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For fissioning isotopes of thorium and uranium, the simultaneous description of the charge, mass, total kinetic
energy, and neutron multiplicity distributions of fission fragments is presented within the improved scission-point
model. Correlations between all these observables are analyzed. The influence of the transition from symmetric
to asymmetric fission mode on the shape of neutron multiplicity distribution is studied.
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I. INTRODUCTION

The study of nuclear fission process has been an arduous
and continuous undertaking for almost nine decades, and still
some of the most interesting and striking features are not fully
understood. While the experimental data and theoretical pre-
dictions are still missing in some regions of the nuclide chart,
new data seem to constantly provide new challenges [1]. For
example, the role of shell corrections is still not understood to
a satisfactory level, especially if one considers the evolution
of the mass and charge distributions of fission fragments with
the excitation energy of the compound nucleus (CN). In recent
experiments [2–12], the asymmetric fission modes have been
observed even at high excitation energies, while so far the
general understanding is that, with an increase of excitation
energy, the symmetric fission mode is the only one preserved.
So, the competition between symmetric and asymmetric fis-
sion modes with increasing excitation energy is still a matter
of study. Another question of interest is represented by the
scission configuration itself; it is known from the measured
total kinetic energy (TKE) data that the fission fragments are
deformed at scission point. This has several consequences on
the fission observables: On the one hand, the deformation of
the fragments leads to a decrease of the interaction potential
and, accordingly, to a decrease of the potential energy of the
system; this, in turn, leads to a higher excitation energy and
increased attenuation of the shell effects. The combined effect
leads to a change of the potential energy surface (PES) and,
ultimately, to a change in the shape of the mass and charge
distributions. On the other hand, after separation, elongated
fragments tend to return to ground-state deformation; thus,
their deformation energy is converted to internal excitation
energy, which leads to an increase of neutron multiplicity.

The present paper focuses on describing the charge, mass,
TKE, and neutron multiplicity distributions of fission products
and on comparing the calculated results with the available ex-
perimental data for fissioning thorium and uranium isotopes.

In particular, the choice of fission of Th isotopes is based on
the following arguments: (1) There are reliable experimental
data on the charge and TKE [13], and more recently, data
on the neutron multiplicity were published in Ref. [14]. (2)
The measured data on the neutron multiplicity show some
interesting features, which will be discussed in the Sec. III.
(3) Along the Th chain, there is a transition from a symmetric
fission mode to an asymmetric one, which should be de-
scribed by the fission model. Our study of the fission process
is based on an improved scission-point model [15–18]. The
main critical ingredient of this model is the PES, since any
changes in the PES minima and their positions control all
fission observables. Ultimately, the model which describes
all experimentally measurable charge, mass, TKE, neutron
multiplicity, and angular momentum distributions of fission
fragments must provide a clear and physically sound method
for calculating the PES.

II. MODEL

The most important step of the scission-point model is the
calculation of the potential energy of the dinuclear system
(DNS) as a function of charge Zi, mass Ai, deformations
βi (the ratios between the major and minor semiaxes of the
fragments) of the two fragments, and internuclear distance R
between them [15–18]. The index i designates the light (L) or
(H) heavy fragment. The scission configuration is imagined
as two axially deformed and uniformly charged ellipsoids:
the nascent fragments. The two nuclei are fully formed and
possess all the features of isolated nuclei, e.g., binding en-
ergies, according to the separability principle, and mutually
interact through the nuclear and Coulomb forces. Their ori-
entation is frozen to a tip-to-tip configuration, which provides
the minimum of interaction energy. Owing to the repulsive
nature of the Coulomb interaction V C and attractive nature
of the nuclear interaction V N , a potential pocket is formed
in R coordinate with a minimum at R = Rm which roughly
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FIG. 1. The calculated nuclear V N and Coulomb V C interaction
potentials and their sum V int = V N + V C as a function of the distance
d between the tips of the fragments for the fragmentation 222Th →
110Ru + 112Pd. The position of the interaction potential pocket min-
imum is indicated by the arrow. The deformations βL,H of the DNS
nuclei are indicated.

corresponds to a separation of d = 0.5–1 fm between the tips
of the fragments, depending on the mass AL,H and charge ZL,H

numbers and deformations βL,H (see Fig. 1). The depth Bq f of
the potential pocket insures that the DNS is in local equilib-
rium over all collective coordinates before the fragmentation.
Because the model assumes the statistical equilibrium at

scission point, one can reduce the complexity of the problem
by fixing the internuclear distance at the bottom of the poten-
tial pocket (R = Rm). Then, the potential energy

U = U LD
L + δU shell

L + U LD
H + δU shell

H + V C + V N (1)

of the system is calculated as the sum of the energies of
the fragments [the liquid-drop (LD) energy U LD

i plus shell-
correction energy δU shell

i ] and energy V int = V C + V N of
the fragment-fragment interaction [15–18]. The interaction
potential consists of the Coulomb interaction potential V C

of two uniformly charged ellipsoids and nuclear interaction
potential V N taken in the double-folding form [19,20]. The
nuclear densities are taken in the two-parameter Woods-Saxon
form with the diffuseness parameter a = 0.51–0.56 fm de-
pending on the charge number of the nucleus. The energy
of the nuclear interaction reaches values of about −(25–40)
MeV for the touching nuclei depending on their deformations
(Fig. 1). Antisymmetrization between the nucleons belonging
to different fragments is regarded by a density dependence
of the nucleon-nucleon force which gives a repulsive core
in the fragment-fragment interaction potential [19]. As seen
in Fig. 1, for the fragmentation 222Th → 110Ru + 112Pd, the
interaction potential has an inner pocket and an external
Coulomb barrier located at the distances d between the tips
of the fragments of 0.6 fm (0.7 fm) and 1.5 fm (1.6 fm),
respectively, at the ground state deformations of fragments (at
βL = βH = 1.7). The absolute value of the nuclear (Coulomb)
interaction at high deformations is about 9 (34) MeV less than
for the deformations of the ground state.

The shell corrections are calculated with the Strutinsky
method for an axially deformed nucleus [21]. The damping
of the shell correction with excitation energy E∗

i is introduced
as

δU shell
i (Ai, Zi, βi, E∗

i )

= δU shell
i (Ai, Zi, βi, E∗

i = 0) exp[−E∗
i /ED],

where ED = 18.5 MeV is the damping constant. The DNS
excitation energy

E∗ = E∗
CN + [UCN (A, Z, β ) − U (Ai, Zi, βi, Rm)] (2)

(UCN and E∗
CN are the binding and excitation energies of the

CN, respectively) is assumed to be distributed between the
fragments proportional to their masses: E∗

i = E∗Ai/ACN . The
symmetry U sym

i , Coulomb UC
i , and surface U sur

i parts of LD
energy U LD

i are calculated as

U sym
i = 27.612

(Ni − Zi )2

Ai
[1 + 6 × 10−4E∗

i /Ai],

UC
i = 3

5

Z2
i e2

R0i

β
1/3
i√

β2
i − 1

ln
[
βi +

√
β2

i − 1
]
[1− 0.12E∗

i /Ai],

U sur
i = σiSi[1 + 0.102E∗

i /Ai], (3)

where R0i = 1.2249A1/3
i [1 + 5.04 × 10−3E∗/Ai] fm is the

radius of the equivalent spherical fragment, Si is the area
of nuclear surface, σi = σ0i[1 + ki(βi − β

g.s.
i )2] f (Zi ) is

the deformation-dependent surface tension coefficient
with σ0i = 0.9517[1 − 1.7826(Ni − Zi )2/A2

i ], f (Zi ) =
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1 − 0.00025(Zi − Zr )2, Zr = Z/2 − [15.55 − 0.25(N − Z )],
and stiffness coefficient ki(E∗

i ) = 0.06 exp(−E∗
i /0.7)/{1 +

exp ( − 0.063[Cvib(Zi, Ai ) − 67])}. Here, β
g.s.
i and Cvib(Zi, Ai )

are the ground-state deformation and stiffness of the
nucleus, respectively [22,23]. The terms in Eq. (3) depend
on the isotopic composition of the nuclei (Ni, Zi), their
deformation βi, and excitation energy E∗

i . The excitation
energy dependence of the LD terms is taken in a similar way
as in Ref. [24].

The relative formation and decay probability of the DNS
with particular masses, charges, and deformations of the frag-
ments is calculated within the statistical approach as follows
[15–18]:

w(Ai, Zi, βi, E∗)

= N0 exp

[
−U (Ai, Zi, βi, Rm) + Bq f (Ai, Zi, βi )

T

]
, (4)

where N0 is the normalization factor. In Eq. (4), the temper-
ature is calculated as T = √

E∗/a where a = A/12 MeV−1

is the level density parameter. We use a single temperature
corresponding to the DNS with the lowest potential energy
U , before the attenuation of the shell corrections. In order
to obtain the relative yield of a particular primary fragment
with the mass number Ai and atomic number Zi, one should
integrate Eq. (4) over βL and βH :

Y (Zi, Ai ) =
∫

dβLdβHw(Ai, Zi, βi, E∗). (5)

For the calculations of mass and charge distributions, the
following expressions are obtained:

Y (Ai ) =
∑

Zi

∫
dβLdβHw(Ai, Zi, βi, E∗),

Y (Zi ) =
∑

Ai

∫
dβLdβHw(Ai, Zi, βi, E∗). (6)

These distributions are normalized to unity. Note that, in order
to simulate the minimal experimental uncertainties, the mass
yields in our work are smoothed using the Gaussian function
with width σ = 0.5 u. The charge yields are not smoothed.

The scission-point model is also suitable for describing
the TKE of the fission fragments. Supposing that all nucleus-
nucleus interaction energy transforms after fission into the
TKE of the DNS primary fragments with (Ai, Zi),

TKE(Ai, Zi, βi ) = V C (Ai, Zi, βi, Rb) + V N (Ai, Zi, βi, Rb),

we calculate the mean value of the TKE as a function of
fragment charge Zi by averaging over the deformations of the
primary fragments and summing over the mass numbers Ai:

〈TKE〉(Zi )=
∑

Ai

∫
dβLdβH TKE(Ai, Zi, βi )w(Ai, Zi, βi, E∗)∑

Ai

∫
dβLdβHw(Ai, Zi, βi, E∗)

.

(7)
Because of the excitation energy, the primary fragment

evaporates several neutrons after fission changing the mass
yields. To calculate the average number of neutrons emitted
by the DNS with charge numbers Zi (i = L, H), the expression

FIG. 2. The calculated (lines) and experimental (symbols)
[13,14] charge (a) and mass (b) distributions of fission fragments
for electromagnetic induced fission of 222Th at 11 MeV excitation
energy. The lines connect the calculated points for even-even fission
fragments.

used is

〈n〉(Zi ) =
∑

Ai

∫
dβLdβH n(Ai, Zi, βi )w(Ai, Zi, βi, E∗)∑

Ai

∫
dβLdβHw(Ai, Zi, βi, E∗)

, (8)

where

n(Ai, Zi, βi ) =
∑

i=L,H

E∗
i (Ai, Zi, βi ) + Edef

i (Ai, Zi, βi )

Sn
i + 2Ti

. (9)

The values of Sn
i are the average separation energies of the

first two neutrons. In order to remove the uncertainties in
the calculation of the binding energies at very large defor-
mations, in Eqs. (7) and (8) we perform the integration over
deformation coordinates only around the local minima in the
PES [22,25]. The term 2Ti accounts for the average kinetic
energy carried away by a neutron. Since the fragments are
deformed at scission, the relaxation of the deformations to the
ground-state deformations occurs after the DNS decay and
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FIG. 3. The calculated (lines) and experimental (closed symbols)
[13,14] neutron multiplicity (a) and TKE (b) distributions for electro-
magnetic induced fission of 222Th at 11 MeV excitation energy.

the energies Edef
i of deformations are transformed into the

fragment intrinsic excitation energies.

III. RESULTS AND DISCUSSIONS

In Figs. 2–7, the calculated charge, mass, TKE, and neu-
tron multiplicity distributions of fission fragments resulting
from the electromagnetic (E∗

γ = 11 MeV) induced fission of
222,226,230Th are compared with the available experimental
data [13,14,26]. The experimental (calculated) mass distribu-
tions refer to secondary (primary) fission products. Note that
the calculated charge distributions differ only slightly from
those in Ref. [15], although we previously used the constraint
on the barrier Bq f (or excluded strongly deformed config-
urations) and other parametrization of the surface potential
energy U sur

i . So, the calculated results are stable with respect
to reasonable variations of the model parameters.

As seen in Figs. 2–7, the mass, charge, TKE, and neu-
tron multiplicity distributions of fission fragments are well
reproduced. For the fissioning nuclei 222,226Th, the TKE distri-
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FIG. 4. The same as in Fig. 2, but for electromagnetic induced
fission of 226Th at 11 MeV excitation energy.

butions have completely different shapes [Figs. 3(b) and 5(b)].
In the case of 222Th there is the plateau at 36 < Zi < 54, while
in the case of 226Th the TKE distribution shows asymmetric
“wings” and a minimum at symmetric region around Z =
ZCN/2. The difference of these distributions can be explained
by noting that for 226Th the asymmetric charge and mass
peaks (Fig. 4) are the result of shell effects which manifest
themselves much more strongly in this nucleus than in more
neutron-deficient thorium isotopes. Stronger shell effects lead
to the compact scission configurations and, accordingly, to
larger TKE values. On other hand, in the case of 222Th, the
shell corrections are not strong enough to form a significant
structure in the charge, mass, and TKE distributions at the
magic atomic numbers. A symmetric peak in the charge and
mass distributions has its origin in the LD nature of the fission-
ing nucleus because the symmetric fragments have mid-closed
shells. Note that for 230Th the predicted TKE distribution in
Fig. 7(b) is similar to that for 226Th in Fig. 5(b).

In Figs. 3, 5, and 7, the calculated neutron multiplicities
〈n〉(Zi ) as functions of the charge number of one of the frag-
ments are compared with the experimental data [14]. For the
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fissioning nucleus 222Th, both theoretical results and exper-
imental data show a rather constant value of 〈n〉 ≈ 3.5 in
the region 34 < Zi < 56, with some fluctuations around this
value. So, the neutron multiplicity is weakly dependent on
the fragment charge number. The largest difference between
the experimental and calculated values is ≈0.5 at symmetry.
In the fission of 226Th, the calculated neutron multiplicity
distribution also agrees with the experimental data (Fig. 5).
While our results slightly underestimate the experimental val-
ues, the ratio between the neutron multiplicities at symmetry
and in the region Zi < 40 are the same, and the increase in
overall neutron multiplicity is observed as in the experiment.
One notes that these distributions differ significantly from
the distributions shown in Fig. 3. There is a rather strong
dependence of 〈n〉 on Zi in Fig. 5, with a pronounced increase
of the neutron multiplicity in the region 40 < Zi < 50. In this
region the shell effects are almost negligible and an almost
pure LD behavior of the system causes higher deformations
of fragments and low values of the potential energy U which
are also seen in the TKE and charge distributions. So, the
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FIG. 6. The same as in Fig. 2, but for electromagnetic induced
fission of 230Th at 11 MeV excitation energy.

increase of the neutron multiplicity is due to an increase of
both deformation and excitation energies.

In the case of 230Th (Fig. 7), the shapes of the calculated
and experimental neutron multiplicity distributions match
each other, and the ratio between the 〈n〉(Zi ) at symmetry
and in the region Zi < 40 has roughly the same value (≈1.7)
in both experiment and in theory. However, there is a large
discrepancy in the absolute values of the calculated and ex-
perimental neutron multiplicities. The measured data shows
an increase of 〈n〉(Zi ) by one unit in the region Zi < 40 and
almost four units at symmetry, as compared with the same
distribution measured for the fissioning nucleus 222Th. In our
calculations, we do find an increase in the neutron multi-
plicity, but not as large as in the experiment. It is difficult
to justify such a large increase; an increase of 3–4 units at
symmetry means an increase of 25–30 MeV of the excitation
energy or deformation energy. In our opinion, an increase
of the excitation energy alone by 25–30 MeV is extremely
unrealistic, since it would lead to symmetric charge and mass
distributions. According to our estimates, the increase in the
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FIG. 7. The same as in Fig. 3, but for electromagnetic induced
fission of 230Th at 11 MeV excitation energy.

deformation energy required for the neutron multiplicity at
symmetry to have a value of ≈7 would mean that the two
fragments must have an axis ratio of more than 2.3, which is
about 1.35 times larger than those in our calculations. Also,
the larger 〈n〉(Zi ) for fragments with Zi < 40 are difficult
to justify, since stronger shell effects lead to more compact
configurations, so the deformation energy actually decreases
and compensates for the increase of the excitation energy in
this region. Finally, we can conclude that the experimental
values of 〈n〉 for 230Th are systematically overestimated.

For the electromagnetic induced fission of 230U and 234U at
an average excitation energy E∗ = 11 MeV (Fig. 8) the asym-
metric nature of the charge and TKE distributions is fairly
well reproduced. For 230U, the TKE distribution at symmetry
shows a rather weak dependence on Zi, while the neutron
multiplicity represents an almost constant value (≈4.2) in
the region 40 < Zi < 50 with a small hump at symmetry
correlating with the minima of 〈TKE〉(Zi ) and Y (Zi ). In the
region 40 < Zi < 50, the fragments behaves like liquid drops
(as for 230Th), so large deformations of fragments create these
features. For 234U, we again predict a rather weak depen-

dence of 〈n〉 on Zi at symmetry. Note that the values of the
average neutron multiplicities at symmetry decrease with in-
creasing mass number of uranium isotopes from 230 to 234,
although for thorium isotopes we observe the opposite trend.
The explanation of this behavior is as follows: It is known
that neutron-deficient U isotopes provide higher charge and
mass yields at symmetry than neutron-rich U isotopes, with
larger excitation energy at symmetry. On the other hand, the
positions of the minima in the PES for symmetric fragmenta-
tions of neutron-rich uranium nuclides are located at slightly
lower deformations βL,H , so the deformation energies are also
slightly smaller. The combined influence of these two factors
generally results in slightly lower values of 〈n〉 in 234U.

IV. CONCLUSIONS

As shown, the improved scission-point model of fission
is able to consistently and reliably describe several fission
observables of interest for fissioning nuclei 222,226,230Th and
230,234U at an average excitation energy E∗ = 11 MeV. The
description of charge, mass, TKE, and neutron multiplicity
distributions of fission fragments is based on the same PES. It
is demonstrated that all these distributions are correlated and
the transition from the asymmetric to the symmetric fission
regime, which occurs along the Th isotope chain, leads to
an increase of the neutron multiplicity at symmetry. For the
fissioning thorium isotopes, the transition from a symmetric
fission mode to an asymmetric one is also reproduced.

As found for a fissioning nucleus 222Th, almost constant
value of TKE at symmetry is associated with a fairly constant
value of the neutron multiplicity. As the Th mass number
increases, the role of shell corrections becomes dominant,
and the TKE and neutron multiplicity distributions closely
follow the changes occurring in the PES of the system. In the
case of 226Th, the asymmetric peaks in the charge distribution
resulting from the shell corrections are closely related to the
asymmetric humps found in the TKE distribution, while the
symmetric peak in the charge yields is associated with lower
TKE and higher neutron multiplicities at symmetry due to
the LD behavior of the system. As the mass number of Th
increases from 226 to 230, the strong shell effects impose a
dominant asymmetric fission mode, which provides asymmet-
ric maxima in charge yields. For the fissioning 230Th, the TKE
distribution also presents the shell effects and the calculated
neutron multiplicities show a slight increase at symmetry.
Note that the shape of the calculated distribution of neutron
multiplicity is similar to the measured one, but we cannot
explain the large experimental values, especially at symmetry.
Nevertheless, the increase of the neutron multiplicity at sym-
metry with the transition from light to heavy thorium isotopes
is, in our opinion, indisputable. The opposite trend is predicted
for fissioning uranium isotopes.
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