be implemented as [7]

Õ = O − Cov(O, N )

Var(N )
(N − 〈N〉). (14)

To correct for the effect of multiplicity fluctuation, we can
calculate event averages for moments of the corrected vari-
ables (14). For the correlation coefficient this procedure is
equivalent to the formula for the partial correlation coefficient
(13). In the following, we use the corrected observables Õ
to estimate higher order cumulants without effects of multi-
plicity fluctuations. When comparing to the experimental data
obtained in narrow multiplicity bins the simulation results
corrected for multiplicity fluctuations should be considered.
If the experimental data are obtained in wide multiplicity bins
or using a different definition on centrality bins a correction
similar to (14) could be used in order to obtain a consistent

definition of correlations and cumulants between different
experiments and model calculations.

C. Linear predictor

The average transverse momentum and the harmonic flow
coefficients are largely determined by the initial conditions
[4,23–25]. The eccentricities of the initial distribution are
strongly correlated with harmonic flow coefficients of the
emitted particles. The average transverse momentum of final
particles can be predicted using the initial entropy S [Eq. (8)]
and the RMS size R [Eq. (7)] [26,27]. Alternatively, a pre-
dictor of the final transverse momentum based on the initial
energy per rapidity [8] or the energy weighted entropy [7] can
be used.

It has been noted that in order to describe the correlation of
the transverse momentum with the elliptic or triangular flow,
the eccentricities should be included in the predictor for the
final transverse momentum [6]. It was shown that such an
improved predictor describes well the transverse momentum-
harmonic flow correlation coefficients, obtained from the full
hydrodynamic simulation. In the following we use a general
linear predictor, based on moments of the initial density:

v̂2
2 = k2ε

2
2 + α2δR + β2δS,

v̂2
3 = k3ε

2
3 + α3δR + β3δS,

p̂T = 〈pT 〉 + αpδR + βpδS + γpδε
2
2 + λpδε

2
3 , (15)

where for any observable δO = O − 〈O〉. The prediction of
each of the observables in the above equations is optimized
separately. Only after fixing the parameters of the linear
predictor, the cumulants between predicted observables are
calculated. The linear predictor can be written as

δÔi = L j
i δMj (16)

with Mi being the set of moments of the initial density. The
moments of the final observables can be written as a linear
transformation from the moments in the initial state:

〈δOi · · · δOj〉 = Ls
i · · · Lk

j 〈δMs · · · δMk〉. (17)

The linear predictor (15) describes fairly well the correlations
and higher cumulants involving pT , v2

2 , and v2
3 [compare blue

stars (linear predictor) and red squares (hydrodynamic results)
in Figs. 1, 2, 3, and 11]. It demonstrates that the proposed
cumulants involving those observables can be understood as
a linear hydrodynamic response on the correlations present in
the initial state.

III. SYMMETRIC CUMULANTS

A. Second order cumulant

The correlation between the magnitudes of the harmonic
flows of different order has been studied using symmetric
cumulants [15]. The second order symmetric cumulant is the
covariance between the two observables:

〈AB〉 − 〈A〉〈B〉 = Cov(A, B). (18)

The normalized symmetric cumulant (NSC) is scaled by
the averages of the observables in the covariance. For the
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FIG. 3. The normalized symmetric cumulant of the average
transverse momentum and the squares of the elliptic and triangular
flow (red squares). The blue stars denote the results obtained from the
linear predictor (15) and the black triangles show the scaled symmet-
ric cumulant for observables corrected for multiplicity fluctuations
(14).

transverse momentum and harmonic flow one may define

NSC
(
pT , v2

n

) =
〈
pT v2

n

〉 − 〈pT 〉〈v2
n

〉
〈pT 〉〈v2

n

〉 . (19)

The information on the event by event correlations between
the average transverse momentum and the harmonic flow is
contained in the covariance of the two observables, and is
basically the same in the correlation coefficient ρ(pT , v2

n ) and
in the symmetric cumulant NSC(pT , v2

n ). The experimental
extraction of the normalized symmetric cumulant is simpler
than for the correlation coefficient, since the denominator
involves at most a two particle correlator, where methods to
reduce nonflow effects can be implemented, even in small
collision systems [28].

B. Third and fourth order cumulants

Additional information on correlations between flow ob-
servables is encoded in higher order cumulants [15–17]. The
nth order cumulant involves only correlation of n observables,
with all lower order correlations subtracted. The third and
fourth order symmetric cumulants for scalar observables have
the form [16]

SC(A, B,C) = 〈ABC〉 − 〈AB〉〈C〉 − 〈AC〉〈B〉
−〈BC〉〈A〉 + 2〈A〉〈B〉〈C〉 (20)

and

SC(A, B,C, D) = 〈ABCD〉 − 〈ABC〉〈D〉 − 〈ABD〉〈C〉
−〈ACD〉〈B〉 − 〈BCD〉〈A〉 − 〈AB〉〈CD〉
−〈AC〉〈BD〉−〈BC〉〈AD〉+2(〈AB〉〈C〉〈D〉
+〈AC〉〈B〉〈D〉 + 〈AD〉〈C〉〈B〉
+〈BC〉〈A〉〈D〉 + 〈BD〉〈A〉〈C〉
+〈CD〉〈A〉〈B〉) − 6〈A〉〈B〉〈C〉〈D〉. (21)

FIG. 4. Same as in Fig. 3 but for the triangular and quadratic
flows.

The corresponding normalized symmetric cumulants are

NSC(A, B,C) = SC(A, B,C)

〈A〉〈B〉〈C〉 (22)

and

NSC(A, B,C, D) = SC(A, B,C, D)

〈A〉〈B〉〈C〉〈D〉 . (23)

As noted, for higher order symmetric cumulants the effect
of multiplicity fluctuations can be reduced using observables
corrected for changes in multiplicity [Eq. (14)].

In Figs. 3, 4, and 5, the third order cumulants for pT and
two different coefficients of the harmonic flow are shown. For
all the third order correlations considered, the magnitude of
the scaled cumulant is small, as it measures only genuine
third order correlations. For the cumulants NSC(pT , v2

2, v
2
3 )

and NSC(pT , v2
2, v

2
4 ) an increase is visible in peripheral

collisions. The linear predictor (15), based on initial cor-
relations only, describes the full hydrodynamic calculation
for centralities 0–50%. The cumulants involving v4 cannot
be predicted using a linear predictor, but could serve as a
precise measure of nonlinearities between harmonic flows of

FIG. 5. Same as in Fig. 3 but for the elliptic and quadratic flows.

014905-4



HIGHER ORDER CUMULANTS OF TRANSVERSE MOMENTUM … PHYSICAL REVIEW C 104, 014905 (2021)

FIG. 6. The correlation coefficient between the average trans-
verse momentum and the elliptic flow coefficient ρ(pT , v2

2 ) for
central U + U collisions at

√
sNN = 193 GeV as a function of cen-

trality. Results for collisions of deformed nuclei with and without
fluctuations in entropy deposition are denoted with red squares and
black triangles, respectively. The results for spherical nuclei are
represented using blue dots.

different order. The fourth order normalized symmetric cumu-
lant NSC(pT , v2

2, v
2
3, v

2
4 ) is compatible with zero within the

statistical accuracy of our calculation (not shown).

IV. SYMMETRIC CUMULANTS FOR COLLISIONS
OF DEFORMED NUCLEI

In central collisions of deformed nuclei the relative orien-
tation of the axes of deformation of the two nuclei determines
the initial ellipticity, entropy, and the size of the fireball
[11,29–34]. As a consequence, the final elliptic flow, the av-
erage transverse momentum, and/or the multiplicity may be
correlated with the initial orientation of the deformation axes
in a collision. In central collisions of deformed nuclei, tip-on-
tip collisions lead to a large transverse momentum and small
elliptic flow, while body-on-body collisions lead to a smaller
transverse momentum but larger elliptic flow [10]. This effect
reduces the value of the correlation coefficient ρ(pT , v2

2 ) in
central U + U collisions.

In this section symmetric cumulants for U + U collisions
at

√
sNN = 193 GeV are studied. Initial conditions from the

TRENTO model (with parameter p = 0) [35] are evolved us-
ing the two-dimensional version of the MUSIC hydrodynamic
code. We compare three scenarios for the initial conditions:
collisions of uranium nuclei with deformation parameter
β = 0.265 and fluctuations of entropy deposition from each
participant (exponential distribution), collisions of spherical
uranium nuclei (β = 0), and collisions of deformed uranium
nuclei (β = 0.265) without fluctuations of entropy deposition.
In Figs. 6 and 7, the correlation coefficients of the average
transverse momentum and harmonic flow are shown. The
value of the correlation coefficient ρ(pT , v2

2 ) is smaller for
collisions of deformed nuclei than in the case of spherical
nuclei, as expected. We note that the correlation coefficient for
initial conditions without fluctuations in entropy deposition is
smaller than in the cases with fluctuations for both correlation

FIG. 7. Same as in Fig. 6 but for the triangular flow.

coefficients ρ(pT , v2
2 ) and ρ(pT , v2

3 ). In central collisions,
the covariances of the harmonic flow observables with mul-
tiplicity are small. We have checked that for the centrality
bins used in our study for U + U collisions, the corrections
for multiplicity fluctuations to the correlation coefficients
and higher order symmetric cumulants are small. In the fol-
lowing we show only the uncorrected symmetric cumulants
for U + U collisions. The third order symmetric cumulant
NSC(pT , v2

2, v
2
3 ) is smaller for collisions of deformed nuclei

with fluctuations of entropy deposition than in the other two
scenarios studied (Fig. 8), but the effect is small.

The collective flow in central collisions of deformed nu-
clei is dominated by the fluctuations in the initial entropy
and its azimuthal asymmetries. Therefore, it is interesting
to study symmetric cumulants involving not only the aver-
age transverse momentum and harmonic flow, but also the
multiplicity in the event. Please note that the results for the
symmetric cumulants involving multiplicity as one of the

FIG. 8. The normalized symmetric cumulant of the average
transverse momentum, the elliptic, and the triangular flow coeffi-
cients NSC(pT , v2

2, v
2
3 ) for central U + U collisions at

√
sNN = 193

GeV as a function of centrality. Results for collisions of deformed
nuclei with and without fluctuations in entropy deposition are de-
noted with red squares and black triangles, respectively. The results
for spherical nuclei are represented using blue dots.
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FIG. 9. Same as in Fig. 8 but for the normalized symmetric
cumulant of the average transverse momentum, the multiplicity, and
the elliptic flow coefficient NSC(pT , N, v2

2 ). Symbols as in Fig. 8.

observables may depend on the definition of the centrality
bin. To reduce the bias from centrality cuts, that observables
could be calculated experimentally using centrality bins based
on forward rapidity observables, i.e., the forward transverse
energy. The symmetric cumulant NSC(pT , N, v2

2 ) is sensitive
to the fluctuations of entropy deposition from the participant
nucleons (Fig. 9). Fluctuations in entropy deposition increase
the magnitude of NSC(pT , N, v2

2 ). The fourth order cumu-
lant NSC(pT , N, v2

2, v
2
3 ) is positive for simulations involving

fluctuations in the entropy deposition in the initial states
(Fig. 10), while it is compatible with zero for simulations
without entropy fluctuations in the initial state. The normal-
ized symmetric cumulant NSC(pT , v2

2, v
2
3, v

2
4 ) (not shown) is

compatible with zero within our statistical accuracy.

V. SCALED SYMMETRIC CUMULANTS

The normalized symmetric cumulants (22) and (23) in-
volve, in the denominator, averages of the observables for

FIG. 10. The fourth order symmetric cumulant of the average
transverse momentum, the multiplicity, the elliptic, and the triangular
flow coefficients NSC(pT , N, v2

2, v
2
3 ). Symbols as in Fig. 8.

FIG. 11. The scaled symmetric cumulant of the average trans-
verse momentum and the squares of the elliptic and triangular flow
coefficients SSC(pT , v2

2, v
2
3 ) in Pb + Pb collisions as a function of

centrality (red squares). The blue stars denote the results obtained
from the linear predictor (15) and the black triangles show the scaled
symmetric cumulant for observables corrected for multiplicity fluc-
tuations (14).

which the cumulant is calculated. However, the interpreta-
tion of the results is less obvious than for the correlation
coefficient. Moreover, the average transverse momentum in
a collision depends on many effects [36]: the freeze-out pro-
cedure, the bulk viscosity, the pre-equilibrium flow, or simply
the experimental transverse momentum range. The linear pre-
dictor for the average transverse momentum in an event (15)
can predict only deviations from the mean.

An alternative normalization of the symmetric cumulants
would involve the standard deviations of the observables in
the denominator and we get the scaled symmetric cumulants
(SSCs)_,

SSC(A, B,C) = SC(A, B,C)√
Var(A)Var(B)Var(C)

(24)

and

SSC(A, B,C, D) = SC(A, B,C, D)√
Var(A)Var(B)Var(C)Var(D)

. (25)

The scaled symmetric cumulant has the advantage that its
prediction from the initial state does not require additional
input on the value of the average transverse momentum (from
simulation or experiment). The value of the scaled symmetric
cumulants can be fully predicted using the linear hydrody-
namic response.

The scaled symmetric cumulants show a very similar be-
havior as the normalized symmetric cumulants discussed in
previous sections. This can be seen in the examples chosen for
Pb + Pb collisions (Fig. 11) and U + U collisions (Fig. 12).
The numerical values are larger for the scaled symmetric cu-
mulants than for the normalized symmetric cumulants. Alone
the change from the normalization by the average transverse
momentum to the normalization by its standard deviation
yields a factor in the range 20–100.
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FIG. 12. The scaled symmetric cumulant of the average trans-
verse momentum, the elliptic, and the triangular flow coefficients
SSC(pT , v2

2, v
2
3 ) for central U + U collisions at

√
sNN = 193 GeV

as a function of centrality. Results for collisions of deformed nuclei
with and without fluctuations in entropy deposition are denoted with
red squares and black triangles, respectively. The results for spherical
nuclei are represented using blue dots.

VI. SUMMARY

Flow observables are fluctuating from event to event. Mo-
ments from the values of several flow observables in the
event can be constructed. We propose to measure higher order

symmetric cumulants between the average transverse momen-
tum and harmonic flow coefficients. Symmetric cumulants of
order n measure genuine nth order correlations between the
observables studied.

Symmetric cumulants can be normalized by the averages
or by the standard deviations of the considered observables.
Such normalized cumulants involving the elliptic flow, the
triangular flow, and the transverse momentum could be pre-
dicted from the initial conditions. Their study could serve as a
sensitive probe of higher order correlations in the initial state
of the evolution in the collision. Further cumulants involving
flow harmonics of higher order could serve as a probe of
nonlinearities in the hydrodynamic response.

We present predictions based on the hydrodynamic model
for collisions of spherical (Pb + Pb) or deformed (U + U)
nuclei. The symmetric cumulants involving the elliptic and
triangular flows obtained from the full hydrodynamic calcu-
lation can be well described using a linear predictor from
the initial state. Our predictions could be compared to future
experimental measurements.
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[36] P. Bożek and W. Broniowski, Phys. Rev. C 85, 044910
(2012).

014905-8

https://doi.org/10.1103/PhysRevC.87.044908
https://doi.org/10.1103/PhysRevC.85.034905
https://doi.org/10.1103/PhysRevC.92.011902
https://doi.org/10.1103/PhysRevLett.115.222301
https://doi.org/10.1103/PhysRevC.92.011901
https://doi.org/10.1103/PhysRevC.85.044910

