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Testing isospin symmetry breaking in ab initio nuclear theory
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In this work we present the first steps towards benchmarking isospin symmetry breaking in ab initio nuclear
theory for calculations of superallowed Fermi β decay. Using the valence-space in-medium similarity renormal-
ization group, we calculate b and c coefficients of the isobaric multiplet mass equation, starting from two different
Hamiltonians constructed from chiral effective field theory. We compare results to experimental measurements
for all T = 1 isobaric analog triplets of relevance to superallowed β decay for masses A = 10 to A = 74 and find
an overall agreement within approximately 250 keV of experimental data for both b and c coefficients. A greater
level of accuracy, however, is obtained by a phenomenological Skyrme interaction or a classical charged-sphere
estimate. Finally, we show that evolution of the valence-space operator does not meaningfully improve the quality
of the coefficients with respect to experimental data, which indicates that higher-order many-body effects are
likely not responsible for the observed discrepancies.
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I. INTRODUCTION

A. Fundamental symmetry tests

Precision measurements of superallowed 0+ → 0+ β de-
cays are a critical tool to search for physics beyond the
standard model in the quark sector [1]. This is possible be-
cause the decay mode is independent of any axial-vector
contribution (up to radiative corrections), and thus provides
the most stringent determination of the vector coupling
strength in the weak interaction, GV [2]. In fact, the up-down
element of the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing matrix, Vud, is the most precisely known (to the level
of 0.032%) and relies nearly entirely on superallowed β-decay
f t values determined from measurements of the half-life, Q
value, and branching fraction of the superallowed mode [1].

In order to use the experimental superallowed data to test
the standard model, small corrections to the β-decay f t values
must first be made to obtain nucleus-independent Ft values,

Ft ≡ f t (1 + δR)(1 − δC ) = 2π3h̄7 ln(2)

2G2
V m5

ec4(1 + �R)
, (1)

where δR is a transition-dependent radiative correction, �R

is a transition-independent radiative correction, and δC is a
nucleus-dependent isospin-symmetry-breaking (ISB) correc-
tion. Although these values are relatively small (typically 1%
or less), the precision of the experimental f t values is so good
(�0.1%) that it is critical to take these theoretical correc-
tions into account. In fact, the overall uncertainty of GV , and
consequently Vud, is currently dominated by �R and δC [1].
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Interest in the theoretical corrections has grown dramatically
after a re-evaluation of �R [3–5] led to a significant deviation
from the top-row sum unitarity condition of the CKM matrix.
Additionally, the leading contribution to the uncertainty in Vud

is now due to the ISB correction from nuclear structure theory
[1]. Therefore, efforts to improve the analysis of these uncer-
tainties within a given theoretical framework is now perhaps
one of the most important aspects in this field.

The current extraction of Vud from the superallowed data
uses the shell-model ISB corrections of Towner and Hardy
(TH), largely because of the impressive experimental testing
to which their formalism has been exposed [1]. One linger-
ing issue, however, is that the phenomenological character
of these calculations makes it unclear how to robustly quan-
tify their uncertainties or systematically improve them in a
controlled manner [6,7]. Despite recent progress in adapting
theoretical methods for calculating ISB corrections relevant
for superallowed β decay [8–11], capturing meaningful un-
certainties in the quoted errors for the ISB corrections on
a case-by-case basis remains a significant challenge. In this
paper we therefore present the first steps towards under-
stating the details of these calculations from the ab initio
valence-space in-medium similarity renormalization group
(VS-IMSRG), which can consistently cover the range of su-
perallowed systems of interest for fundamental symmetry
tests.

B. Isobaric multiplet mass equation

Since δC is a purely theoretical quantity in the sense that
there is no way to extract it directly from experimental mea-
surements, observables sensitive to ISB effects should first be
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examined before any firm statements on the quality of δC are
made. One such approach is through the isobaric multiplet
mass equation (IMME), which has historically been used to
predict binding energies of missing elements of isobaric ana-
log states (IAS) [12,13]. This quadratic equation is obtained
by assuming the ISB part of the Hamiltonian is at most a
rank-2 spherical tensor in isospin space and evaluating it in
first-order perturbation theory (see, e.g., Ref. [14]). It can then
be used in to remove systematic errors due to the much larger
isospin-conserving part of the nuclear Hamiltonian to isolate
the ISB contributions. The IMME, when written in terms of
mass excesses M, is typically expressed as:

M(α, T, Tz ) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z , (2)

where α is a placeholder for quantum numbers of the state, T
is the total isospin of the nucleus, Tz is the total isospin pro-
jection of the nucleus, and a, b, and c are fitting coefficients.
For an isospin triplet with T = 1, the fit is trivial and the a, b,
and c coefficients are directly related to the masses

a = M0 (3a)

b = 1
2 (M+1 − M−1) (3b)

c = 1
2 (M+1 + M−1 − 2M0), (3c)

where MTz is shorthand for M(α, T = 1, Tz ).

II. THEORETICAL METHODS

Advances in chiral effective field theory (χEFT) [15,16]
and similarity renormalization group (SRG) [17,18] as well as
ab initio many-body methods [19–24] have enabled converged
calculations of essentially all nuclei to N, Z ≈ 50 [25–27].
Specifically, the consistent inclusion of three-nucleon (3N)
forces in chiral Hamiltonians has improved the accuracy of
ab initio methods in the medium-mass region [28–30] to the
point that they are comparable to phenomenological methods
for both ground- and excited-state energies [31]. However,
it has yet to be determined whether these improvements are
sufficient to be relevant for superallowed β decay [32].

There have been several previous attempts to examine the
ability of nonempirical approaches to reproduce experimen-
tally extracted IMME coefficients. These studies typically
used many-body perturbation theory to generate effective
valence-space Hamiltonians starting from either NN+3N
forces in selected sd-shell multiplets [33–35], or from various
NN-only interactions in the p or p f shells [36,37]. Observed
deficiencies in these studies were attributed to either neglected
3N forces or unclear perturbative convergence. Therefore
we aim to determine whether a nonperturbative many-body
approach with NN+3N forces can potentially improve this
picture.

In this work we use two sets of NN+3N forces derived
from chiral effective field theory: 1.8/2.0 (EM) from a family
of interactions constructed in Ref. [38] and N2LOsat [39].
These interactions were chosen because one (1.8/2.0 (EM))
has been shown to systematically reproduce ground-state en-
ergies to the tin region [26,40,41], while the other (N2LOsat)
accurately reproduces absolute and relative nuclear charge
radii [42–45]. We solve the many-body problem via the VS-

IMSRG method [22,24,46,47], where an approximate unitary
transformation is derived to decouple a given core energy
in addition to an effective valence-space Hamiltonian. We
subsequently diagonalize using the code NUSHELLX@MSU

[48] to obtain absolute binding energies for all members
of the T = 1, Jπ = 0+ IATs for mass numbers A = 10
through A = 74.

We work at the IMSRG(2) approximation, in which we
normal order all operators with respect to finite-density refer-
ence state |�〉, and discard all residual 3N operators, including
those induced by the IMSRG evolution. This approximation
has been found to be accurate for absolute ground-state en-
ergies at the level of a few percent [25,29,49]. Naively, this
should lead to errors of a few MeV for the IMME b and c
coefficients, which would preclude a meaningful comparison
with experiment. However, the error due to the truncation is
highly correlated between members of an IAT, and cancels
to a significant extent when taking differences [50] (see also
Ref. [27]).

An exception to this occurs if different valence spaces are
used for different members of the IAT. For example, the A =
18 IAT includes 18O, which has a closed shell for protons, so
the natural valence space would only involve neutrons in the
sd shell. Decoupling the proton sd shell involves additional
transformations, which, given the IMSRG(2) approximation,
deteriorates the accuracy of the absolute ground-state energy.
On the other hand, 18F requires an active valence space for
both protons and neutrons. Our present interest is in the IMME
coefficients rather than absolute binding energies, and so for
all calculations in this work, we use a consistent valence space
for each member of an IAT. The impact of this choice was
investigated further in Ref. [50].

An additional ambiguity arises due the choice of refer-
ence state |�〉 for performing the normal ordering. The usual
prescription we have followed in past work is to use a spher-
ically symmetric ensemble reference with average proton and
neutron numbers corresponding to the target nucleus (see the
discussion in Ref. [24]). This captures bulk effect of 3N in-
teractions (both input and induced) between valence particles,
but due to the IMSRG(2) approximation, some contributions
are missed. If we explicitly retained all many-body operators
induced during the IMSRG flow, the result would be indepen-
dent of the choice of reference. Therefore, exploring different
reference choices provides a handle on the IMSRG(2) trunca-
tion error. In this work, we follow four different prescriptions:
(i) compute each member of the triplet with their own refer-
ence, or compute all three members using the same reference,
which can be that of either the (ii) Tz = 1, (iii) Tz = 0, or (iv)
Tz = −1 member.

For all calculations, we work in a basis built from
harmonic-oscillator states up to a cutoff (e = 2n + 	 � emax)
with emax = 6, 8, 10, 12. For N = Z nuclei where the ground
state does not have Jπ = 0+, the lowest excited state with this
spin-parity configuration is used to complete the multiplet.
From there, binding energies are converted to mass excesses
for each nucleus and the emax = 8, 10, 12 points fit to an
exponential and extrapolated to emax → ∞. Finally, the b and
c coefficients are obtained from the extrapolated masses via
Eq. (3).
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FIG. 1. IMME b coefficients both absolute (insert) and with con-
tributions from a sphere of radius R = r0A1/3, r0 = 1.2 fm subtracted.
The shaded bands for the VS-IMSRG calculations indicate sensitiv-
ity to the normal-ordering reference. Charged sphere calculations are
for a uniform (insert) and Woods-Saxon (main) charge distribution.

III. IMME RESULTS

A. Effects of normal-ordering reference state

The resulting IMME b coefficients are plotted in Fig. 1 as a
function of mass number A, compared with experimental data
(note that the experimental points for A � 62 rely on extrap-
olated masses). As there is no a priori reason to favor any
given reference state, and none of the four are substantially
better or worse at predicting experimental data, VS-IMSRG
calculations are shown as a band rather than four distinct
curves.

To focus on the nontrivial structure, we subtract the
charged sphere value b = − 3e2

5r0
A2/3, with r0 = 1.2 fm. For

comparison, we show the value obtained from the potential
energy of a classical charged sphere with a Woods-Saxon
charge density profile with radius parameter R = r0A1/3 fm
and diffuseness a = 0.524 fm [51]. We also show the result of
a spherical Skyrme Hartree-Fock (Skyrme) calculation using
the SKX interaction [52–54], performed with the code DENS

[55]. We note the SKX interaction was fit to the binding
energies of several closed-shell nuclei, with the Coulomb
exchange term turned off to better reproduce the 48Ca-48Ni
binding energy difference. For open-shell nuclei, we use the
equal filling approximation in the Skyrme calculations.

We see that the general trend follows the simple Woods-
Saxon sphere prediction, while finer details are reproduced
by the Skyrme calculation. This indicates that details emerge
at the mean-field level without explicit treatment of pairing
or deformation effects. The b coefficients obtained with the
VS-IMSRG are largely consistent with experiment within the
uncertainties of the reference dependence, with a notable de-
viation in the upper sd shell at A = 34, 38. A similar deviation
occurs in the upper p shell at A = 14, though it is somewhat
washed out by the reference dependence. We expect that
this deviation is due to IMSRG(2) truncation errors, which
are enhanced near the limits of the valence space, and not

FIG. 2. IMME c coefficients. The shaded bands for the VS-
IMSRG calculations indicate sensitivity to the normal-ordering
reference. Charged sphere calculations are for a Woods-Saxon charge
distribution.

captured through variation of the reference. This expectation
is supported by the observation that similar deviations are
obtained with both chiral interactions; this issue is explored
further in Sec. III B.

The fact that the results are largely interaction independent
is somewhat surprising. The 1.8/2.0 (EM) interaction gen-
erally predicts charge radii ≈3–5% [44] below experiment.
Given the 1/R dependence of the b coefficient, this trend in the
radii should correspond to an increase on the order of a few
hundred keV that further grows with mass. Comparing cal-
culations from 1.8/2.0 (EM) and N2LOsat does not, however,
reflect this expectation. This can potentially be understood by
considering that the small radii and resulting greater Coulomb
repulsion means proton orbits are pushed further outward,
reducing their kinetic energy relative to neutron orbits and
partially canceling the effect.

Since the IMME c coefficients vary slowly with mass
number (the charged-sphere estimate is c = 3e2

5r0
A−1/3), we

plot them directly in Fig. 2. The experimental values are
compared with the results of the VS-IMSRG calculations and
the estimate from a classical charged sphere with the same
Woods-Saxon density profile as used for the b coefficient.
Because the Skyrme calculation only yields ground-state en-
ergies and shell-model USD calculations (e.g., Ref. [56]) fit
to the IMME coefficients, no meaningful comparisons to phe-
nomenological methods are made for the c.

Here we see the Woods-Saxon sphere estimate lies sys-
tematically below the data, while the VS-IMSRG results lie
systematically above, with the reference dependence on the
same order or slightly smaller than the deviation. Similar
to the b coefficients in Fig. 1, the VS-IMSRG values near
harmonic oscillator shell closures in Fig. 2 show an increased
deviation from experiment compared to midshell. While we
again expect this is due to the IMSRG(2) approximation, the
impact on the c coefficient appears less pronounced. With the
c coefficient also having a 1/R dependence, the smaller charge
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FIG. 3. IMME b coefficients for ab initio calculations both with
and without IMSRG evolution, subtracting the contributions from a
uniformly charged sphere of radius R = 1.2A1/3 fm.

radii predicted by the 1.8/2.0 (EM) should lead to an increase
in the c coefficient magnitude on the order of a few percent.
This can be seen in Fig. 2, but the effect is mostly washed out
by the reference dependence for normal ordering.

To estimate the relative contributions of Coulomb and
strong ISB forces, we consistently IMSRG evolved the
Coulomb operator and evaluated it in first-order perturbation
theory for the sd shell cases. We found this accounts for
1/3–1/2 of the magnitude of the c coefficient. The remaining
contribution comes both from strong ISB forces and from
isospin-conserving forces acting on Coulomb distorted wave
functions.

B. Effects of IMSRG evolution

The most prominent feature of the VS-IMSRG calculations
in Figs. 1 and 2 are the deviations near harmonic-oscillator
shell closures. However, these inconsistencies are well-
documented limitations of the IMSRG(2) approximation (e.g.,
Ref. [25]). With this in mind, it is expected that moving
beyond IMSRG(2), and retaining at least some 3N operators,
should reduce deviations seen at harmonic-oscillator shell
closures. Unfortunately, this cannot be investigated directly
at this time, but we can nevertheless explore the impact of
the IMSRG evolution by comparing to calculations with un-
evolved operators.

As illustrated in Ref. [50], the IMSRG evolution acts in
roughly the same manner on each mass in an IAT, and as such,
the effects are not necessarily obvious. To further explore this
issue, we employ the same two chiral interactions, 1.8/2.0
(EM) and N2LOsat, and calculate IMME coefficients for IATs
without performing IMSRG evolution. These calculations,
done at emax = 12 and with all operators normal ordered
with respect to the Hartree-Fock ground state of the Tz = 0
nucleus, are compared to the coefficients presented above in
Figs. 3 and 4. Examining IMME coefficients from the bare
chiral interactions, i.e., those done without IMSRG evolution,
shows that deviations near harmonic-oscillator shell closures

FIG. 4. IMME c coefficients for ab initio calculations both with
and without IMSRG evolution.

are generally not present. While the bare N2LOsat calculations
of the b coefficient do show larger deviations from experi-
mental data than the other cases, they are systematic across
all regions. These observations indicate that the deviations
near major oscillator shell closures are indeed a result of the
IMSRG evolution.

In comparing to the bare interaction calculations, we
further note that there is no apparent improvement from IM-
SRG evolution. With the lone exception of the bare N2LOsat

calculations of the b coefficient, better agreement between
experimental data and ab initio calculations is always seen
for the bare interactions. This is again somewhat surpris-
ing, as absolute ground-state energies in nuclei are much
better reproduced after IMSRG evolution, and IMME coeffi-
cients are directly calculated from binding energies. Because
of the decreased quality of the IMME coefficients after
IMSRG evolution, we expect that while moving beyond
the IMSRG(2) approximation may help control deviations
due to reference state dependence as well as those near
harmonic-oscillator shell closures, systematic agreement of
calculated IMME coefficients with experimental data may not
be improved.

IV. CONCLUDING REMARKS

Analysis of the IMME coefficients show that although
ab initio calculations are able to systematically reproduce
their overall magnitude, the finer details seen in experimental
data are generally not. Dependence on the choice of normal-
ordering reference, which would have no effect on the final
calculation if all induced operators were retained through-
out the IMSRG calculation, are of the same magnitude as
both the deviation from experimental data and the depen-
dence on the initial chiral interaction. Additional deviations
when approaching the edge of the employed valence space
are observed, and are attributed to the impact of truncating
induced many-body forces. Since IMSRG evolution does not
systematically improve agreement with experiment, without a
more detailed understanding of the source of this theoretical
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TABLE I. IMME b coefficients calculated using 1.8/2.0 (EM)
and N2LOsat interactions. All masses are in keV.

1.8/2.0 (EM) N2LOsat

A min max min max

10 −1677 −1316 −1648 −1509
14 −2356 −2147 −2419 −1831
18 −3381 −2833 −3088 −2909
22 −4015 −3694 −3888 −3676
26 −4528 −4490 −4665 −4378
30 −5107 −4999 −5168 −4863
34 −5641 −5424 −5577 −5166
38 −6102 −6032 −6088 −5669
42 −6957 −6784 −6754 −6606
46 −7570 −7431 −7433 −7245
50 −8145 −8050 −8080 −7836
54 −8729 −8663 −8731 −8414
58 −9111 −9027 −9005 −8822
62 −9490 −9405 −9466 −9218
66 −9902 −9779 −9900 −9609
70 −10291 −10168 −10345 −9964
74 −10736 −10621 −10821 −10427

error, we would not expect moving beyond the IMSRG(2)
approximation to substantially improve the reproduction of
experimental IMME coefficients.

Although the precise relationship between IMME coeffi-
cients and the ISB correction to superallowed β-decay f t
values is not obvious, both depend on the ability to system-
atically reproduce the effects of ISB in nuclei. With the recent
reduction of uncertainty on radiative correction, the leading
uncertainty contribution to the nucleus-independent Ft value
is now that of the ISB correction. The ability to calculate ISB
effects using ab initio methods provides a clear path forward,
as these calculations allow for the possibility of a rigorous
estimation of theoretical uncertainties, a goal, which is chal-
lenging, if not impossible, in phenomenological approaches.
With the observed difficulties of ab initio calculations to re-
produce of IMME coefficients, parallel improvements in the
accuracy of nuclear forces and many-body methods, in addi-
tion to a clear blueprint to assess uncertainties, are needed for
ISB corrections to be calculated with the level of confidence
needed to test physics beyond the standard model.

TABLE II. IMME c coefficients calculated using 1.8/2.0 (EM)
and N2LOsat interactions. All masses are in keV.

1.8/2.0 (EM) N2LOsat

A min max min max

10 257 500 380 477
14 467 595 419 695
18 380 631 358 440
22 349 509 315 387
26 399 459 355 421
30 402 424 340 368
34 392 476 370 441
38 405 454 383 494
42 348 428 311 317
46 322 387 276 279
50 342 388 283 300
54 356 393 308 353
58 364 406 317 337
62 390 403 386 401
66 369 405 340 388
70 390 422 334 419
74 387 408 347 378

ACKNOWLEDGMENTS

We are grateful to J. Simonis and P. Navrátil for pro-
viding the 1.8/2.0 (EM) and N2LOsat matrix element files.
TRIUMF receives funding via a contribution through the
National Research Council of Canada. This work was sup-
ported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the US Department of
Energy (DOE) under Contracts No. DE-FG02-97ER41014,
No. DE-FG02-93ER40789, and No. DE-SC0017649. Com-
putations were performed with an allocation of computing
resources on Cedar at WestGrid and Compute Canada, and
on the Oak Cluster at TRIUMF managed by the University of
British Columbia department of Advanced Research Comput-
ing (ARC).

APPENDIX: TABLES OF IMME COEFFICIENTS

We list in Table I and Table II the computed b and c coeffi-
cients, which are plotted in Fig. 1 and Fig. 2, respectively.
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