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Anisotropic flow decorrelation in heavy-ion collisions with event-by-event viscous hydrodynamics
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Decorrelation of the elliptic flow in rapidity is calculated within a hybrid approach which includes event-by-
event viscous fluid dynamics and final state hadronic cascade model. The simulations are performed for Au+Au
collisions at center-of-mass collision energies of 27 and 200 GeV per nucleon pair, as well as various asymmetric
colliding systems at 72 GeV per nucleon pair. Initial conditions determined by an extended Monte Carlo
Glauber model show better agreement with experimental data than initial conditions from the ultrarelativistic
quantum molecular dynamics transport model. We show how the observed decorrelation is connected with the
decorrelation of initial state spatial anisotropies. We also study how the effect is increased by the final state
hadronic cascade.
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I. INTRODUCTION

One of the main objectives of nuclear physics in the last
decades has been the research of deconfined strongly inter-
acting matter called quark-gluon plasma (QGP), which filled
the whole Universe microseconds after the Big Bang. This
new state of matter has been successfully created experimen-
tally in ultra-relativistic heavy-ion collisions, which allow us
to study conditions similar to those at the beginning of the
time.

Especially interesting is the hunt for the critical endpoint,
which separates the first order and crossover phase transition
between QGP and hadronic matter. Experimentally, this is
realised by studying heavy-ion collisions at energies from
a few to tens of GeV, instead of the CERN Large Hadron
Collider (LHC) or top BNL Relativistic Heavy Ion Collider
(RHIC) energies. This is the objective of the RHIC Beam
Energy Scan (BES) program, the NA62 experiment at CERN,
and two facilities under construction: JINR NICA and GSI
FAIR.

Hydrodynamics is used to describe the evolution of QGP
in heavy-ion collisions since Landau and Bjorken [1,2].
However, the pure hydrodynamic models are rarely used
to describe experimental data nowadays. Instead, hybrid
models are broadly used, because they better describe the
hadron phase and freeze-out while using event-by-event initial
conditions.

Investigations of anisotropic flows vn can provide us nec-
essary information about the initial state and the evolution of
the heavy-ion collision. Most studies focus on the flow in the
transverse plane at y = 0. However, studying event-by-event
fluctuations along the longitudinal direction is interesting as
well. There are arguments that the longitudinal structure of
the flow may help us understand the transport properties of
QGP [3].

Flow decorrelation has been studied since a few years,
now. Early studies focused on the fluctuations of anisotropic
flow along the longitudinal direction [4,5]. A linear twist of
the event-plane angle �n(η) in the longitudinal direction has
been suggested in the color glass condensate (CGC) model
[6,7] and in Monte Carlo implementation of the wounded
nucleon model [8]. The first experimental measurement of the
flow decorrelation has been performed by the CMS collabo-
ration [9] for Pb-Pb collisions at

√
sNN = 2.76 TeV and p-Pb

collisions at
√

sNN = 5.02 TeV. Later, ATLAS collaboration
published experimental data at the same energy [10] and for
Xe-Xe collisions at

√
sNN = 5.44 TeV [11]. At the time, STAR

collaboration shared only preliminary Au+Au results at en-
ergies

√
sNN = 27 and 200 GeV [12,13]. Longitudinal flow

correlations are studied also by several theory groups. Event-
by-event (3+1)D viscous hydrodynamic model CLVisc with
AMPT model for initial conditions has been used in [3,14–
16]. Another (3+1)D viscous hydrodynamic model equipped
with Monte Carlo Glauber initial conditions has been ex-
ploited in [17–19]. In [20], decorrelation was also studied with
the help of a (3+1)D hydrodynamic model. There are also
several studies using pure AMPT model [21–23]. Neverthe-
less, the longitudinal decorrelation of the anisotropic flow has
not yet been theoretically investigated for energies lower than√

sNN = 200 GeV.
Hydrodynamic modeling at RHIC BES energies poses

challenges, such as inclusion of finite baryon density in the
initial state, in fluid dynamical evolution, and for the fluid-
to-hadron transition. We use a three-dimensional (3D) event-
by-event viscous hydrodynamic model vHLLE+UrQMD [24]
as a base, which allows us to simulate heavy-ion collisions
at RHIC BES energies. Thanks to that, in this work, we can
focus on two collision energies from the RHIC BES range,
namely

√
sNN = 27 and 200 GeV, since these are the energies

at which the preliminary experimental data of longitudinal
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decorrelation are available [12,13]. We examine the repro-
duction of both longitudinal dependence and the longitudinal
decorrelation of the anisotropic flow with two different initial
state models: ultrarelativistic quantum molecular dynamics
(UrQMD) [25] and 3D Monte Carlo Glauber (implemented
via GLISSANDO 2 code [26]). Both initial states have nontrivial
rapidity dependence and include finite baryon and electric
charge densities. Additionally, we calculate predictions of
longitudinal structure observables for the AFTER@LHC pro-
gramme, which is being proposed as a future fixed-target
experiment at the LHC [27–29]. We simulate collisions of
Pb+Ti, Pb+W and Pb+C at

√
sNN = 72 GeV, which are three

setups being considered for the experiment.

II. THE MODEL

For this study we use the event-by-event viscous hydrody-
namic model as in [30]. The model has three stages. For the
initial state we used two different models: UrQMD [25] and
GLISSANDO 2 [26]. In our previous work we also utilized the
TRENTo model, however implementing initial state tilt with
out-of-the-box TRENTo code is not a straightforward task, so
we leave this initial state out.1 The hot and dense phase of the
evolution is simulated with three-dimensional viscous code
VHLLE [24]. From the freeze-out hypersurface, a Cooper-Frye
formula [32] with corrections due to the shear viscosity is
used to sample hadrons. After the particlization, the UrQMD
cascade simulates the hadronic rescatterings and resonance
decays. The hybrid model is described in more detail in [33].

A. Initial states

1. UrQMD

The first initial state is taken from UrQMD [25], which
is a microscopic transport model. UrQMD uses PYTHIA6 to
simulate initial inelastic nucleon-nucleon scatterings through
string formation and subsequent string break-up. This leads to
formation of hadrons, which can then rescatter. These rescat-
terings are allowed until hydrodynamization, which happens
at a hypersurface τ = τ0, where τ = √

t2 − z2 is longitudinal
proper time. The parameter τ0 depends on collision energy
and its value is set from the adjustment to the data. Each
hadron that crosses the hypersurface τ = τ0 smoothly deposits
its energy and momentum into few neighboring cells of the
hydrodynamic grid with a weight given by Gaussian distribu-
tion

w ∝ exp

(
− (xh − xc)2

R2
T

− (yh − yc)2

R2
T

− γ 2τ 2
0

(ηh − ηc)2

R2
η

)
,

(1)
where the coordinates with index h are those of the hadron,
coordinates with index c are those of the hydrodynamic cell,
ηh/c is a space-time rapidity, and RT , Rη are the parameters

1However, few different ways to extend TRENTo IS into the lon-
gitudinal direction are presented in [31], where the rn has been
computed among other observables for pPb and PbPb collisions at
the LHC energies.

that control how distant cells this hadron can affect in given
direction. In this point, the transformation from Cartesian to
Milne coordinates is required, since UrQMD uses the former
and VHLLE the latter. During all these processes, the energy,
momentum, baryon number and electric charge are conserved.
The

√
sNN -dependent values of τ0, RT , and Rη are taken from

[33] and the τ0 values are listed in Table I.

2. GLISSANDO

A much simpler initial state model, GLISSANDO 2 [26]
is an implementation of the Monte Carlo Glauber model. It
generates positions of nucleons in the transverse plane and
determines the number of binary collisions suffered by each
nucleon. All these create sources of energy depositions. Fol-
lowing [34,35], the entropy density is distributed as

s(x, y, ηs) = κ
∑

i

f±(ηs)
[
(1 − α) + Ncoll

i α
]

× exp

(
− (x − xi )2 + (y − yi )2

2σ 2

)
, (2)

where x, y are the coordinates in transverse plane, ηs =
1/2 ln((t + z)/(t − z)) is the space-time rapidity, κ is the
normalization constant, the sum goes through the participant
nucleons, Ncoll

i is the number of collisions of the participant i,
and σ = 0.4 is the width of Gaussian smearing. The mixing
parameter α regulates the contribution from the participant
nucleons and the binary scatterings. We took α = 0.123 for√

sNN = 27 GeV and α = 0.145 for
√

sNN = 200 GeV. Since
Glauber model is only two-dimensional, it was necessary to
add a longitudinal structure. Again, following [34,35], we
create an approximately triangular shape of the entropy depo-
sition from forward (+) and backward-going (−) participant
nucleons as

f±(ηs) = ηM ± ηs

2ηM
H (ηs) for |ηs| < ηM, (3)

where ηM is a parameter of the Bialas-Czyz-Bozek model
taken from [26] determining the longitudinal extent of an
entropy density deposition from each participant nucleon, and
the profile function H (ηs) is defined via

H (ηs) = exp

(
− (|ηs| − η0)2	(|ηs| − η0)

2σ 2
η

)
. (4)

Here, η0 is the half-width of the plateau in longitudinal direc-
tion.

Originally, this hybrid model was developed for higher
energies, where the baryon density could be neglected. How-
ever, for energies lower than the top RHIC energy, it plays
an important role. Thus we added to the model (for energies√

sNN = 27 and 72 GeV) also baryon charge deposition from
participants

nB(x, y, ηs) = κB

∑
i

exp

(
− (ηB ± ηs)2

2σ 2
B

)

× exp

(
− (x − xi )2 + (y − yi )2

2σ 2

)
. (5)
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TABLE I. Default values of the GLISSANDO model parameters: starting time, shear viscosity, and the parameters for the longitudinal profile
for

√
sNN = 27, 72, and 200 GeV. In the

√
sNN = 27 column, centrality measure χ = NW/(2A) is introduced.

√
sNN [GeV] 27 72 200

τ0 [fm/c] 1.0 0.7 0.4
η/s 0.12 0.08 0.08
η0 0.89 − 0.2χ 1.8 1.5
ση 1.09 − 0.2χ 0.7 1.4
ηM 1.0 1.8 3.36
ηB 1.33 − 0.32χ 2.2
σB 0.79 − 0.21χ 1.0

This ansatz assumes that the forward-going participants de-
posit their baryon charge around +ηB, while backward-going
participants around −ηB. The

√
sNN -dependent values of the

longitudinal structure parameters are taken from our previous
study [30] and are listed in Table I. Note that, at the low-
est collision energy of interest

√
sNN =27 GeV, the optimal

description of basic experimental observables necessitated
centrality-dependent η0, ση, ηB, and σB. In practice the central-
ity dependence is introduced via the centrality measure χ =
NW /(2A). We have interpreted such centrality dependence
in [30] as a change in the strength of baryon stopping with
changing nuclear thickness at different collision centralities.

Along with the deposited local baryon density, we need to
add also deposition of local electric density, which is given by

nQ = 0.4 nB,

where the factor 0.4 is coming from the approximate charge-
to-mass ratio in heavy nuclei. Normalization constants κ and
κB were chosen numerically, so that the total energy and the
total baryon charge are conserved during the hydrodynamiza-
tion, i.e., after initialization of the fluid we have

τ0

∫
ε cosh η dxdydη = NW

2
√

sNN , (6)

τ0

∫
nBdxdydη = NW. (7)

The values of the parameters for
√

sNN = 27 GeV were
taken from [30]. Since we did not have any experimental data
at

√
sNN = 72 GeV available, we used the values for

√
sNN =

62.4 GeV, also for this energy. For
√

sNN = 200 GeV we took
the parameters from [35]. Values of parameters for all three
energies are summarized in Table I.

B. Hydrodynamics

The hydrodynamic phase of the heavy-ion collision is
simulated using three-dimensional relativistic viscous hydro-
dynamic code VHLLE [24]. This code solves the energy-
momentum and baryon number conservation equations

∇νT μν = 0, ∇νnν
B = 0.

The viscous corrections are added within Müller-Israel-
Stewart framework using the evolution equations for the shear
stress tensor

〈uγ ∇γ πμν〉 = −πμν − π
μν

NS

τπ

− 4

3
πμν∇γ uγ , (8)

where π
μν

NS is the shear stress tensor from the Navier-Stokes
limit. For this study, we used the values of the shear viscosity
from [33] (see Table I), while we set zero bulk viscosity.

Our hydrodynamic model uses a chiral model for the equa-
tion of state (EoS) [36]. This EoS has a crossover phase
transition between hadron matter and QGP. Its results quali-
tatively agree with the lattice QCD calculations at μB = 0.

C. Particlization and freeze-out

The fluid-to-particle transition happens at the hypersurface
with fixed energy density ε = 0.5 GeV/fm3, which is found
using the Cornelius subroutine [37]. The number of particles,
which are emitted on the freeze-out hypersurface �, is given
by the Cooper-Frye formula [32]

N =
∫

d3 p

Ep

∫
d�μ(x)pμ f (x, p), (9)

where f (x, p) is the phase-space distribution function of non-
interacting hadrons and hadronic resonances. This formula is
then supplemented with the ansatz for viscous corrections. To
better reproduce the experimental setup, the model samples
the produced particles using a Monte Carlo procedure instead
of calculating the Cooper-Frye integrals directly. The overall
formula for hadron sampling is given by

d3�Ni

d p∗d (cos θ )dφ
= �σ ∗

μ p∗μ

p∗0
p∗2 feq(p∗0; T, μi )

×
[

1 + (1 ∓ feq)
p∗

μ p∗
νπ

∗μν

2T 2(ε + p)

]
. (10)

The final step of the model is to simulate hadronic rescat-
terings and resonance decays of the sampled hadrons using
UrQMD cascade [25].

To increase the statistics of the final-state hadronic events,
we use oversampling of the hadrons coming from each hy-
drodynamic configuration in the event-by-event ensemble. We
sample hadrons using Cooper-Frye formula few hundreds of
times from each resulting freeze-out hypersurface, and then
pass these events separately to the UrQMD cascade.

III. RESULTS

In this study we focus on one wide centrality interval
10–40%, since most of the experimental data are available in
this centrality bin. We simulated heavy-ion collisions at two
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FIG. 1. Elliptic flow as a function of pseudorapidity for 10–40%
Au-Au collisions at

√
sNN = 27 GeV from VHLLE+UrQMD simula-

tions with UrQMD and GLISSANDO initial states. The experimental
data points are taken from [39].

collision energies where the experimental data exist:
√

sNN =
27 and 200 GeV.

A. Rapidity dependence of elliptic flow

First, we show the pseudorapidity dependence of the ellip-
tic flow of charged hadrons. Figures 1 and 2 show the elliptic
flow as a function of pseudorapidity for both UrQMD ini-
tial conditions and GLISSANDO initial conditions. We use the
event-plane (EP) method [38] for this calculation and compare
our results to v2{EP} from the STAR collaboration [39,40]. At√

sNN = 27 GeV both initial states reproduce overall order of
magnitude of the elliptic flow, but underestimate its value at
midrapidity, which is consistent with our previous results [30].
At

√
sNN = 200 GeV the experimental data indicate triangular

FIG. 2. Same as Fig. 1 but for
√

sNN = 200 GeV. The experimen-
tal data points are taken from [40].

FIG. 3. The factorization ratio r2 as a function of pseudo-
rapidity for 10–40% Au-Au collisions at

√
sNN = 27 GeV from

VHLLE+UrQMD simulations with UrQMD and GLISSANDO initial
states. The preliminary experimental data points are taken from [13].

pseudorapidity dependence that neither of the initial states can
describe. A similar triangular shape is reported also in older
experimental data from the PHOBOS collaboration [41]. This
shape was reproduced by hydrodynamic simulations in [42],
however, an EoS with first-order phase transition was used
there, which resulted in slower expansion as compared to our
calculation.

B. Longitudinal decorrelation of the anisotropic flow

For the calculation of the flow decorrelation we first need
define the flow vector

qn(η) = 1

m

m∑
k=1

einφk = vn(η)ein�n (η), (11)

where m is the number or charged hadrons in the examined
pseudorapidity interval, φk is the azimuthal angle of hadron
momentum, vn is the magnitude of the flow, and �n is the
corresponding event-plane angle.

Using the flow vector we write the factorization ratio rn as

rn(η) = 〈qn(−η)q∗
n (ηref )〉

〈qn(η)q∗
n (ηref )〉 . (12)

Here, 〈. . . 〉 denotes averaging over events and ηref is the
reference bin chosen far enough in forward or backward pseu-
dorapidity region so it does not overlap with the η bins. For
comparison with STAR preliminary data [12,13], we used the
same pseudorapidity reference bins, namely 2.1 < ηref < 5.1
for

√
sNN = 27 GeV Au+Au collisions and 2.5 < ηref < 4 for√

sNN = 200 GeV Au+Au collisions. We also used the same
pT cut for charged hadrons (0.4 < pT < 4 GeV/c). However,
since these are just preliminary data, we were not able to
extract error bars from the plots.

Figures 3 and 4 show our results of flow decorrelation
factorization ratio in comparison with STAR preliminary data.
Figure 3 indicates that at

√
sNN = 27 GeV, UrQMD creates
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FIG. 4. Same as Fig. 3 but for
√

sNN = 200 GeV. The prelimi-
nary experimental data points are taken from [12].

much stronger decorrelation than the one seen in the data. On
the other hand, calculations with GLISSANDO can describe the
experimental data within uncertainties for both energies.

In order to better understand where the decorrelation is
coming from, Eq. (12) can be rewritten using the definition
of the flow vector as follows:

rn(η) = 〈vn(−η)vn(ηref ) cos[n(�n(−η) − �n(ηref ))]〉
〈vn(η)vn(ηref ) cos[n(�n(η) − �n(ηref ))]〉 . (13)

From this formula it can be easily seen that the flow decorre-
lation may be caused by two separate effects: flow magnitude
decorrelation and flow angle decorrelation. The former effect
alone describes a case, where the flow magnitude is uncor-
related between η and −η, while event-plane angle stays the
same. We can calculate it as

rv
n (η) = 〈vn(−η)vn(ηref )〉

〈vn(η)vn(ηref )〉 . (14)

The latter one describes a case of fully correlated magnitude,
but uncorrelated event-plane angle. This can be calculated via

r�
n (η) = 〈cos[n(�n(−η) − �n(ηref ))]〉

〈cos[n(�n(η) − �n(ηref ))]〉 . (15)

It has already been shown for LHC and top RHIC ener-
gies that these two effects do not contribute to the resulting
factorization ratio equally—the flow angle decorrelation dom-
inates [3,19]. Thus, we calculated these two contributions
for

√
sNN = 27 GeV. The result is shown in Fig. 5. We can

confirm, that even at much lower energy, the flow angle
decorrelation still plays more important role than the flow
magnitude decorrelation, which has been shown by both ini-
tial state models.

C. Locality in the UrQMD initial state

The results with UrQMD IS show much stronger decorre-
lation than can be seen in the data. This can be understood so
that the UrQMD initial state is too local rapidity-wise. The de-
position from each nucleon-nucleon scattering is quite narrow

FIG. 5. The flow magnitude decorrelation rv
2 and the flow angle

decorrelation r�
2 as a function of pseudorapidity for 10–40% Au-

Au collisions at
√

sNN = 27 GeV from VHLLE+UrQMD simulations
with UrQMD and GLISSANDO initial states.

in space-time rapidity as compared to the scaled 3D Glauber
model with the triangular rapidity deposition. At this point we
attempt to improve the locality of UrQMD IS by increasing
the value of parameter Rη, which controls the smearing of the
energy-momentum deposition from each initial state hadron in
the space-time rapidity. Figures 6 and 7 show the comparison
of calculations with the default value Rη = 0.5 and increased
value Rη = 1.0 at

√
sNN = 27 GeV in the factorization ratio

and the elliptic flow, respectively. We can see that such mod-
ification increases the value of the factorization ratio, which
then becomes closer to the experimental data. Moreover, it
increases the v2 a bit, so now the mid-rapidity value start to
agree with the experimental data.

FIG. 6. The effect of parameter Rη on the factorization ratio r2 for
10–40% Au-Au collisions at

√
sNN = 27 GeV from VHLLE+UrQMD

simulations with UrQMD initial state. The preliminary experimental
data points are taken from [13].
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FIG. 7. Same as Fig. 6 but for elliptic flow. The experimental
data points are taken from [39].

The caveat is that the Rη = 1.0 setting fails to reproduce
the more basic observable—the pseudorapidity distribution.
Figure 8 shows the dN/dη with Rη = 0.5 and Rη = 1.0 set-
tings. It is obvious that the result with Rη = 1.0 significantly
overestimates the overall multiplicity and thus we cannot use
this setting any further.

D. Impact of the final-state rescatterings

Our calculations are performed with the final-state rescat-
terings simulated by UrQMD cascade [25]. However, the
so-far published hydrodynamic calculations of the flow
decorrelation [3,15,16,19] were done without hadronic rescat-
terings in the post-hydro phase. Therefore, it is instruc-
tive to see, how that can affect the factorization ratio.

FIG. 8. Same as Fig. 6 but for pseudorapidity distribution. Since
there are no experimental data for

√
sNN = 27 GeV, we compare the

distribution to experimental data from PHOBOS at energies
√

sNN =
19.6 and 62.4 GeV taken from [43].

FIG. 9. The effect of final-state rescatterings on the factorization
ratio r2 for 10–40% Au-Au collisions at

√
sNN = 200 GeV from

VHLLE+UrQMD simulations with UrQMD initial state. The prelim-
inary experimental data points are taken from [12].

Therefore, we run another calculation with final-state
hadronic rescatterings via UrQMD turned off, for Au-Au
collisions at

√
sNN = 200 GeV with GLISSANDO initial state.

These results are shown in Fig. 9 for the flow decorrelation
and Fig. 10 for the elliptic flow. It can be seen that turning off
the rescatterings causes stronger decorrelation, which brings
the simulations closer to the experimental data, and it also
causes a decrease of the elliptic flow. Note that an increase of
the elliptic flow via the final-state hadronic rescatterings is a
well-known effect, reported in an early application of a hybrid
model to

√
sNN = 200 GeV RHIC data [44].

FIG. 10. Same as Fig. 9 but for elliptic flow. The experimental
data points are taken from [40].

014904-6
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FIG. 11. Initial state eccentricity ε2 as a function of space-
time rapidity for 10–40% Au-Au collisions at

√
sNN = 27 GeV with

UrQMD and GLISSANDO initial states.

E. Initial state eccentricity

It is well known that the anisotropy coefficients v2 are
strongly correlated with the initial state anisotropies of the
spatial distribution of the hot matter [45]. Therefore, with both
initial state models we calculate the initial state eccentricity at
the moment when fluid-dynamical simulation is started. The
nth order eccentricity of the initial state is defined as

εnein�n =
∫

einφrnρ(	r)dφ r dr∫
rnρ(	r)dφ r dr

, (16)

where 	r = (x̃, ỹ) is the position vector in transverse plane
with the correction for the center of mass (x̃ = x − xc.m.,
ỹ = y − ycm). We apply Eq. (16) for different space-time ra-
pidity slices and the resulting space-time rapidity dependence
is shown in Figs. 11 and 12. One can observe a somewhat
different ηs dependence of ε2 for the two different initial
state models. In UrQMD IS, the hadrons end up at different

FIG. 12. Same as Fig. 11 but for
√

sNN = 200 GeV.

FIG. 13. Longitudinal decorrelation of the initial state eccen-
tricity ε2 as a function of space-time rapidity for 10–40% Au-Au
collisions at

√
sNN = 27 GeV with UrQMD and GLISSANDO initial

states.

space-time rapidities at τ = τ0 hypersurface due to finite
thickness of the incoming nuclei and secondary scatterings.
There are fewer hadrons at large ηs, which leads to larger ε2

and larger associated fluctuations in the �n angle. Different
from that, in the 3D GLISSANDO IS, the transverse entropy
density profile at each space-time rapidity is formed either
from projectile or target wounded nucleons, or from a mixture
of both. The f±(ηs) in Eq. (2) acts as a mixing factor, which
retains only projectile and only target nucleons beyond ±ηM ,
respectively. Therefore, for |ηs| > ηM the transverse shape of
the density profile does not change anymore, and as such the
ε2 remains constant as one can see in Figs. 11 and 12.

Similarly as in case of elliptic flow, we can study corre-
lations of the initial state eccentricity along the space-time
rapidity. Analogous to the Eq. (13) we define the factorization
ratio

rε
n (ηs) = 〈εn(−ηs)εn(ηs,ref ) cos[n(�n(−ηs) − �n(ηs,ref ))]〉

〈εn(ηs)εn(ηs,ref ) cos[n(�n(ηs) − �n(ηs,ref ))]〉 .

(17)

For the calculations we use the same intervals of ηs as we
did before with the pseudorapidity η. Figure 13 shows the
factorization ratio of the initial state eccentricity calculated
with both UrQMD and GLISSANDO initial states. From this
figure one can see how the strong decorrelation, which is
present in all previous results, originates from the initial
state. Comparison with Fig. 3 shows that r2 and rε

2 even
almost agree quantitatively. However, note that the rε

2 is a
coordinate-space characteristic of the initial state, whereas r2

is a final-state momentum-space observable. On a qualitative
level, such agreement is a result of hydrodynamic evolution
which happens in between. That is similar to the established
correspondence between the initial-state eccentricity ε2 and
the final-state hadronic flow coefficient v2, which is also well
explained in the hydrodynamic approach.
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FIG. 14. Prediction of pseudo-rapidity density of charged
hadrons for 10–40% Pb+W, Pb+Ti, and Pb+C collisions at

√
sNN =

72 GeV from VHLLE+UrQMD simulations with UrQMD and GLIS-
SANDO initial states.

F. Predictions for AFTER@LHC

Finally, we calculated predictions for a proposed exper-
iment AFTER@LHC [27–29]. Since this is a fixed target
experiment, it will have access to far backward rapidity region
of the collision. Therefore, this experiment can be very useful
tool to study the longitudinal structure of various observables.
We simulated collisions of Pb beam with Ti, W, and C target at√

sNN = 72 GeV. We start by calculating the basic observable:
the pseudorapidity density of charged hadrons. In Fig. 14
we show the pseudorapidity distributions for three colliding
systems of AFTER@LHC, calculated using both initial state
models.

Next, we calculate the elliptic flow as a function of pseu-
dorapidity, which is shown in Fig. 15. The biggest difference
between the initial state models can be seen in Pb+Ti col-
lisions, where on the Pb side UrQMD predicts much lower
value of elliptic flow, even lower than in the case of Pb+C
collisions. To explain the peculiarity with the elliptic flow in
Pb+Ti system, or in other words, a nonmonotonic collision
system size dependence, we should delve into the details of
event-plane method used to compute v2. Pb-W, Pb-W, and
Pb-C systems have comparable initial-state eccentricities ε2

which in fact increase from Pb-W towards Pb-C system at
the same centrality, see Fig. 16. However, smaller initial
energy density for lighter systems prompts a shorter hydro
phase, which develops a smaller final-state flow amplitude. On
the other hand, note that in our faithful implementation of the
event-plane method according to [38], v2 is obtained from the
directly observed vobs

2 as

v2 = vobs
2

R , (18)

where R is the event plane resolution. We have found that R
decreases significantly from 0.84 for the heavy-heavy Pb+W
down to 0.53 or 0.46 for the heavy-light Pb+C system, with
GLISSANDO or UrQMD IS, respectively, as one can see in

FIG. 15. Prediction of elliptic flow as a function of pseudora-
pidity for 10–40% Pb+W, Pb+Ti, and Pb+C collisions at

√
sNN =

72 GeV from VHLLE+UrQMD simulations with UrQMD and GLIS-
SANDO initial states.

Table II. The latter is a result of the significant decrease in
charged-hadron multiplicity from heavy-heavy to heavy-light
system, see Fig. 14, which makes the event-plane resolution
less precise. Note that the system-size dependence of R is
stronger in simulations with UrQMD IS as compared to the
ones with GLISSANDO IS. As we plot the so-called vobs

2 , which
is v2{EP} without the event-plane resolution correction (R =
1) in Fig. 17, we observe that the hierarchy vobs

2 (Pb-W) >

vobs
2 (Pb-Ti) > vobs

2 (Pb-C) is restored. However, the difference
between GLISSANDO and UrQMD IS is still the largest for the
Pb+Ti system. Furthermore, when we plot the reaction-plane
v2, see Fig. 18, we find that the difference between GLISSANDO

and UrQMD IS grows from Pb+W via Pb+Ti to Pb+C sys-
tem, where it is the largest. Another observation from Fig. 18
is that the system-size dependence of v2{RP} is much weaker

FIG. 16. Initial state eccentricities as a functions of space-time
rapidity for 10–40% Pb+W, Pb+Ti, and Pb+C collisions at

√
sNN =

72 GeV with UrQMD and GLISSANDO initial states.
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TABLE II. Resolution correction factors R in the event-plane v2 for different collision systems at AFTER@LHCenergy.

IS / system Pb-W Pb-Ti Pb-C

GLISSANDO 0.846 0.693 0.532
UrQMD 0.838 0.591 0.460

with GLISSANDO IS, as compared to UrQMD IS. The latter
is again motivated by the structure of the initial state: a rela-
tively small number of initial-state hadrons in Pb+C scenario,
together with the relatively strong decorrelation of transverse
energy density profiles at different rapidities, lead to a weak
alignment of the flow vector with the original geometry of
the collision, which causes a particularly small v2{RP} for the
Pb+C system. As such, the latter behaves like a “small sys-
tem” rather than a classical heavy-ion system, from the point
of view of elliptic flow. Therefore, the apparent nonmono-
tonic system size dependence for the difference in v2{EP}
between UrQMD and GLISSANDO IS seen in Fig. 15 stems
from an interplay between the different resolution corrections
for different IS and colliding systems, general decrease of
the flow signal from heavy-heavy to heavy-light system and
the increase of the fluctuation-driven v2 for the heavy-light
system. The event-plane v2 generally demonstrates that the
method becomes less reliable for the heavy-light collisions at
the AFTER@LHC energy, therefore more advanced methods
such as n−particle cumulants should be used instead, which
in turn would require much larger event statistics.

Lastly, we calculate the prediction of the flow decorrelation
at AFTER@LHC. However, these collisions are asymmetric.
In order to suppress the influence of the broken symmetry on
the decorrelation measure, instead of using Eq. (12) we follow
the work by CMS collaboration [9] and take a product of rn(η)
and rn(−η):√

rn(η, ηref )rn(−η,−ηref )

=
√

〈qn(−η)q∗
n (ηref )〉

〈qn(η)q∗
n (ηref )〉

〈qn(η)q∗
n (−ηref )〉

〈qn(−η)q∗
n (−ηref )〉 . (19)

FIG. 17. Same as Fig. 15 but without event-plane resolution
correction.

Thanks to this we can study flow decorrelation in asymmetric
collisions. For the calculation at AFTER@LHC energy we
first use a reference pseudorapidity interval 2.1 < ηref < 5.1
and transverse momentum cut 0.4 < pT < 4 GeV/c. The re-
sulting symmetric factorization ratio is showed in Fig. 19. In
this figure, consistently with the results for

√
sNN = 27 and

200 GeV, we observe a significant difference between the two
initial state models. Therefore, the flow decorrelation may
be used as a tool to discriminate the models of the initial
state. Also, both models agree that the decorrelation becomes
stronger in smaller collision systems.

Unfortunately, as a fixed-target experiment AFTER@LHC
does not provide access to the full mid- and forward-rapidity
region in the center-of-mass frame. Thus, the decorrelation
cannot be measured using the classical definition, established
for collider experiments for asymmetric systems. Therefore,
we need to amend the definition of the factorization ratio for
the fixed-target setup. The AFTER@LHC experiment is pro-
jected to have two acceptance windows: −1.0 < ηref < −0.5,
which can be used as reference range, and −2.9 < η < −1.6,
which can be used for the measurement itself. As such, we
calculate the decorrelation around the center of the pseudora-
pidity bin ηC = −2.25 as follows:

rFT
n (η − ηC ) = 〈qn(−η + 2ηC )q∗

n (ηref )〉
〈qn(η)q∗

n (ηref )〉 . (20)

Figure 20 shows the factorization ratio calculated using
Eq. (20). These results can be reproduced in experimental
conditions at AFTER@LHC. Here, simulations with UrQMD
IS show a steady decrease of flow correlation from Pb+W
towards Pb+C system. However, simulations with GLISSANDO

FIG. 18. Same as Fig. 15 but computed with the reaction-plane
method.
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FIG. 19. Prediction of the symmetric factorization ratio√
r2(η, ηref )r2(−η,−ηref ) as a function of pseudorapidity for

10–40% Pb+W, Pb+Ti and Pb+C collisions at
√

sNN = 72 GeV
from VHLLE+UrQMD simulations with UrQMD and GLISSANDO

initial states.

IS result in rFT
2 which is slightly larger for Pb+C system as

compared to Pb+Ti.
In order to explain such irregularity, we can—in analogy to

Eqs. (14) and (15)—introduce the decorrelation in the magni-
tude and the flow angle around ηC :

rFT,v
n (η − ηC ) = 〈vn(−η + 2ηC )v∗

n (ηref )〉
〈vn(η)v∗

n (ηref )〉 , (21)

rFT,�
n (η − ηC ) = 〈cos[n(�n(−η + 2ηC ) − �n(ηref ))]〉

〈cos[n(�n(η) − �n(ηref ))]〉 . (22)

FIG. 20. Prediction of the factorization ratio rFT
2 as a function of

η − ηC for 10–40% Pb+W, Pb+Ti, and Pb+C collisions at
√

sNN =
72 GeV from VHLLE+UrQMD simulations with UrQMD and GLIS-
SANDO initial states.

FIG. 21. Flow angle decorrelation rFT,�
2 as a function of η − ηC

for 10–40% Pb+W, Pb+Ti, and Pb+C collisions at
√

sNN = 72 GeV
from VHLLE+UrQMD simulations with UrQMD and GLISSANDO

initial states.

The flow angle decorrelation is shown in Fig. 21. One can
see from the figure that rFT,�

2 retains monotonic system-size
dependence for both IS scenarios, however it seems to change
very little between Pb+Ti and Pb+C systems. On the other
hand, from Fig. 17 one can see that within −2.9 < η < −1.6,
the magnitude of the q2 vector has a steeper pseudorapid-
ity dependence for Pb+Ti system as compared to Pb+C.
Therefore, one can expect that the decorrelation of the flow
magnitude rFT,v

2 will drop with |η − ηC | faster for Pb+Ti than
for the Pb+C system. Hence, the nonmonotonic system-size
dependence of rFT

2 stems from different slopes of the pseudo-
rapidity dependence of v2 for Pb+Ti and Pb+C systems.

IV. CONCLUSIONS

We have presented the rapidity-dependent elliptic flow and
flow decorrelation in Au-Au collisions at

√
sNN = 27 and 200

GeV at RHIC, as well as in Pb-Ti, Pb-W, and Pb-C colli-
sions at

√
sNN = 72 GeV in the AFTER@LHC experiment,

computed in viscous hydrodynamic + cascade model with
UrQMD and 3D GLISSANDO initial states. We found that,
in all cases, UrQMD IS results in much stronger final-state
elliptic flow decorrelation as compared to 3D GLISSANDO IS.
At

√
sNN = 27 GeV, the flow decorrelation with UrQMD IS

is stronger than the preliminary data from the STAR col-
laboration [13], whereas 3D GLISSANDO IS agrees with the
data within error bars. The difference is rooted in a much
stronger decorrelation of initial-state eccentricity as a function
of space-time rapidity in UrQMD IS, as compared to 3D
GLISSANDO IS. Similarly to the previous findings, we observe
that the dominant effect in the flow decorrelation is decorre-
lation of flow angle, or r�

2 . As an extension over the existing
decorrelation studies, we demonstrate the effect of final-state
hadronic rescatterings, and find that the rescatterings suppress
flow decorrelation: r2 comes closer to unity.
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