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The chiral quark-meson coupling (CQMC) models are applied to revisiting static properties of spherical nuclei
in comparison with the results from the conventional quantum hadrodynamics (QHD)-like models as well as the
available experimental data. They are also used to describe the nuclei off which the electrons scatter to understand
their dynamic properties. After calibrating the model parameters at equilibrium nuclear matter density, binding
energies, charge radii, single-particle spectra, and density distributions of the nuclei are analyzed and compared.
The nonlinear scalar self-interaction in each model is also discussed in consideration of the reproduction of
nuclear saturation properties.
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I. INTRODUCTION

Ever since J. D. Walecka introduced his namesake model
[1], so-called quantum hadrodynamics (QHD) has been es-
tablished as a relativistic framework for describing nuclear
many-body systems with hadronic degrees of freedom. In
the original Walecka model, the pointlike nucleons interact
through the exchange of Lorentz scalar (σ ) and vector (ω)
mesons: the former for intermediate-range attraction and the
latter for short-range repulsion. The QHD-type models can be
practically solved in the mean field approximation, where the
meson field operators are replaced with classical fields, and
in particular with their ground state expectation values. The
phenomenology of nuclear matter and finite nuclei has been
studied in QHD with successful results [2–7].

However, it is difficult to describe many-nucleon systems
directly from the first principles of quantum chromodynam-
ics (QCD) because of the nonlinear complexity in the low
energy regime, although lattice calculations based upon first
principles have been being developed with the advent of high-
performance computers. Chiral effective field theory (χEFT)
that complements such complexity with the idea of scale
separation is sophisticatedly applicable to the low energy pro-
cesses. Thus the so-called ab initio methods, e.g., no-core
shell model [8,9], Green’s function Monte Carlo [10,11],
coupled cluster [12,13], in-medium similarity renormaliza-
tion group [14,15] method, etc., are typically based on the
nuclear force described in χEFT. While χEFT is a theory
in terms of an expansion in a momentum scale to control
the higher dimensional operators of hadronic fields, QHD is
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not a consistent effective field theory of QCD but is based
on the one-boson exchange picture. The large strength of the
meson fields in QHD has motivated somewhat an extension
incorporating aspects of QCD.

The quark-meson coupling (QMC) model, the idea of
which was first proposed by Guichon [16], is one of the promi-
nent extensions of QHD to consider the effect of the internal
quark structure of a nucleon. In the QMC model, the nucleon
in nuclear medium is described to be a nonoverlapping MIT
bag in which quarks interact with the scalar and vector fields.
It is incorporated that the strong scalar field leads to dynamical
effects on the internal structure, changing the quark masses
inside the nucleon. It was shown that the QMC model de-
scribes the saturation properties of infinite nuclear matter [17]
and reproduces the properties of finite nuclei [18,19]. It has
also been used in the calculation of electron-nucleus scattering
cross section to extract the electromagnetic form factors [20].
But it could conflict with the usage of the MIT bag, because
the axial charge in the bag is not conserved, and the divergence
of the axial vector current does not vanish. The reflection at
the bag boundary makes the Lagrangian density of the MIT
bag model notinvariant under the global chiral transformation.

An improvement of the QMC model, often referred to as
chiral quark-meson coupling (CQMC) model [21], is to take
into account spin-dependent structures in the baryon mass
spectrum. The hyperfine interaction between light quarks is
formed of gluon and pion exchange components with con-
ventional strength. In the CQMC model, the cloudy bag
replaces the MIT bag due to the importance of chiral sym-
metry in the low-energy QCD. The source of axial current
at the surface of the bag could act as a source of the pion
field, which is converted into the volume-coupling version
of the cloudy bag model with the Weinberg transformation.
This guarantees the axial vector current to be conserved in
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chiral limit. The CQMC model was applied to the equation
of state (EoS) for a neutron star in the relativistic Hartree
(RH) approximation [22], and also in relativistic Hartree-Fock
(RHF) approximation [23–25]. It is demonstrated that, even
in the RH approximation, the CQMC perspective improves
the calculated mass of the neutron star to the observational
constraint, (1.97 ± 0.04)M� [26–28], in comparison with the
QMC result. But the CQMC model has not yet been tested for
finite nuclei, nor for their nuclear reactions.

In the present work, the CQMC model in the RH ap-
proximation is applied to stable nuclei (from 16O to 208Pb),
revisiting their ground-state properties. With the nucleus wave
function generated in it, the calculation of knock-out (e, e′ p)
reactions is implemented so as to study their dynamical
effects. For comparison, we employ the QHD and QMC
models with and without the nonlinear scalar self-interaction,
which is required for an adequate description of the surface
properties. Throughout this paper each model without the
nonlinear scalar interaction is labeled with 1 (i.e., QHD1,
QMC1, and CQMC1), and the models with the nonlinear
scalar self-interaction are QHD2, QMC2, and CQMC2. It
is interesting to know if and how the model difference is
reflected in the calculation of the static and dynamic proper-
ties of finite nuclei. It may hardly affect the bulk properties
because the parameter sets of the models are determined
to reproduce the nuclear properties at saturation point and
the finite nuclei are nuclear systems at near-saturation den-
sities. Nonetheless, distinct difference between the models
could arise in the estimate of the single-particle energy lev-
els. They can be compared to the cross section data of the
one-proton knock-out reactions because the theoretically cal-
culated cross section of them should be dependent on the
single-proton energy levels in the nucleus. We also present
the results of neutron star properties calculated in each model
so as to make sure that the models behave differently at high
densities. The models have different evolution patterns of
nuclear properties with respect to density, even if fitted to
the same saturation properties. In Ref. [29] similar discus-
sions have been carried out with the modified QMC (MQMC)
model that has a density-dependent bag constant. Instead of
MQMC, here we focus on the CQMC model, confirming
the results for the other models, i.e., QHD2, QMC1, and
QMC2.

The rest of this paper is organized as follows: Section II
briefly introduces the model framework used to describe
nuclear systems. Section III presents numerical results con-
cerning static properties of finite nuclei and nuclear matter.
The calculated cross sections of (e, e′ p) reactions are also
discussed. Finally, conclusions are drawn in Sec. IV.

II. FORMALISM

A. Chiral quark-meson coupling model

The details of the derivation of the CQMC model may be
found in Ref. [21]. The CQMC model can be briefly intro-
duced in the Lagrangian density that contains the fields for
quarks (ψ), isoscalar scalar (σ ) and vector (ωμ) and isovector

vector (bμ) mesons:

LCQMC = LCBM + 1
2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

4WμνW μν

+ 1
2 m2

ωωμωμ − 1
4 Gμν · Gμν + 1

2 m2
ρbμ · bμ

+ ψ̄
(
gq

σ σ − gq
ω�ω − 1

2 gq
ρτ · �b

)
ψ θV ,

LCBM = Lbag + Lπ + Lg + Lint,

Lbag = [ψ̄ (i�∂ − mq)ψ − B]θV − 1
2 ψ̄ψδS, (1)

where Wμν and Gμν indicate the field strength tensors of
ωμ and bμ fields, respectively. The interactions between the
quarks and mesons are restricted to occur inside the bag by
θV , the step function. The Lagrangian density of the volume-
coupling version of the cloudy bag model (CBM) [30], LCBM,
consists of the simple bag (Lbag), free pion field (Lπ ), gluon
kinetic energy (Lg), and quark-pion and -gluon interactions
(Lint). In this model, the effective nucleon mass in the external
fields can be obtained as the total energy of the bag and the
energy shift due to pion and gluon;

M∗
N = 3� − z

R∗ + 4

3
πBR∗3 + Eπ + Eg (2)

with

� =
√

x∗2 + (R∗m∗
q )2. (3)

The bag constant B and the parameter for the zero-point
motion z are fitted to reproduce the mass of a free nucleon.
The energy of a quark � is given in terms of the momen-
tum of a quark in a bag, x∗, the bag radius R∗, and the
effective mass of the quark, m∗

q = mq − gq
σ σ . The bag ra-

dius is determined by the equilibrium condition for the bag
in medium. The quantity x∗ is inherently given from the
boundary condition at the bag surface, j0(x) = βq j1(x), where
βq = √

(� − R∗m∗
q )/(� + R∗m∗

q ).

B. Description of finite nuclei

The effective Lagrangian density for spherical nuclei in
nucleon (N) degrees of freedom can be given as

L = N̄
[
i�∂ − M∗

N − gω�ω − gρ

2
τ · �b − e

2
(1 + τ3)�A

]
N

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) −Uσ − 1

4
WμνW μν + 1

2
m2

ωωμωμ

− 1

4
Gμν · Gμν + 1

2
m2

ρbμ · bμ − 1

4
FμνFμν, (4)

where the field strength tensor Fμν of electromagnetic field Aμ

is appended. The effective nucleon mass is defined by

M∗
N = MN − gσ (σ )σ (5)

with

gσ (σ ) = gσ bN

[
1 − aN

2
(gσ σ )

]
. (6)

The σ -N coupling as a function of σ field, Eq. (6), is
parametrized with two parameters, aN and bN , which are
determined in order to reproduce the effective mass in a
quark-level calculation like Eq. (2). Therefore aN and bN are
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FIG. 1. Effective nucleon mass ratio as a function (a) of scalar field and (b) of density. In the case of (a), there is no difference between
the models 1 and 2 because M∗

N (gσ σ ) can be identified only by the set of aN and bN . In contrast, in (b) the models 1 and 2 are distinguished
because the existence of the nonlinear self-interaction terms affects the relation between σ field and density.

the important parameters to infer the subnucleonic structure
described by each model. The effective mass ratio described in
each model is shown in Fig. 1. The main distinction between
the models (QHD, QMC, and CQMC) at the level of Eq. (4)
arises only from the different sets of aN and bN . For example,
once we set aN = 0 and bN = 1, the σ -N coupling, gσ (σ ),
becomes consistent with the constant gσ in QHD.

Introducing the specific form of the nonlinear scalar self-
interactions,

Uσ = 1
3 g2σ

3 + 1
4 g3σ

4, (7)

the effective Lagrangian density, Eq. (4), has five couplings
(gσ , gω, gρ , g2, and g3) to be determined. For the models
denoted by 1, the nonlinear σ couplings, g2 and g3, are set
to be zero, otherwise the couplings are fitted to three nu-
clear saturation properties. We use the symmetry energy of
Esym = 32.5 MeV and the binding energy per nucleon B/A =
−15.7 MeV at the saturation density ρ0 = 0.15 fm−3. For the
models 2, we need to fix two more saturation properties in
order for g2 and g3 to be determined: the incompressibility
K = 260 MeV and the effective nucleon mass ratio M∗

N/MN =
0.58. It has been shown that, for models without isoscalar

tensor coupling, a value of M∗
N/MN in between 0.58 to 0.64

at saturation density is required in order to reproduce the
empirical values of spin-orbit splitting in nuclei [31]. Here
we take M∗

N/MN = 0.58 with which the models 2 yield better
agreement with the experimental data in the single-particle
levels. The mass of the scalar meson, mσ , is also a parameter,
typically in the range of 400–550 MeV [32], and has been
adjusted to find the rms charge radius of 40Ca (3.48 fm).
Consequently the QMC2 and CQMC2 have been required to
have scalar masses much larger than the typical values. The
parameter sets we used for each model are listed in Table I.
The QHD1 corresponds to the model in Ref. [3] although the
couplings in Table I differ from those in Ref. [3] because of
the up-to-date saturation properties.

III. NUMERICAL RESULTS

A. Finite nuclei

Figure 2 shows the nuclear and charge densities of 40Ca
compared with the empirical distributions. The model differ-
ence beyond r > 3 fm is compensated by the choice of scalar
mass. For the interior region, it remains significant, being the

TABLE I. Coupling constants and saturation properties.

QHD1 QMC1 CQMC1 QHD2 QMC2 CQMC2

gσ 10.326 6.859 7.459 10.331 14.413 11.835
gω 13.708 8.245 9.450 13.065 13.065 13.065
gρ 7.348 8.752 8.578 7.635 7.635 7.635
g2 0 0 0 10.400 −46.912 −12.251
g3 0 0 0 −30.866 19.151 −20.042
aN 0 0.179 0.118 0 0.179 0.118
bN 1 1 1.04 1 1 1.04
mσ (MeV) 515.91 455.67 482.56 509.75 734.40 619.52
K (MeV) 545 280 302 260 260 260
M∗

N/MN 0.54 0.80 0.76 0.58 0.58 0.58
L 107.97 88.68 90.67 105.83 105.83 105.83
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FIG. 2. Nuclear and charge densities for 40Ca compared with the empirical data [33,34].

largest in the central region. The CQMC models well describe
the empirical charge density in the central region while the
QMC2 has a large depression of the central densities. The
other nuclei have similar tendencies in model difference.

Table II displays the calculated values of the binding en-
ergy (E/A) and charge radius (rc) for the stable nuclei of
concern. There is found no significant difference between the
models for the charge radius. The models 2 provide reasonable
binding energies compared to the empirical data. The QMC1
and CQMC1 models lead to (less accurate but still) fair de-
scriptions of the bulk properties of nuclei. The exceptional
failure of QHD1, particularly in the binding energies exhibited
in Table II, could be interpreted as being caused by the phys-
ically preposterous values of the saturation properties, e.g.,
K > 500 MeV as shown in Table I. If the nuclear saturation
properties that a model reproduces are far from the empirical,
it is hard for the model to describe the finite nuclei properly.

The models 2 have the vector couplings identical to each
other and hold in common the empirical values of saturation
properties. The difference of the models 2 is on the basis of
their scalar potential, which is related to the surface properties
of the nuclei. The model difference in the bulk properties of
nuclei tends to be reduced for the heavier nuclei. If one wants
to figure out how reliable or applicable the models are to
finite nuclei, one needs to study the single-particle spectra.

The single-particle energy levels for 40Ca are presented in
Fig. 3. The QMC1 and CQMC1 provide insufficient binding
energy to reproduce the single-particle levels of the nuclei,
as can be seen in Table II and Fig. 3. For the QHD2 and
CQMC2 models, the states 2s1/2 and 1d3/2 are arranged in
the correct order of experimental data. This ordering is sensi-
tively dependent on the value of the effective nucleon mass
at saturation density. The QMC2 model has no chance to
make the order of the states correct for any possibility of
0.58 � M∗

N/MN � 0.64. The calculation of (e, e′ p) scattering
cross section is influenced by model difference in the single-
particle state energy. In Sec. III C, we are going to discuss it
in comparison with the experimental data for spherical nuclei.

The static properties of finite nuclei evaluated in each
model are more sensitive to the nuclear saturation proper-
ties than microscopic details of the models since they are
parametrized. When it comes to the chiral symmetry as an
example, none of nuclear bulk properties directly manifests
such a fundamental property of QCD. The nuclear saturation
properties in each model are determined or input by hand
regardless of whether the quark-level Lagrangian is chirally
symmetric or not. Therefore, QHD2, having the nonlinear
scalar self-interaction, despite the pointlike nucleons in it,
was able to show a remarkable improvement compared with
QHD1 for finite nuclei.

TABLE II. Ground-state properties for spherical nuclei: Binding energy per nucleon, E/A, in MeV and charge radius, rc, in fm. The
experimental data are taken from Refs. [36,37].

16O 40Ca 48Ca 90Zr 208Pb

E/A rc E/A rc E/A rc E/A rc E/A rc

QHD1 −5.44 2.76 −6.36 3.48 −6.74 3.47 −6.96 4.26 −6.53 5.45
QMC1 −7.15 2.76 −7.73 3.48 −7.59 3.53 −7.77 4.30 −7.08 5.56
CQMC1 −7.04 2.76 −7.63 3.48 −7.54 3.52 −7.72 4.30 −7.04 5.54
QHD2 −7.61 2.74 −8.05 3.48 −8.25 3.47 −8.24 4.27 −7.52 5.51
QMC2 −8.58 2.73 −8.67 3.48 −8.81 3.52 −8.65 4.29 −7.77 5.54
CQMC2 −8.04 2.74 −8.37 3.48 −8.47 3.50 −8.43 4.28 −7.67 5.53
Expt. −7.98 2.73 −8.45 3.48 −8.57 3.47 −8.66 4.27 −7.86 5.50
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FIG. 3. Single particle energy spectra of 40Ca. The experimental
data are taken from Ref. [35].

B. Nuclear matter

Contrary to the case of finite nuclei, the CQMC perspec-
tives have turned out to influence the nuclear matter properties
[22,24,25]. In Fig. 4(a), we present the equation of state (EoS)

for infinite nuclear matter by using the same models as in the
previous section. The CQMC model makes the EoS stiff in
comparison with the QMC model so that it raises the mass of
a neutron star as shown in Fig. 4(b).

The characteristic of each model becomes pronounced at
higher densities rather than near-saturation densities. The evo-
lution of nuclear properties with respect to density depends
on the models even though the model parameters are fitted to
the same saturation properties. In the context of the effective
nucleon mass, as shown in Fig. 1, the models 1 reveal a large
discrepancy already at low density regions and it becomes
larger at higher densities. The models 2 have almost iden-
tical behavior at near-saturation densities. But unfortunately
the QMC2 and CQMC2 are not suitable for the supradense
systems because the equation of motion for the scalar meson
has no solution at high density regions. From the Lagrangian
the scalar field equation is written as

m2
σ σ + g2σ

2 + g3σ
3 = CN (σ ) gσ ρs, (8)

where ρs indicates the scalar density and CN (σ ) = bN [1 −
aN (gσ σ )]. With the function f (σ ) defined as

f (σ ) ≡ gσ

m2
σ

(CN (σ ) gσ ρs − g2σ
2 − g3σ

3) − gσ σ, (9)

it is demonstrated in Fig. 5 that the solution of f (σ ) = 0 can-
not be found at about ρ = 0.19 fm−3 for QMC2 and at about
ρ = 0.24 fm−3 for the CQMC2 model, respectively. This does
not happen for the models 1 because f (σ ) with g2 = g3 = 0
is monotonic. The conventional nonlinear scalar fields used
here for the models 2 makes the field equation asymptotically
unphysical and the solution of f (σ ) = 0 double valued [38].
The extended parametrizations of the nonlinearity can help the
scalar field behave monotonically [38,39] and may improve
the (C)QMC2 models, giving a solution at high densities.

C. Electron scattering off nuclei

This section is devoted to discussing the one-proton knock-
out (e, e′ p) reactions, for which the quasielastic cross section
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014322-5



SOONCHUL CHOI et al. PHYSICAL REVIEW C 104, 014322 (2021)

-4

-2

0

2

4

6

8

10

0 200 400 600 800 1000 1200

QMC2

f(
)

g (MeV)

= 0.01 fm-3

= 0.10 fm-3

= 0.20 fm-3

= 0.30 fm-3

= 0.40 fm-3

-4

-2

0

2

4

6

8

10

0 200 400 600 800 1000 1200

CQMC2

f(
)

g (MeV)

= 0.01 fm-3

= 0.10 fm-3

= 0.20 fm-3

= 0.30 fm-3

= 0.40 fm-3
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is a useful tool for studying the single-particle properties of
the target nucleus. Using the kinematic variables depicted in
Fig. 6, the cross section can be decomposed into five response
functions:

d3σ

dE f d� f d�p

= p Ep

(2π )3
σM[vLRL + vTRT + cos 2φp vTTRTT

+ cos φp vLTRLT + h sin φp vLT′RLT′], (10)

where the Mott cross section is given by

σM = α2

4E2
i

cos2(θe/2)

sin4(θe/2)
. (11)

In the right-hand side of Eq. (10), RL/T are referred to as
the longitudinal/transverse response functions, and RLT/TT
describe longitudinal-transverse/transverse-transverse inter-
ferences, respectively. The fifth one, RLT′ , indicates the

FIG. 6. Kinematics for the one-proton knockout (e, e′ p) reaction:
energy and momentum of incident electron (Ei, ki), scattered elec-
tron (Ef , k f ), virtual photon (ω, q) and knocked out proton (Ep, p).
The azimuthal angle φp is defined as the angle between the reaction
plane and the scattering plane.

polarized longitudinal-transverse interference, which is di-
rectly proportional to the electron beam asymmetry. These
functions, which contain essential information on the nucle-
ons inside the nucleus, can be obtained from the components
of the nuclear tensor Wμν :

RL = W00, RT = W11 + W22,

RTT = 1

cos 2φp

(W11 − W22),

RLT = 1

cos φp

(W01 − W10),

RLT′ = −i

sin φp

(W02 + W20). (12)

For an explicit calculation of Wμν , we exploit the nuclear mod-
els employed in the previous sections (in particular QHD1,
QHD2, QMC1, and CQMC1), keeping in mind that those
models have a slight difference between their single-particle
state energies, as shown in Fig. 3. The electron kinematic
factors in Eq. (10) are given in terms of the four-momentum
transfer, q = (ω, q), and the electron scattering angle θe:

vL = q4

q4
, vT = tan2 θe

2
− q2

2q2
,

vTT = − q2

2q2
,

(13)

vLT = − q2

q2

(
tan2 θe

2
− q2

2q2

)
,

vLT′ = − q2

q2
tan2 θe

2
.

For more technical details, such as the treatment of the
Coulomb distortion of electrons, we follow Refs. [40–44].

As is commonly done in the analysis of the quasielastic
(e, e′ p) reaction, the data are displayed with the reduced cross
section, ρm, which is defined as the measured cross section
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divided by the kinematic factors:

ρm(pm) = 1

p Ep σep

d3σ

dE f d� f d�p

, (14)

where the missing momentum is defined by pm = p − q. The
reduced cross section in the plane-wave approximation pro-
vides information about the nucleon spectral function: the
probability of ejecting a nucleon from the target nucleus with
momentum and binding energy. The momentum distribution
of the spectral function is essentially the squared Fourier
transform of the overlap wave function between the ground
state of the target nucleus and the final state of the residual
nucleus. The overlap wave function is closely related to the
bound state wave function of the ejected nucleon. In order to
calculate Eq. (14), it is required to select a model for the off-
shell electron-proton cross section, σep, since it is not uniquely
defined. We take the so-called CC1 prescription for σep [45],
which is widely used to calculate the cross sections. To take
the final state interaction into account, the wave functions of
the knocked-out proton are derived using a relativistic optical
potential fitted to proton-nucleus elastic scattering [46].

To compare the calculated cross sections with experimental
data, two different kinematics are considered. On one hand,
parallel kinematics is defined by θp = 0, and thus pm is par-
allel to q. The parallel kinematics is used to observe protons
ejected along the momentum transfer q. This can be realized
by selecting both the incoming and the outgoing electron en-
ergies and then determining the momentum transfer direction
for each scattering angle. On the other hand, perpendicular
kinematics (the so-called ω − q constant kinematics) is the
kinematics in which |p| is fixed to be equal to |q| while
varying θp within a small range by fixing the electron kine-
matics and then measuring the knocked-out proton angular
distribution. In such cases pm is nearly perpendicular to q. In
the parallel kinematics, the three interference terms in Eq. (10)
disappear by integrating over the azimuthal angle φp, while, in
the perpendicular kinematics, all the terms remain except the
fifth term which sums to zero for unpolarized incident electron
beam.

Extraction of the spectral function as well as the response
functions using the kinematics in the (e, e′ p) reaction is very
useful for quantitatively understanding the recent the muon-
neutrino (νμ) scattering off 12C at the MiniBooNE [47],
although the axial part absent from the (e, e′ p) reaction is re-
ported to dominate the charged current quasielastic scattering
by the kaon decay at rest (KDAR) νμ [48].

In Fig. 7, the reduced cross sections of 40Ca(e, e′ p) are
plotted as a function of the missing momentum. In parallel
kinematics, all the models reproduce in fairly good agreement
the experimental data [49], using the spectroscopic factors of
0.75 for the 2s1/2 shell and of 0.8 for the 1d3/2 shell [50–52].
None of the nuclear structure models tried makes remark-
able improvement to the cross section. Indeed, the curves for
QHD2, QMC1, and CQMC1 in parallel kinematics are so
close that they are hardly distinguished. Their difference from
QHD1 is also insignificant (at most less than 15 %).

Around the peaks, the result of the QHD1 is the largest of
other calculations at both 2s1/2 and 1d3/2 orbits in the parallel

kinematics. In the perpendicular kinematics, the result of the
QMC1 is the largest at the 2s1/2 state but that of QHD1 is
the biggest at the 1d3/2 state around the peaks. In particular,
the results at the 1d3/2 orbit show the similar behavior in both
kinematics, but those of the 2s1/2 orbit demonstrate different
behavior. The differences between curves are at most about
15 %. From these results, one may realize that the magnitudes
of the reduced cross sections for different orbits are dependent
on the nuclear models although the shapes are the same. The
differences between the curves are similar to those of both
kinematics except the case of the 2s1/2 orbit in the perpendic-
ular kinematics.

In perpendicular kinematics, the model dependence of the
reduced cross section is akin to that in parallel kinematics in
the sense that there is rarely a meaningful distinction between
the models. Although there remains room for discussion as to
some details (for instance what makes, only in the lower-left
panel of Fig. 7, the agreement of QMC1 with the experimental
data less favorable), more in-depth investigation for detailed
analysis is left for future work. Here we would like to stress
that the reduced cross sections shown in Fig. 7 do not directly
manifest the effect of models for the nucleon structure. This
went against our naive expectations that the model difference
in single-particle state energies in Fig. 3 may affect the kine-
matics of the knocked-out proton from a given state. Actually
we did the same calculations for other spherical nuclei, e.g.,
16O and 208Pb, but omitted to present the results for them
because there is nothing different to be interpreted.

IV. SUMMARY AND CONCLUSION

In this work we have revisited the ground-state properties
of spherical nuclei to explore the difference of the various
QHD-type models: QHD, QMC, and CQMC. In particular,
we focused on the CQMC model, which has not been ap-
plied to finite nuclei before. The models are divided into
two types, denoted by 1 and 2, according to the absence
and presence of the nonlinear scalar self-interactions. The
coupling parameters are determined in order to reproduce
the nuclear saturation properties. The nonlinear scalar self-
interactions play an important role in such a way that they
provide enough number of parameters to fix nuclear saturation
properties to their empirical values. For the models 1 without
the nonlinear self-interactions, the incompressibility and the
effective nucleon mass at saturation are determined far from
the empirical values. The models 2 are useful to verify the
model difference because they have the empirical saturation
value of the effective mass and also the same vector couplings.

Table II shows that the QMC2 and CQMC2 models, which
can reproduce the empirical saturation properties, lead to
reasonably fair results for the binding energies and charge
radii of spherical nuclei. The QMC1 and CQMC1 have too
small scalar field to reproduce the empirical binding ener-
gies and single-particle spectra. The CQMC2 is relatively
advantageous for describing the ordering of the single-particle
levels, 2s1/2 and 1d3/2, and the charge density in the inte-
rior region, in comparison with QMC2 model. We do not
mention any interpretation in direct connection to modeling
in the quark-level Lagrangian since the QMC and CQMC
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FIG. 7. Reduced cross section for the knocked-out proton from 2s1/2 (left panels) and 1d3/2 (right panels) of 40Ca in parallel (upper
panels) and perpendicular (lower panels) kinematics. The experimental data are taken from NIKHEF [49] at kinematic setting Ei = 375 MeV,
ω = 100 MeV, and θe = 83◦.

models used here are all parametrized; the information of
subnucleonic structure described in each model is encoded
into the effective nucleon mass. However, the difference
between the predictions of QMC2 and CQMC2 is surely
attributable to the rigorous description of the fundamentals
of QCD.

The models have been examined for nuclear properties at
higher densities where the repulsive core of NN interaction
becomes more significant. The QMC1 and CQMC1, which
have weakly repulsive core, make the maximum mass of neu-
tron star small. The contribution of nonlinear terms in QHD2
does not dramatically change the EoS compared to the QHD1,
as seen in Fig. 4. The QMC2 and CQMC2 are restricted in ap-
plicability because their meson field equations no longer have
solutions above ρ/ρ0 ≈ 1.4. The models have been examined
for nuclear properties at higher densities where the repulsive
core of NN interaction becomes more significant. The QMC1
and CQMC1, which have weakly repulsive core, make the
maximum mass of a neutron star small. The contribution of
nonlinear terms in QHD2 does not dramatically change the
EoS compared to the QHD1, as seen in Fig. 4. The QMC2 and

CQMC2 are restricted in applicability because their meson
field equations no longer have solutions above ρ/ρ0 ≈ 1.4.

We also have done the calculation of quasielastic
40Ca(e, e′ p) cross section using the theoretical framework
based on the distorted-wave impulse approximation (DWIA),
where the final-state interaction and the Coulomb distortion of
electrons have been included. As several nuclear models are
used to extract the bound-state wave functions, it can be tested
if and how the model difference in the single-particle state en-
ergies could contribute to the spectral function of knocked-out
proton. In Fig. 7, it is not easy to discern a difference between
the effects of the models which incorporate the influence of
the nucleon structure, e.g., QHD2, QMC1, and CQMC1.
Calculations can be further developed by considering
correlation effects, such as pairings. Explicit treatment of the
residual interaction in the Hartree-Fock-Bogoliubov (HFB)
approximation for each model could support more consistent
spectroscopic factors for the possible smearing of the energy
levels around the Fermi surface. Besides, kinematically taking
into account meson exchange contributions, which involve
transverse excitations, could also be helpful to improve the
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agreement with the experiment. They are interesting and
important contributions, but are beyond the scope of the
present work.
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