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Each single-energy, single-channel partial-wave analysis is inherently model-dependent
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Švarc et al. [Phys. Rev. C 97, 054611 (2018)] have shown that without fixing the reaction-amplitude phase,
different partial waves at neighboring energies in single-energy, single-channel partial wave analysis reproduce
experimental data identically, but are discontinuous and disconnected. To obtain the continuous solution, the
phase has to be fixed to some continuous value. In the same reference it has also been shown that the change of
the angular part of the reaction-amplitude phase mixes partial waves, so the pole structure of any single-energy
single-channel partial wave analysis depends on the chosen phase. As in any single-channel analysis the overall
reaction-amplitude phase cannot be determined because of continuum ambiguity, it is in principle free and has to
be taken from some coupled-channel model. Because of the difference in the angular part of the phase, choosing
different phases results in the change of the pole content of the obtained solution. Therefore, single-energy
single-channel partial wave analysis is inherently model dependent, and the number of poles it contains strongly
depends on the choice of the phase. In that reference these facts have been illustrated on the pseudoscalar meson
production toy model. This truth is now for the full set of measured observables demonstrated on the realistic
model of η photoproduction presented in Švarc, Wunderlich, and Tiator [Phys. Rev. C 102, 064609 (2020)].
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I. INTRODUCTION

In Ref. [1] a single-channel, single-energy partial wave
analysis (SC-SE-PWA) procedure1 has been formulated. It
combines amplitude and partial wave analyses into one log-
ical sequence, and directly from the data generates a set of
continuous partial waves with minimally model dependent
input (AA/PWA). It has been demonstrated that by controlling
the reaction-amplitude phase, and freely varying the reaction-
amplitude partial waves, one obtains a continuous solution
with far better agreement with the used database than the orig-
inal energy dependent (ED) model. Two solutions have been
generated, Sol 1 when the phase is close, but not identical to
the phase of a particular coupled-channel, energy-dependent
model (Ref. [4] in our case), and the second one in which
the phase has been freely smoothed to a similar but simpler
analytic function (Sol 2). It has been shown that the quality of
both fits is fairly similar, but the obtained higher multipoles
are rather different (E+

0 is always dominantly big and very
stable in η-photoproduction). Also, a promise had been given
to analyze their analytic structure (pole content) using the
Lauren+Pietarinen (L+P) technique [5]. In this paper I fulfill
the given promise for Sol 1. However, in doing so, some

*alfred.svarc@irb.hr
1Strictly speaking, PWA is a nontrivial mathematical problem of

looking for a solution to the potentially ill-posed problem from
Hadamard and Tikhonov [2,3] of determining reaction amplitude via
fitting scattering data when number of equations may be less than
number of unknown quantities.

unexpected effects revealed themselves. The pole content of
Sol 1 turned out to be unclear. In looking for the explanation
why this is so, I discovered the illuminating truth of how
the precision in the phase determination decides the analytic
structure of the obtained solution. The main aim of this article
is to show that the analytic structure of the AA/PWA model of
Ref. [1] is correct, that the change of analytic structure (pole
content) of the obtained solution depends on the changes of
the phase, and quantify when the notable deviation in the pole
content starts. This will decide how well one can fit the given
database at the same time maintaining the proper analytic
structure (pole content) determined by the constraining ED
model. Further improvements in the fit without controlled
phase change will be possible only by spoiling good pole
content, and introduce ghost poles originating in the change
of the angular part of the phase. Therefore I show that the only
possible improvement in the present SC-SE-PWA is model de-
pendent, and it is accomplished by improving the constraining
phase of the coupled-channel ED model. Free change of phase
is not allowed, and it directly leads to ghost poles. As a direct
corollary of this conclusion the analysis of Sol 2 turned out to
be unnecessary.2

To understand that, one has to discuss the problem of
analytic structure of obtained solutions in the wider context
of angular dependent phase rotations.

2Sol 2 was obtained with free smoothing of the reaction amplitude
phase not controlled by other channels, so the appearance of ghost
poles which spoil the analytic structure is unavoidable.
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In Ref. [6] it has been shown that without fixing the
reaction-amplitude phase, different partial waves at neigh-
boring energies in single-energy single-channel partial wave
analysis reproduce experimental data identically, but are dis-
continuous and disconnected. So, to obtain the continuous
solution, the phase has to be fixed to some continuous value.
In the same reference it has also been shown that the change of
angular part of reaction-amplitude phase mixes partial waves
so the pole structure of any single-energy single-channel
partial wave analysis depends on the chosen phase. As the
reaction-amplitude phase because of continuum ambiguity
cannot be determined in any single-channel analysis, it has
to be taken from some coupled-channel model. Choosing
different phases results in the change of the pole content of
the obtained solution. Therefore, SC-SE-PWA must depend
on the reaction-amplitude phase, and it has to be taken from
some model. Hence, SC-SE-PWA must be inherently model
dependent. All these statements were demonstrated on the toy
model of pseudoscalar meson production.

In this paper this fact is quantitatively demonstrated on the
real data in the single-channel single-energy model AA/PWA
of Ref. [1] which combines amplitude and partial wave anal-
ysis in one self-consistent, two-step model for the the world
collection of data in η-photoproduction. I first perform the am-
plitude analysis (AA) of the world collection of data fixing the
amplitude phase to the theoretical ED BG2014-2 phase, vary-
ing only absolute values as the free parameters. In the second
step I perform a constrained partial wave analysis (TPWA)
where multipoles for the L = 0 to L = 5 are free parameters,
but the fit was constrained by requiring that the final reaction
amplitudes do not differ much from the AA amplitudes of Step
1. In this way I achieve a continuity of otherwise discontinu-
ous multipoles. Let me immediately stress that the phase of the
final solution depends strongly on the amount of penalization.
The higher the penalization is, the closer the phase of the
final solution is to the chosen theoretical ED phase. However,
I have discovered that the quality of the agreement of the
final fit with the data (χ2) notably depends on the amount of
penalization. If the penalization is only moderate one obtains
notably better agreement with the data than in the case when
penalization is strong. However, the price paid is that for the
better χ2 with the milder penalization the departure of the final
phase from the theoretical BG2014-2 phase is bigger. The next
step was finding poles of the obtained solution. As one is deal-
ing with SC-SE-PWA, the preferable option is to use the L+P
formalism. As one starts from the BG2014-2 ED solution, I
have first extracted poles from ED multipoles using the L+P
formalism. I have shown that the extracted poles, qualitative
and quantitative, perfectly correspond to published values ob-
tained by analytic continuation of theoretical coupled-channel
amplitudes into the complex energy plane. Then, using the
same L+P model (same number of Pietarinen coefficients,
same number of variable parameters, etc). I have searched
for the poles of Sol 1, whose phase is much closer to the ED
phase than for Sol 2. Poles turned out to be much less stable,
and notably different from the poles extracted from the ED
solution. I attributed this instability to spoiling the phase with
respect to the input ED phase. To test this hypothesis I have
repeated the AA/PWA model with much stronger penalty

where the size of penalization is determined by the penalty
function coefficient λpenalty—see Eq. (2) of Ref. [1] (I have
increased the penalty function coefficient from 10 in Ref. [1]
to 500 for this publication), and obtained a new solution Sol
1/21 which is a compromise between a good fit and correct
analytic structure. As expected, the overall agreement with the
data was slightly spoiled, but the analytic structure of the new
solution was notably improved. And this was what I wanted
to prove.

II. FORMALISM

In this paper the improved formalism of AA/PWA for-
mulated in Ref. [1] is used. As PWA is without constraining
conditions inherently discontinuous, inspired by the idea of
fixed-t analyticity of Ref. [7] a two-step procedure which in
the second step constrains the PWA with reaction amplitudes
obtained in the AA from the previous step has been formu-
lated. As the phase because of continuum ambiguity cannot be
determined out of the data in any single-channel analysis, one
had to take the phase from well-known coupled-channel the-
oretical model, and the BG2014-2 [4] model was chosen. In
the AA of the original publication only four out of eight avail-
able η-photoproduction observables were fitted with absolute
values as free parameters, and these were phase independent
observables dσ/d�, �, T , and P. This actually was the exact
single energy amplitude reconstruction (four observables for
four absolute values). In this publication I have extended the
number of observables to all eight available observables, so
this was not an exact amplitude reconstruction, but the actual
fit. The phase is, as before, fixed to the BG2014-2 phase. In the
ideal case of an infinitely precise complete experiment, fixing
the phase is enough to obtain unique amplitudes, continuous
in both energy and angle. However, as the existing database
is far from a complete and self-consistent data set, I enforced
the continuity by penalizing the fit with the obtained result
at neighboring energies.3 In this way the set of continuous
reaction amplitudes was obtained, and all deviations from the
perfectly smooth analytic function were due only to exper-
imental errors. The next step was to obtain corresponding
multipoles. In the ideal case of a complete set of exact ob-
servables available at sufficiently dense energies and angles,
multipoles extraction is trivial, and boils down to integral over
Legendre polynomials of a proper combination of amplitudes.
However, due to the incompleteness of the available database
this is not possible. So, I have applied a penalty function tech-
nique where the PWA of the data is penalized with the result
of the AA step. This is the step where the departure in phase
of my final result from the initially used ED phase occurs.
As it turns out, the agreement of the obtained result with the
data in the AA step is not perfect, and better agreement with
the data can be obtained in constrained PWA. The analysis of
the penalty function of Step 2 shows that the improvement in
χ2 is achieved mainly because of a deviation of the phase of

3It is possible as this is a single-energy analysis, meaning that the
minimization is performed independently at each chosen energy.
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the final solution from the input phase which is fixed in the
AA step.

For the convenience of the reader I repeat the essential
equations governing the two-step AA/PWA method from
Ref. [1]. The most standard, classic approach was to penalize
partial waves by requiring that fitted partial waves reproduce
the observable O and are at the same time close to some partial
waves taken from the theoretical model

χ2(W ) =
Ndata∑
i=1

wi
[Oexp

i (W,�i ) − Oth
i (Mfit (W,�i ))

]2

+ λpen

Ndata∑
i=1

[Mfit (W,�i ) − Mth(W,�i )]
2, (1)

where

M def= {M0,M1,M2, ...,M j},
wi is the statistical weight, and j is the number of partial
waves (multipoles). Here, Mfit are fitting parameters and Mth

are continuous functions taken from a particular theoretical
model. Instead, the possibility to make the penalization func-
tion independent of a particular model was first formulated
in Karlsruhe-Helsinki πN elastic PWA by Höhler in the mid
1980s [7]. Partial waves which are inherently model depen-
dent are replaced with the penalization function which was
constructed from reaction amplitudes which can be, in princi-
ple, directly linked to experimental data without any model
in the amplitude reconstruction procedure. So, Eq. (1) was
changed to

χ2(W ) =
Ndata∑
i=1

wi
[Oexp

i (W,�i) − Oth
i (Mfit (W,�i ))

]2 + P,

P = λpen

Ndata∑
i=1

Namp∑
k=1

|Ak (Mfit (W,�i))

−Ak (Mpen(W,�i ))|2, (2)

where Ak is the generic name for any of reaction amplitudes
(invariant, helicity, transversity). However, one is now facing
two challenges: to get reaction amplitudes which fit the data,
and also to make them continuous. In the Karlsruhe-Helsinki
case it was accomplished by implementing fixed-t analyticity
and fitting the database for fixed t . So, the first step of the
KH fixed-t approach was to create the database O(W )|t=fixed

using the measured base O(cos θ )|W =fixed, and then to fit them
with manifestly analytic representation of reaction amplitudes
for a fixed t . Manifest analyticity was implemented by using
the Pietarinen decomposition of reaction amplitudes. Then
the second step was to perform a penalized PWA defined by
Eq. (2) in the fixed-W channel where the penalizing factor
Ak (Mpen(W,�i )) was obtained in the first step in a fixed-t
channel. In that way a stabilized SE PWA was performed.
This approach was revived very recently for SE PWA of η

and π0 photoproduction by the Mainz-Tuzla-Zagreb collabo-
ration, and analyzed in details in Refs. [8,9]. The alternative
is proposed.

One also uses Eq. (2), but the penalizing factor
Ak (Mpen(W,�i )) is generated by the amplitude analysis in
the same, fixed-W representation, and not in the fixed-t one.
This simplifies the procedure significantly, and avoids quite
some theoretical assumptions on the behavior in the fixed-t
representation.

Similar to Refs. [7,9] a two-step process was also used:
Step 1: Amplitude analysis of experimental data in fixed-W

system to generate penalizing factor Ak (Mpen(W,�i )).
Step 2: Penalized PWA using Eq. (2) with the penalization

factor from Step 1.
However, in this paper I improve the procedure of Ref. [1].

In that reference for Step 1 (AA) only the four phase indepen-
dent observables dσ/d�, �, T , and P were fitted, obtained
for absolute values as exact amplitude reconstruction,4 and
here I extend the process to all eight available observables.
The phase is in both cases fixed to the theoretical BG ED
phase. In this way one gets the best set of transversity am-
plitudes which maximally reproduce all available observables
for the given phase. However, this is where the model depen-
dence starts. The transversity amplitude phase of constraining
amplitudes is fixed, so agreement of the fit for the four phase
dependent observables E , F , G, and H can be improved only
through the absolute value but they are also phase dependent,
so the flexibility of the fit is limited. Possibility of further im-
provement for these observables can only be achieved in Step
2, constrained PWA. It is clear that the amount of departure
from the BG ED phase depends on the level of penalization.
Smaller penalization means a bigger departure from the BG
phase, the χ2 for the phase dependent data improves, but
partial waves get less continuous and mixed. As it will be
shown later in this paper, this is clearly felt by the L+P pole
extraction method. For the strong penalization the analytic
structure of multipoles (pole content) strongly resembles the
analytic structure corresponding to the BG ED model (and
PDG therewith), for the weaker penalization the position of
poles gets much less precise.

And now I am bound to say something about the
importance of the reaction amplitude phase. Continuum
ambiguity forbids to conclude onto the correct phase in
any single channel analysis because unitarity loss to other
channels starts after the first inelastic threshold opens. The
only way to solve the continuum ambiguity problem is to
reintroduce the unitarity introducing the coupled-channel
formalism. If one picks the phase in a single-channel analysis
arbitrarily by hand, one is departing from the genuine phase,
the phase in which partial waves do not mix, and via the
angular part of continuum ambiguity I introduce pole transfer
from one partial wave into another. However, each coupled-
channel model by construction results in the nonmixing pole
solution. Namely, some form of interaction introducing poles
is formulated, and the background contribution is added to it.
Then, the data in all channels are simultaneously fitted forcing
the phase to be the correct one, and the pole nonmixing situ-
ation is established. Background contributions automatically

4Transversity amplitude representation is used.
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enforce the phase to be a nonmixing one. Needless to say
is is that all coupled-channel models should end up with the
same phase in the ideal case, but incompleteness of the data
forbids that to happen. Therefore, phases of different models
[4,10–12] are somewhat different, and one cannot avoid this.
However, fixing the phase to a phase of a particular model
ensures to obtain the nonmixing pole solution; departure
from it automatically enforces pole mixing, so the analytic
structure of such a solution is spoiled. So, one can chose a
different phase, a phase coming from any model, but it has
to be the proper phase originating from that model. Free,
uncontrolled departure from the ED model phase is not
allowed.

Of course the question is purely quantitative: How much
is one allowed to depart from the “diagonal” phase in an
uncontrolled way to maintain the correct analytic property.
In other words, the question is how much is one allowed to
reduce the importance of the penalty function and maintain
the correct analyticity.

III. RESULTS AND DISCUSSION

A. Analytic structure (pole content) of Sol 1

As one is interested in analyzing the pole structure of the
obtained solution Sol 1 which is the SE quantity, the most
sophisticated method which enables pole extraction from SE
quantities is used, and that is the Laurent+Pietarinen (L+P)
formalism [5]. This, relatively recent model is based on fitting,
instead of exact mathematical analytic continuation methods.
The assumption is simple: one does not construct a compli-
cated analytic function on the real axis which is the solution
of the elaborated theoretical model, and continue it into the
complex energy plane, but instead, using the most general
principles, one constructs the simplest analytic function in
the complex energy plane with a number of free parameters,
and fits them to the data on the real axis up to the precision
allowed by the data. The method entirely relies on analyt-
icity. As it must be assumed that each physical process is
described by an analytic function, one starts with its Laurent
decomposition. It is known that by Laurent theorem5 any ana-
lytic function is locally, within limited area of convergency,
uniquely determined with its poles and cuts, and cuts are
generated by channel opening branch points. For the singular
part the method therefore has four parameters per pole, and
for the regular part one uses the fast converging expansions
over conformal variables generated by a chosen number of
relevant branch points. This power series, in particular branch
points, actually parametrize the most general function which
can exist having exactly this branch point. As the analytic
function is entirely determined by its poles and cuts, by choos-
ing enough poles and covering all relevant branch points, the
obtained solution represents the simplest analytic function
which corresponds to the data on the real axis. The simplicity
is enforced by choosing the lowest number of free parameters

5More precisely Mittag-Leffler theorem; see discussion in Ref. [5].

for poles and cuts which reproduce the data within given
precision.

The model is a standard, coupled-multipole model of
Ref. [5]. It uses three Pietarinen expansions, first and third
branch points are left free. The middle branch point is fixed
to the η-photoproduction threshold. The number of Pietarinen
terms is limited to 3–5 per expansion, and starting number of
poles is set to the accepted three-, four-star PDG resonances
for the given multipole.

First one uses the described L+P model to extract pole
parameters from the BG 2014-2 solution of Ref. [4] to obtain
the reference points, and then use these reference values to
extract the poles from Sol 1 of Ref. [1]. Extracting poles
from BG 2014-2 multipoles is straightforward, results are
very confident, and completely correspond to the values of
BG2014-2 multipoles given in the literature [4,13]. Observe
that one can compare only pole positions with the literature,
residues for the η-photoproduction process are extracted in
this article. The L+P results for BG 2014-2 and Sol 1 are
given in Table I. It is clearly visible that some pole parameters
extracted from Sol 1, especially for higher multipoles, very
poorly match the corresponding values extracted from the BG
2014-2 solution, and this should not be so. The agreement
between the two should be good for all poles in all multi-
poles. Therefore, the explanation for this discrepancy has to be
found.

B. Analysis of phase cependence of Sol 1

In Table I all results obtained for poles using L+P analysis
are presented.

First one observes that nice and stable poles are obtained
when L+P is used on the BG2014-2 model. However, some
problems which will be blown up by additional ambiguities
in SE analysis could be spotted even for the ED case. First,
the most stable parts of the L+P formalism are pole positions.
This is not at all unexpected as this is one of the main features
of the L+P formalism. The main model dependence of the
L+P formalism lies in pole-background separation. This part
is rather arbitrary. The background is completely unknown,
and is practically fitted to the input data, so a direct con-
sequence is that residues of the singular part must strongly
depend on the way pole-background separation is performed
(every change in the background part is counterbalanced by
the change in residue). On the other hand, pole position (po-
sition of the singularity in the complex energy plane) is, for
all possible backgrounds, always the same. So, a direct con-
sequence is that residues are much less precisely determined
in the L+P formalism, and may have some meaning only
in the analysis of ED functions. There exists another reason
for the uncertainty in residues in inelastic processes like η

photoproduction, and this is the ambiguity in the reaction
amplitude phase. As the phase can be determined only when
multichannel unitarity is restored, the phase in singe-channel
analyses is unknown. One also knows that the change in the
angular part of the reaction amplitude phase mixes multipoles,
so residues associated with a certain pole also depend on the
chosen phase. So, this is another source of ambiguity for the
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TABLE I. Pole parameters for BG 2014-2, Sol 1, and Sol 1/21 extracted using L+P expansion. Mi, �i, ri, and �i, i = 1, 2 are pole masses,
widths, absolute values of the residue, and its phase, while χ2 and χ 2

red are total and reduced χ -squared values (reduced χ -squared is defined
as total χ -squared divided by the difference of total number of points and free fitting parameters). Particle Data Group values from Ref. [13]
are for reference given in bold text.

Model M1 �1 |a1| �1 M2 �2 |a2| �2 χ 2 χ 2
red

S11 1/2− PDG 1510(19) 130(20) - - 1655(15) 135(35) - -
BG 2014-2 1498(107) 158(157) 1780(5300) 164(345) 1661(5) 85(12) 126(47) 24(19) 18 0.13

E+
0 Sol 1 1489(66) 158(78) 2043(5054) 148(146) 1664(5) 92(9) 140(36) 37(15) 140 0.6

Sol 1/21 1484(37) 196(189) 2926(7330) 166(172) 1662(3) 101(7) 158(26) 34(9) 97 0.43
P11 1/2+ PDG 1379(10) 175(15) - - 1700(20) 120(40) - -

BG 2014-2 - - - - 1698(1) 123(1) 105(2) -90(1) 102 0.75
M−

1 Sol 1 - - - - 1730(6) 80(10) 48(12) -22(18) 140 0.7
Sol 1/21 - - - - 1660(6) 112(13) 49(15)) -168(16) 106 0.47
Sol 1/21 1526(25) 73(37) 19(32) -123(110) 1681(7) 103(12) 39(10)) -124(17) 25 0.11

P13 3/2+ PDG - - - - 1675(15) 250(150) - -

BG 2014-2 - - - - 1705(7) 195(21)

(
38(10)
38(13)

) (−133(15)
−107(16)

)
58 0.23(

E+
1

M+
1

)
Sol 1 - - - - 1879(46) 200(68)

(
328(359)
260(280)

) (−8(44)
67(50)

)
310 0.6

Sol 1/21 - - - - 1714(7) 102(13)

(
10(3)
1(1)

) (−167(16)
20(47)

)
297 0.6

D13 3/2− PDG 1510(5) 110(10) - - 1700(50) 200(100) - -

BG 2014-2 1508(3) 106(7)

(
52(11)
25(6)

) (
122(12)
118(13)

)
1664(76) 399(159)

(
119(155)
72(86)

) (
73(71)

103(77)

)
1.7 0.06(

E−
2

M−
2

)
Sol 1 1528(23) 63(37)

(
11(22)
2(3)

) (−160(82)
148(98)

)
1721(6) 64(13)

(
10(3)
4(1)

) (
149(19)

−168(18)

)
368 0.8

Sol 1/21 1525(23) 121(60)

(
37(52)
24(39)

) (−156(91)
158(94)

)
1664(12) 121(24)

(
11(6)
13(7)

) (−31(33)
46(33)

)
50 0.1

D15 5/2− PDG - - - - 1660(5) 135(15) - -

BG 2014-2 - - - - 1673(4) 225(6)

(
1(0.3)
23(1)

) (
54(17)
−17(6)

)
45 0.16

(
E+

2

M+
2

)
Sol 1 - - - - 1784(1) 11(1)

(
0.5(0.01)
0.8(0.1)

) (
23(9)
95(9)

)
310 0.6

Sol 1/21 - - - - 1659(10) 145(23)

(
6(2)
9(4)

) (
17(20)

−40(22)

)
90 0.2

F15 5/2+ PDG - - - - 1675(10) 120(15) - -

BG 2014-2 - - - - 1677(1) 117(1)

(
13(1)
7(0.5)

) (
147(1)

145(11)

)
12 0.05

(
E−

3

M−
3

)
Sol 1 - - - - 1767(2) 34(4)

(
3(0.5)
2(0.5)

) (−91(9)
33(10)

)
690 1.5

Sol 1/21 - - - - 1690(4) 166(11)

(
11(2)
23(4)

) (
172(8)

164(77)

)
156 0.34

residues.6 Because of these two reasons, in the analysis of SE
data, residues are something just a little bit more than pure
fitting parameters. This is obvious from Table I. Even for ED
input, the confidence level of residues is very low, sometimes

6Observe that this is not so in elastic processes like πN elastic
scattering as unitarity gets violated only above the first inelastic
threshold. So the phase is up to this energy fully determined. First
uncertainties occur at higher energies. However, let us observe that
the phase of inelastic processes like π photoproduction is also fairly
well determined at lower energies because of Watson’s theorem
which connects the π -photoproduction phase with the πN elastic
phase at lower energies. Uncertainties also rise with energy, but are
still small in the N∗ energy range.

on the level of 100% (for the S11 partial wave even much lower
for the first resonance, but this is altogether another story7).
However, poles are pretty precisely determined. Even for pole
position determination, one can see a clear hierarchy in confi-
dence level: pole position is always more precisely determined
than its width (how deep the pole is in the complex energy
plane is more unreliable). This is the direct consequence of
the fact that all the fits are done with the data lying on the real

7First the S11 pole is very near the threshold of η photoproduction
which is taken as the fixed branch point in the L+P formalism, so to
have some impact onto the process the residue in addition to being
unprecise must also be very high. However, this is typical even for
ED models [12].
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axis of the complex energy plane, so it is more sensitive to the
position which is more directly influencing the shape of the
scattering matrix on the real axis.

Making an L+P analysis of the SE Sol 1, and even taking
these facts into account, one can see that the analytic structure
of Sol 1 is unclear, and clearly rather different from the the
ED solution the model has started with. With the exception
of the E0+ multipole all poles are notably shifted in energy
with the results obtained for the ED solution, which is not
allowed, and pole width is unreasonably narrow. This is also
not admissible, so there must be some effect which spoils the
analytic structure of Sol 1.

From my earlier research [6] I know that the natural candi-
date for such an effect is the change of the reaction amplitude
phase. As the essential part of the proposed AA/PWA model
is the penalty factor P , and the possible change of phase is
introduced via this factor, I shall put this factor under a mag-
nifying glass. This factor introduces two phenomena, ensures
the continuity in partial waves, and ensures the proximity of
phase to the known input phase of the ED model which, I
repeat, is a matter of my choice. In Ref. [1] we have opted for
the moderate constraint, and used λpen = 10. To fully test the
consequence of such a choice, I have, in this article, generated
a new solution with a much stronger constraint using λpen =
500 called Sol 1/21. The outcome is shown in Figs. 1 and
2. To quantify the amount of the likeness of the new solution
phase with the original phase, I also show the penalty function
P for both solutions in Fig. 3.

First from Figs. 1 and 2 one sees that new multipoles of Sol
1/21 (red symbols) are notably different from the old ones
of Sol 1 (black squares), and that they are much smoother.
From Fig. 3 one sees that the normalized penalty function of
Sol 1/21 (penalty function divided by the penalty coefficient
λpen), as expected, is much lower that the normalized penalty
function of Sol 1, and uniform over energies. Let me stress that
it should not vanish, as transversity amplitudes generated in
Step 1 are in principle discontinuous both in energy and angle,
and the continuity of the solution is imposed by the very weak
condition of constraining the fit to the neighboring energy
solution. For Sol 1, a deviation of the penalty function from
the constraining value is also notably rising with energy. From
this figure alone it is not clear whether this increase is due to
a change of phase or to the change of absolute value as the
penalty function P is defined on full amplitudes. Therefore,
I, in Fig. 4 on the same scale, show only the difference of
absolute values of Sol 1 and Sol 1/21. One sees that these
quantities are very stable in energy, both of the same order of
magnitude, and much lower then the penalty function itself.
This shows that an increase of penalty function of Sol 1 is
solely due to the change of phase. In addition, let me illustrate
another claim made before: strengthening the constraint (im-
posing the phase closer to the ED phase) spoils the agreement
with the data as the phase of the ED solution is not ideal
for phase dependent observables. Therefore, in Fig. 5 I show
χ2/Ndata (χ∗∗2 per data point) for both solutions. The χ2/Ndata

for Sol 21/1 is still good, but the χ2/Ndata for Sol 1 is notably
better. Light grey lines and red dots in Fig. 5 deserve some

more detailed explanation which is taken from Ref. [1].
Two sets of interpolated data are generated:
Set 1 : All σ0 data are used, and all spin data are inter-

polated. So the whole minimization is performed on the set
which consists of σ0 data + observables interpolated at ener-
gies and angles where σ0 is measured. InterpolationOrder=3
level interpolation code from Mathematica has been used.
These data are marked in light grey. Observe that all data
are very dense, but in practice the only factually measured
data are σ0 values, all other data are obtained by interpolation
from measured values. This set of data is somewhat model
dependent, and serves only as an indication. This set will be
used in Step 1.

Set 2 : One uses only part of σ0 data at energies where
at least one additional spin observable is exactly measured.
This set is not so dense in energy, but model dependence is
reduced. The results corresponding to this set are denoted with
red discrete symbols.

Let me summarize the results of L+P analysis shown in
Table I. As said before, poles of the energy dependent solution
BG2014-2 correspond to the values published by the Bonn-
Gatchina group [4] as shown in Ref. [13]. Extraction of the
first pole in the S wave is unreliable as the pole lies in the
vicinity of the η-photoproduction threshold. This means that
it lies on a different Riemann sheet, so the residue value has
to be big to have any influence upon the data. However, the
L+P fit unquestionably needs this pole, but the residues are
big, and an unreliable meaning that one can generate similar
solutions with a wide choice of different backgrounds. This
confirms a general problem of residue in the L+P formalism.
As pole-background separation in Laurent expansion is not
theoretically well defined, one relies on a fit, so unquestion-
ably one can have different backgrounds which differently
combine with the residue of the singular part giving identical
results. This is the general feature of all fits. However, the
agreement with known values is good.

Next I summarize the analysis of SE multipoles obtained
with the AA/PWA method. First let me stress that the poles
of SE solutions should be close to BG2014-2 values, but defi-
nitely should not be identical to them. Namely, ED BG2014-2
is a coupled-channel model, so it is expected that the pole
parameters will be formed as the overall agreement of the fit to
all channels. SE partial waves are on the other hand a single-
channel quantity, and will be ideally matched only to this
particular channel. It is theoretically known that these poles
should be identical in all channels, but in practice experimen-
tal error introduces unwanted uncertainty, especially when all
channels are treated simultaneously. Therefore, poles of ED
models are expected to differ from poles of SE PWA. One can
only expect that our results are within the confidence level of
PDG. In this table one systematically sees that Sol 1 poles are
less certain, sometimes with unrealistic errors, and unrealistic
residues (P13 3/2+ partial wave), and the obtained χ2 is poor.
On the other hand, Sol 1/21, the solution with the phase
much closer to the ED phase, has much more reliable poles.
First one finds that the number of poles needed to obtain a
good L+P fit, is identical to the number of 4* resonances
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FIG. 1. Comparison of lowest multipoles for Sol 1 [1] (black squares), Sol 1/21 (red full circles) this article, and BG 2014-2 ED model
[4] (full blue line).
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FIG. 2. Continuation of Fig. 1.
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FIG. 3. Comparison of penalty function P for Sol 1 (green line)
and Sol 1/21 (red line).

reported in PDG.8 Pole masses are in principle within one
standard deviation with PDG results, pole widths are some-
what less reliable. In addition, looking at Figs. 1 and 2 one
sees that the Sol 1/21 solution is much smoother than Sol 1
as some structures especially at higher energies are smeared
out, and much closer to theoretical BG2014-2 ED value. This
is not at all surprising, and this solution is much more con-
strained, so has to be smoother and closer to the ED value.

C. New P11 1/2+ state?

As can be seen from Table I, the fit with only the standard
N (1710) 1/2+ state is poor for this partial wave when com-
pared to the rest. However, if one allows for one extra pole
in the fit, the result is drastically improved, and the χ2 drops
by the factor of 4 (for details see Table I). The difference in
fits is shown in Fig. 6. The needed pole falls too far away to
be interpreted as the known N (1440) 1/2+ state, but is pretty

8With the exception of P11 1/2− partial wave what will be dis-
cussed later.

FIG. 4. Comparison of absolute values of penalty function P for
Sol (green line) 1 and Sol 1/21 (red line).

reliable. It has a well-defined mass of 1526 ± 25 MeV and
width of 73 ± 37 MeV with a reasonable residue.

The obvious reason to doubt this state is that it has not been
seen in other processes. However, one is allowed to speculate
that this is not entirely correct. In Fig. 7 the relevant partial
wave for other processes is shown: πN elastic scattering from
KH80 [7,14], SE part of πN photoproduction from Ref. [15]
(discrete data points), and π0 photoproduction from Ref. [9].
First it is important to stress that this hypothetic state is never
seen in ED models. This is not surprising, as to get a resonance
in the ED model you have to put it in by hand in some way.
As this resonance was never discussed, it was never added
to the ED model, so it cannot be found there. This is also
not surprising as strong, direct, experimental indications were
never found. However, some SE models show some problems
(discontinuities, larger uncertainties) exactly on that energy.
First, πN elastic scattering KH80 [7,14] is a fixed-t analysis,
so by default it is an energy independent one. It is depicted in
Fig. 7(a). You see that it contains two distinct structures, one
identified as N (1440) 1/2+ at low energies, and the second at
high energies above 2000 MeV identified as N (2100) 1/2+.
However, in addition one sees two energy ranges of a notable
departure from linearity: one at ≈1700 MeV (indicated with
a yellow circle), but one also around 1550 MeV (indicated by
the full red circle). Historically, there had been, for quite some
time, a strong dispute about the effects at the energy range
of 1700 MeV. GWU/SAID PWA claimed smooth behavior
without any poles, while KH80 [7] and some coupled-channel
analyses [14,16] identified it with the N (1710) 1/2+ reso-
nance. The dispute was solved in favor of N (1710) 1/2+
when inelastic-channel reactions like πN → K� and πN →
ηN were included in coupled-channel formalisms [10,14].
However, the second area of nonlinearity around 1550 MeV
(marked with full red circles) was never discussed and left
unexplained. Another SE PWA for π photoproduction [15]
depicted in Fig. 7(b) also shows continuity in the ED solution,
but a definite departure from linearity in this energy range
(indicated with a full red circle) is observed. The third pro-
cess is a fixed-t SE π0-photoproduction analysis depicted in
Fig. 7(c). Here, the SE analysis also shows notable departures
from the smooth, ED model, exactly in that range (also in-
dicated with full red circles). Neither effects have ever been
explained.

Let me conclude that analyzed few-body processes of
πN elastic scattering, π , and η photoproduction show the
disturbance in that energy range, and our results in η pho-
toproduction strongly require a new resonant state in that
range which couples dominantly to inelastic channels. So,
it will be very interesting to see if such effect will be con-
firmed or refuted when other inelastic photoproduction data
are also included in SE analyses. Of course, there always
exists another possibility: the phase we use is not a correct
η-photoproduction phase, so this resonance is the result of
angular mixing of other multipoles, and has different quantum
numbers. In other words, it could easily be the reflection of
either N (1535) 1/2− or N (1520) 3/2− states due to incorrect
phase and angular mixing.
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FIG. 5. Comparison χ 2/Ndata for Sol 1 and Sol 1/21. The meaning of the grey lines and red dots is taken from Ref. [1], and is given in the
text.

IV. CONCLUSIONS

Analytic structure of Sol 1 of Ref. [1] is unclear in spite
of the fact that it fits the data almost perfectly. Following
the theoretical arguments of Ref. [6] one attributes these
effects to the small, but still uncontrolled phase change of
reaction amplitudes. To prove this hypothesis I constrained the
phase much stronger to the theoretical ED phase of Ref. [4],
and generated a new solution Sol 1/21. As expected, the
agreement of the fit with the data was somewhat spoiled (χ2

was worse but still acceptable), but L+P analysis showed that
the analytic structure (pole content) of the solution is much
improved. Poles are clearly determined, and all of them are
within one standard deviation consistent with the most recent

compilation in PDG. The only exception is the P11 1/2+ par-
tial wave where the need for an additional analytic structure in
the solution was strongly needed. In spite of that, it could be
interpreted as some kind of uncontrolled threshold behavior,
I speculate that it might be the sign of a new, low lying P11

1/2+ state (M = 1526 ± 25 MeV and � = 73 ± 37 MeV).
This state was never seen before in any SE PWA, but unclear
and completely uninterpreted discontinuities in that energy
range in πN elastic and π photoproduction were reported
[7,9,14,15]. The unification of all troubles with accepting a
new state is offered as the simplest explanation. Of course,
another valid interpretation is that it is the result of admix-
ture of either N (1535)1/2− or N (1520)3/2− states due to

FIG. 6. One-pole and two-pole L+P fits of M−
1 multipole. Blue lines represent the L+P fits, while red and black lines represent resonant

and background contributions, respectively.
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angular mixing because of the incorrectness of the used η-
photoproduction phase is also possible. In any case, I need
an extra pole in this multipole, either it is a genuine or a
ghost one. Residues, as discussed in the text, are much less
confident, and must be correlated with the phase used in the
model.

This confirms that the AA/PWA model of Ref. [1] in
addition to reproducing the data almost perfectly has a cor-
rect analytic structure, so it makes it a reasonable tool to be
applied for a SE PWA in other processes. In the presently ana-
lyzed process of η photoproduction, strong S-wave dominance
pushes the rest of the multipoles strongly down, so impreci-
sion of currently available database strongly influences their
shape. One expects that a much more stable situation in the
case of K� photoproduction is that the next target process
will improve the situation and refine the insight into the preset
problems.

It has been demonstrated that the good analytic structure
of the model fails if the input reaction-amplitude phase is
violated in order to improve the agreement of the result with
the data which is not ideal if the input phase is strongly
enforced. The needed improvement in χ2 in AA/PWA can
be accomplished only by changing the phase; and this results
in the destruction of clear analytic structure. This indicates
that the presently used BG2014-2 phase is good, but it is

still not perfect. There is definitely quite some room for
further improvements, but strictly within the framework of
the coupled-channel formalism to avoid continuum ambiguity
effects.

Even a small change of the angular part of the reaction am-
plitude phase can dramatically change the analytic structure
(pole content) of obtained partial waves, so any change of the
phase must be done in the controlled way, strongly correlated
with other channels. As in any inelastic, single-channel model,
the continuum ambiguity reaction-amplitude phase cannot be
determined from the first principles, it has to be taken from
somewhere, usually a coupled-channel model. Free change of
the phase in any SE PWA is not allowed. So, each SE PWA
must be model dependent from the first principles.
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