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Structure of rotational bands in 109Rh
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Rotational bands in 109Rh are investigated in a simple model and in the interacting boson-fermion model. We
have developed a solvable extended transitional Hamiltonian by adding a two-configuration mixing term. Results
suggest that 109Rh is a good candidate for triaxiality and shape coexistence. Mixing between 3/2+ states with
K = 1/2 and 3/2 is found to be weak, as evidenced by the E2 strengths.

DOI: 10.1103/PhysRevC.104.014321

I. INTRODUCTION

Arima and Iachello proposed the original version of the
interacting boson model (IBM) for even-even nuclei [1–4].
The extension of this model to the interacting boson-fermion
model (IBFM) has been quite successful in odd mass nuclei
[5–11]. In the neutron-rich region (40 � Z � 50 and N �
50), odd-A Rh nuclei such as 109Rh (with Z = 45, N = 64)
are of current interest because of the different deformation
types they exhibit. Different shapes (e.g., prolate, oblate,
and gamma-soft or triaxial) can coexist in the same nucleus
[12–14]. Shape coexistence likely appears in a majority of
nuclei. Examples of this coexistence phenomenon involving
vibrational and rotational bands are seen from (πg9/2, π p1/2,
π p3/2, π f5/2) and (πg7/2/d5/2) subshells, respectively, in the
region of the Z = 50 shell closure [15–17]. The A ≈ 100
region is renowned for the presence of normal and intruder
states with different types of deformation. In this region (Z �
44), the intruder states may originate from the top of the
πg9/2 subshell with oblate deformation. To the contrary, the
intruder states may originate below or near the bottom of
the νh11/2 subshell with prolate deformation. In the nuclear
potential system, prolate deformation decreases to become
γ -soft or triaxial when the number of protons increases, away
from the midshell. Moreover, when more neutrons are added,
with strong softness and deformation, oblate deformation in-
creases, and ground states become triaxial as we reach N = 60
and beyond [18,19]. In Rh isotopes, we have the same phe-
nomenon. It has been shown that there is clear evidence for
shape coexistence based on the rotational band structure (in-
truder states) [20]. The interpretation of shape coexistence and
shape transitions [21] for Rh isotopes, indicating the softness
in the γ direction, is supported by the O(6) limit of the IBM
and triaxial shape for the ground state [22].

The presence of K = 1/2 intruder states in our model is
well known. Some band mixing is inevitable, particularly
to understand the B(E2) values. Previous studies have used

extensive spectroscopic information to analyze these intruder
states built on the single 1/2+ [431], 3/2+ [422], and other
Nilsson orbitals, which are very close to the Fermi level for
Z = 45 nuclei [16,23,24]. Therefore, these kinds of states are
good candidates to investigate rotational bands in odd-mass
nuclei. Such a concept has been simply extended to the Rh
(Z = 45) isotopes. Similar studies for other odd-mass nuclei
were reported in the A ≈ 100 region [25–27]. For the odd-A
Rh nuclei in this region, several rotational bands are built on
the single-particle levels with the odd proton occupying the
πg9/2, π p1/2, and π (g7/2/d5/2) subshells [22,27]. In addition
to the references cited herein for the Ru-Rh region, several
workers investigated collective features in somewhat lighter
nuclei. These include Ge and Se [28], Zr [29,30], and Mo
[31,32]. Wood, et al. [33] discussed shape coexistence in
even-even nuclei from 16O to 238U. An excellent review [34]
on various aspects of coexistence did not mention 109Rh.

Recently, prominent solvable models were suggested for
the IBM in even-even nuclei [35–41]. The aim of the present
study is to extend and complete those kinds of solutions,
proposing a solvable model for identifying band mixing. We
have employed a two-configuration mixing plus pairing model
[42,43] to calculate the collective bands’ energy spectra and
band mixing. We have also considered the E2 strengths in a
simpler model [44–46]. Details of the pairing model can be
found in Refs. [41,42,47,48]. The main reason to include the
configuration mixing Hamiltonian is we may not interpret the
coexistence and intruder pattern without a two-configuration
mixing term in the proposed model. These are especially
useful when we have collective bands. The availability of
experimental data has enabled us to study the quantum phase
transition and E2 transition rates within the intruder band and
band mixing for shape coexistence in odd mass nuclei with
vibrational- and rotational-like bands.

In the following, we present the available data, together
with a simple analysis of the E2 strengths. This is followed by
model calculations within the IBFM framework.
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FIG. 1. Lowest members of first three rotational bands in
109Rh. The numbers by the arrows are M(E2), computed from
published E2 strengths [22] using the relationship M2(i → f ) =
(2Ji + 1)B(E2; i → f ).

II. DATA AND SIMPLE ANALYSIS

The low-lying positive-parity states of 109Rh divide them-
selves naturally into three bands: a Kπ = 7/2+ ground band,
a nearly degenerate, strongly decoupled 1/2+ band, and a
3/2+ side band. The latter is similar to the so-called gamma
band in even-even nuclei. The 7/2+ and 1/2+ bands are
supposedly built on the 7/2+ [413] and 1/2+ [431] proton
Nilsson orbitals, respectively. The 1/2+ band is frequently
referred to as an intruder band. These band placements are
illustrated in Fig. 1. The numbers by the arrows are M(E2),
computed from published E2 strengths [22] using the relation-
ship M2(i → f ) = (2Ji + 1)B(E2; i → f ).

It can be noted that the E2 strength from the first 3/2+ state
to the 7/2+ ground state (g.s.) is extremely small: B(E2) =
0.0174(5) W.u. Bucher et al. [22] suggested that this strong
inhibition was caused by vastly different deformations for the
two states. This is unlikely to be the case. The likely explana-
tion is the fact that E2 transitions with �K > 2 are forbidden.
The lower 3/2+ state probably obtains its g.s. strength by
mixing with the Kπ = 3/2+ band head. We define basis states
|JK〉 = |3/2 1/2〉 and |3/2 3/2〉. Then we write

|3/2(226 keV)〉 = a|3/2 1/2〉 + b|3/2 3/2〉,
|3/2(359 keV)〉 = −b|3/2 1/2〉 + a|3/2 3/2〉. (1)

Then b/a = M(226 → g.s.)/M(359 → g.s.) = 0.264(4)/
10.24(10) = 0.0258(1), i.e., very little mixing. With this mix-
ing, the potential matrix element causing the mixing is then
about 3.43 keV. If the two 5/2 states mix with the same V,
then their mixing amplitude is 0.0674, meaning the M from
5/2(478) to 9/2 would be very weak.

In 107Rh, the E2 strength for the first 3/2+ to 7/2+ g.s.
is much less inhibited: B(E2) = 0.16(2) W.u., compared to
0.0174 W.u. in 109Rh. This difference is easily understood
from the different energy splittings of the lowest two 3/2+
states in the two nuclei.

Within the K = 1/2+ band, the transition
matrix elements scale as M(Ji1/2 → Jf 1/2) =
M(1/2+)(2Ji + 1)1/2(Ji1/2 20|Jf 1/2), where the last
factor is a Clebsch-Gordan coefficient, and M(1/2+)
is the same for all transitions within the band. Thus,
M(7/2 → 3/2)/M(5/2 → 1/2) should be (12/7)1/2 = 1.31.
The experimental ratio is 1.27(5). Similarly, the ratio
M(1/2 → 3/2)/M(1/2 → 5/2) should be (2/3)1/2 = 0.816.
The experimental ratio is 0.71(11). These results, and those
for other transitions, are summarized in Table I.

TABLE I. E2 transition matrix elements [(W.u.)1/2] within the
Kπ = 1/2+ band in 109Rh.

i f M(E2)/M(1/2+) Mcalc Mexp
a

5/2 1/2 1.095 26.0 26.0(9)b

3/2 1/2 0.8944 21.2 18.4(27)
5/2 3/2 0.5855 13.9 unknown
7/2 3/2 1.434 34.9 33.0(6)
7/2 5/2 0.4781 11.4 unknown

aComputed from published E2 strengths [22] using the relationship
M2(i → f ) = (2Ji + 1)B(E2; i → f ).
bNormalizing this transition strength provides M(1/2+) =
23.74(W.u.)1/2.

The lowest negative-parity states also appear to form a
rotational band, having Kπ = 1/2–, presumably based on the
proton Nilsson orbital 1/2– [301]. The known states in this
band, and the known transition matrix element, are depicted in
Fig. 2. A comparison of the 5/2 → 1/2 matrix elements in the
two K = 1/2 bands indicates that the 1/2– band is somewhat
less collective than the 1/2+ band. Expected transition matrix
elements for the 1/2– band are listed in Table II.

Transitions from the K = 3/2 to 7/2 band have
�K = 2, and scale as M(Ji3/2 → Jf 7/2) = M0(2Ji + 1)1/2

(Ji3/2 22|Jf 7/2). Thus, the ratio M(5/2 3/2 → 9/2 7/2)/
M(3/2 3/2 → 7/2 7/2) should be 0.913. The experimental
ratio is 12.5(7)/10.24(10) = 1.22(7). This enhancement of
the 5/2 → 9/2 transition could arise from the mixing of
the 9/2+ states in the 3/2 and 7/2 bands. The 5/2 → 9/2
transition would gain strength from the 9/2 → 5/2 in-band
transition. The 9/2 member of the 3/2 band is currently
unknown. A state at 1097 keV has a strong L = 4 angular dis-
tribution in the 110Pd(d, 3He) reaction, with C2S = 1.8 [20].
By comparison, the first 9/2+ state has C2S = 3.4, whereas
the 7/2+ g.s. is understandably weak, with C2S = 0.19. The
9/2+ assignment is confirmed from the analyzing power in
the 110Pd(t, α) reaction with polarized tritons [49]. The only
known decays of the 1097-keV state are to states with Jπ =
7/2+, 9/2+, and 11/2+, presumably via M1. A measurement

623, 5/2-

568, 3/2-
19.0(7)

374, 1/2-

K = 1/2-

FIG. 2. As in Fig. 1, but for a negative-parity band.
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TABLE II. E2 transition matrix elements [(W.u.)1/2] within the
Kπ = 1/2– band in 109Rh.

i F M(E2)/M(1/2–) Mcalc Mexp

5/2 1/2 1.095 19.0 19.0(7)a

3/2 1/2 0.8944 15.5
5/2 3/2 0.5855 10.2
7/2 3/2 1.434 24.9
7/2 5/2 0.4781 8.30

aNormalizing this transition strength provides M(1/2–) =
17.35(W.u.)1/2.

of the E2 strength from this state to the 5/2+ member of the
K = 3/2 band would be valuable. Hagen et al. [50] report
strong mixing between the 11/2+ member of the g.s. band
and a supposed (11/2+) band head at 642 keV.

III. THEORETICAL FRAMEWORK

A. Theory of IBFM

The theory of building blocks for IBM is based on the
s and d boson numbers with angular momentum of L = 0
and 2 [1–4]. In a first attempt at describing the energy spec-
tra built on the intruder state, we have chosen a transitional
Hamiltonian by adding a two-configuration mixing term. It
has been shown that U(5) and O(6) configurations are the
basic ingredients to reproduce the normal and intruder states,
respectively [51]. The group chain associated with the normal
U(5) limit is

U (6)
[N]

⊃ U (5)
{nd }

⊃ O(5)
ν

⊃ O(3)
L

. (2)

The relevant chain associated with the intruder O(6) limit
is

U (6)
[N+2]

⊃ O(6)
〈σ 〉

⊃ O(5)
τ

⊃ O(3)
L

. (3)

We introduce the generators of quasispin operators
[35,37,41,52] with

Ŝ+
s = (Ŝ−

s )† = 1

2
s†2

, Ŝ0
s = 1

4
(s†s + s†s), (4)

Ŝ+
d = (Ŝ−

d )† = 1

2
d†d†, Ŝ0

d = 1

4

∑
μ

(d†
μdμ + dμd†

μ), (5)

in which s†(s) and d†(d ) are the creation (annihilation) opera-
tors of s and d bosons, respectively. The two pairing operators
{Ŝ±

ρ , Ŝ0
ρ} (ρ = s, d ) satisfy the following commutation rela-

tions: [
Ŝ0

ρ ′ , Ŝ±
ρ

] = ±δρ ′ρ Ŝ±,
[
Ŝ+

ρ ′ , Ŝ−
ρ

] = −2δρ ′ρ Ŝ0. (6)

For a theoretical framework, a simple IBFM Hamiltonian
with the two-configuration mixing term is employed that is
based on the even-even boson core coupled with a single
fermion in the j = 7/2 orbit. The Hamiltonian of the IBFM
can be written as

Ĥ = ĤB + ĤF + V̂BF + Ĥmix, (7)

where ĤB, ĤF , and V̂BF are the operators for boson, fermion,
and interaction between them respectively and Ĥmix is the two-
configuration mixing term.

The operators in Eq. (7) can be defined as

Ĥ = c

(
(1 − x)n̂d + x

N
Ŝ+Ŝ− + y

2x

N
Q̂B · q̂F + Ĥmix

)
, (8)

where x is the control parameter for the transition of U (5) ⊗
U (2 j + 1) − O(6) ⊗ U (2 j + 1). We must mention that x = 0
and 1 denote the U (5) ⊗ U (2 j + 1) and O(6) ⊗ U (2 j + 1)
limits, respectively. The generators of the Lie algebra for the
quasispin group with Ŝ+ and Ŝ− and quadrupole and fermion
operators with Q̂B, q̂F , and Ĥmix can be defined as

Ŝ+ = Ŝ+
d − Ŝ+

s , Ŝ− = Ŝ−
d − Ŝ−

s ,

Q̂B = (s† × d̃ + d† × s̃)(2),

q̂F = (a†
j × ã j )

(2),

Ĥmix = gsŜ
+
s + gd Ŝ+

d + gsŜ
−
s + gd Ŝ−

d . (9)

In a normal basis, any quantum state can be represented as
a linear combination of U(5) � O(5) � O(3), with a certain
angular momentum for the IBFM framework,

|Jξ 〉 =
∑

nd ναL

CL,ξ
nd ,ν |NndναL; nl j; JM〉, (10)

where NndναL; nl j; J , and M are the total boson number,
d boson number, seniority number, an additional quantum
number to distinguish different states with the same L, an-
gular momentum, fermion number, orbital quantum number,
fermion angular momentum, the total angular momentum
quantum number, and third components of the total angular
momentum, respectively. Also, the coefficient CL,ξ

nd ,ν is the
corresponding amplitude of the eigenvector obtained by di-
agonalizing the Hamiltonian. The configuration mixing Ĥ
under projection operator (P̂) in the U(5) limit of the IBM is
then written as Ĥ = P̂(ĤB + ĤF + V̂BF + Ĥmix)P̂. In addition
to the mixing parameters gs and gd , the mixing calculation
requires another parameter, which we call the offset parameter
(�), to excite two more particles from the closed shell. In our
previous configuration mixing paper, � is taken according to
the energy of the lowest intruder state to reduce the number of
parameters. Here we have the same procedure, and the � term
is fixed at � = 0.8 MeV to promote a proton boson into the
next major shell. It should be noted that the Casimir operator
of O(5) and the O(3) invariant L · L in the U(5) Hamiltonian
are commutative with S±

s and S±
d . P̂, satisfying P̂2 = P̂ and

P̂† = P̂, is the projection operator defined by

P̂ = |N ′ndναL; nl j; JM〉

=
{|N ′ndναL; nl j; JM〉 if N ′ � N,

0 otherwise, (11)

which keeps the Hamiltonian (7) effective only within the
subspace spanned by [N] ⊕ [N + 2] ⊕ [N + 4] ⊕ · · · mixed
configurations, where N is the total boson number of the sys-
tem without configuration mixing, and |N ′ndναL; nl j; JM〉 is
a basis vector with the total number of bosons N ′ = N + 2n
with n = 0, 1, 2, ....
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FIG. 3. Partial energy spectra of 109Rh for positive parity. Experimental data (a) are taken from [22] and references therein. Calculations
(b) and (c) are based on the even-even boson core coupled with a single fermion, where thick lines indicate the intruder states. Parameters are
taken as x = 0.8, gs = −287.16, gd = 88.19, z = −108.47, c = −0.506 in keV.

In the IBFM configuration mixing calculation, one needs
to consider the basis vector. The lower eigenvalue leads to the
following form of the energy matrix:(

U (5)N 〈U (5)N |Hmix|O(6)N+2〉
〈O(6)N+2|Hmix|U (5)N 〉 O(6)N+2

)
, (12)

where U(5) symmetry applies on the basis state with N bosons
only, whereas the O(6) symmetry has to be applied to the
states with N + 2 bosons, the total wave function being
of the type |NndναL; j; J〉 = |ψ〉 = Jξ1 |ψN 〉 + Jξ2 |ψN+2〉. The
calculations are performed in two steps. In the first, the Hamil-
tonian is diagonalized without mixing configuration in the
usual basis (right panel of Figs. 3 and 4). In the second,
Ĥ + Ĥmix is diagonalized with mixing configuration (middle
panel of Figs. 3 and 4). In this step an energy � is also added
to the energies of the states of the configuration. Using the
commutation relation and diagonalizing Ĥ |ψ〉 = E ξ

nd ναL|ψ〉,
we can obtain the eigenvalues. Here we employ the same pro-
cedure as in [52] to get the energy spectra by diagonalization
of the Hamiltonian.

B. E2 transitions

One important piece of information for the intruder states
in connection with band mixing is the transition probabil-
ities [41,42]. E2 transition rates between different excited
states (normal and intruder states) provide detailed informa-
tion about the nuclear structure. As the E2 transitions are very
sensitive to band mixing, the calculated transition probabili-
ties are the best evidence for the mixing, which we will discuss
in the next section. We define the electric quadrupole operator

as [5,53]

T E2
IBFM = eB[s† × d̃ + d† × s̃](2)

μ + eF [a†
j × ã j]

(2), (13)

where eB and eF are the effective charges. The E2 transition
strength is defined as

B(E2; Ji → Jf ) =
∣∣〈Jf

∥∥T̂ (E2)
IBFM

∥∥Ji
〉∣∣2

2Ji + 1
, (14)

for which we have used the selection rules to obtain the E2
transition rates.

C. Band mixing

Some prominent phenomena are observed for the neutron-
rich nuclei around mass A = 100–110. These are the band
mixing [44–46], shape coexistence [54,55], and existence of
the intruder states [15,22,56]. There is a correlation between
these phenomena. Venkova et al. [17] stated that strong band
mixing was expected in 109Rh, but was not observed. This
weak mixing is consistent with the simple analysis in Sec. II
above.

To further understand the structural properties of 109Rh, we
have compared experimental results and IBFM calculations.

IV. NUMERICAL RESULTS

The diagonalization of the Hamiltonian can easily deter-
mine eigenenergies. Since the IBM works best for low-lying
states, high-lying states are not considered in our IBFM calcu-
lation. The model is restricted with even numbers of protons
and neutrons. In order to fix the number of bosons one takes

FIG. 4. As in Fig. 3, but for negative parity. Parameters are taken as x = 0.8, gs = −250.38, gd = 59.51, z = −74.17, c = −0.45 in keV.
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into account the nearest closed shell with magic numbers.
Here, 40Zr50 is preferred as a closed shell nucleus. In the
present IBM calculation, the number of neutron and proton
pairs would be Nυ = 7 and Nπ = 2. In the proposed structure,
the Z = 40 subshell and N = 50 major shell closures are
taken as the inert core, and the intruder configuration repre-
sents the proton 2p-2h excitation from the g9/2 orbital. The
model is based on the even-even boson core with a quasispin
type IBM Hamiltonian coupled with a single fermion. The
coupling parameters of the boson-fermion interaction term
are extracted separately for positive and negative parity states.
The fixed values x = 0.8 and y = 1 for positive and negative
parity states are adopted. Figure 1 compares experimental
and calculated results. The coupling parameters gs and gd for
s and d bosons were all taken to be real with gs > 0 and
gd > 0, for example, shown in [57,58], while the configura-
tion mixing Hamiltonian adopted in (7) is equivalent to (8)
with gs = −gd in our calculations. In the diagonalization, the
mixing Hamiltonian is applied to obtain a low-lying spectrum,
and the term ĤL = zJ (J + 1) is added to (7) to lift the de-
generacy of the levels with the same seniority to form the
angular momentum sequences with different angular momen-
tum quantum numbers. It is known that in the Hamiltonian, if
gs = gd = 0, the system is for the normal IBFM without con-
figuration mixing. With nonzero gs and gd values, the mixing
occurs. We can see that the band structure is basically well
reproduced.

Considering the normal and different members of the
lowest K = 1/2+ band, it becomes interesting to search for
possible vibrational and rotational bands, respectively, and to
compare with theoretical IBFM predictions. Energy spectra
for the IBFM calculations are shown in Figs. 3 and 4 for states
that are candidates for members of the normal and intruder
bands. We can see that 109Rh is an excellent candidate for
triaxiality and shape coexistence because we have x = 0.8,
close to the γ -soft limit. In the last section, we have found
that, in 109Rh, the mixing between the two configurations with
K = 1/2 and 3/2 is weak for the low-spin 3/2 states, resulting
in small discrepancies with the experimental data. To shed
some light into the origin of the mixing, the sensitivity of the
energy spectra to the values of these mixing strength (gs and
gd ), can be noted in Figs. 3 and 4.

We find there are not significant differences between the
results in the presence and absence of configuration mixing
terms. This implies that the effect of configuration mixing is
negligible in 109Rh. We believe that the configuration mixing
scheme is important to find new insights into triaxiality and
shape coexistence phenomena. In the present case, configura-
tion mixing has a prominent role in clarifying the rotational
contribution in odd mass nuclei. It should be noted that with
this approach it is important to get the intruder states. The con-
figuration mixing scheme is applied to describe both normal
and intruder states and keeps the lower part of the γ -unstable
spectrum unchanged.

It is clear that multiple orbitals are important for the low-
lying states. The predicted energies for the 3/2+, 1/2+, 7/2+,
and 5/2+ intruder levels are 220.28, 232.71, 402.6, and 393.7
keV, to be compared with experimental values of 225.9, 257.7,
409.7, and 478.3 keV, respectively.

TABLE III. IBFM calculations and experimental values of E2
transition rates (W.u) in 109Rh. The model effective charge parame-
ters are eB = 8.85 and eF = 29.80. Experimental data are taken from
[60].

i f E2 (calc) E2 (exp)

(3/2)1 (7/2)1 0.45 0.0174(5)
(1/2)1 (3/2)1 169.67 170(50)
(3/2)2 (7/2)1 16.59 26.2(5)
(7/2)2 (3/2)1 65.64 136(5)
(5/2)1 (9/2)1 65.57 >23
(5/2)2 (1/2)1 74.07 113(8)
(5/2)1 (9/2)1 23.6 26(3)
5/2(672) (5/2)1 66.17 >150
5/2(672) (9/2)1 23.6 >5.9

The positive-parity states calculated based on the config-
uration mixing scheme in this work extend above 1 MeV
and are consistent with those already noted from previous
work [59]. The experimental level scheme of 109Rh has been
deduced from [22] and references therein. For both the normal
and K = 1/2+ [431] bands, experiment and IBFM calcula-
tions are in reasonable agreement.

Results of the calculations for E2 transition are listed in
Table III and compared with experimental values.

Based on the signatures for shape coexistence reported in
[22,51], the intruder states must form a rotational-like band.
Comparing the K = 1/2 bands to the calculated level shows
an agreement of the IBFM calculations with experimental
values. Under the expectation for intruder states, strong E2
intraband transitions should be seen. These transitions are
verified by IBFM calculations, connecting the K = 1/2+ band
members in 109Rh. The agreement is quite reasonable for
both the normal and intruder states. The calculations with the
present model give a reasonable fit to both excitation energies
and E2 transition rates.

In addition to energy spectra and E2 transition strengths,
M1 rates are also important observables to compare with
results of model calculations. To obtain B(M1) values, the
standard operators have been used:

T (M1)
μ = T (M1)

B,μ + T (M1)
F,μ , (15)

T (M1)
B,μ = α[d† × d̃](1)

μ , (16)

T (M1)
F,μ = β[a

†

j × ã j′ ]
(1)
μ . (17)

Based on the Wigner-Ekart theorem, one can calculate the
B(M1) values by (15). We have taken α = 0.52 and β = 0.63.
A comparison is presented in Table IV. Experimental values
are from [22,58]. Overall agreement is reasonable, although
many M1 strengths remain to be measured.

V. CONCLUSION

The triaxiality of the 109Rh nucleus was studied through
IBFM calculations. The experimental energy spectra and
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TABLE IV. Calculated and experimental B(M1) values in 109Rh. Experimental data are taken from [60].

Ei (keV) Ji
π Ef (keV) Jf

π B(M1)calc(W.u.) B(M1)exp(W.u.)

206.250 (20) 9/2+ 0.0 7/2+ 0.0102 0.20(3)
358.584 (16) 3/2+ 257.66 (3) 3/2+ 0.00013 0.00032 (10)
358.584 (16) 3/2+ 225.873 (19) 3/2+ 0.00110 0.00118 (11)
409.74 (3) 7/2+ 206.250 (20) 9/2+ 4.8 × 10–6 0.00025 (6)
409.74 (3) 7/2+ 0.0 7/2+ 2.6 × 10–5 6.6 × 10–5(8)
426.759 (19) 5/2+ 358.584 (16) 3/2+ 0.007 0.26(2)
426.759 (19) 5/2+ 225.873 (19) 3/2+ 0.0008 >0.00040
426.759 (19) 5/2+ 0.0 7/2+ 0.0007 >0.0032
478.28 (3) 5/2+ 358.584 (16) 3/2+ 0.0017 0.0025 (4)
478.28 (3) 5/2+ 225.873 (19) 3/2+ 0.0002 0.0024 (3)
478.28 (3) 5/2+ 0.0 7/2+ 1.3 × 10–5 4.1 × 10–5(6)
568.10 (4) 3/2– 373.99 (3) 1/2– 0.0005
623.12 (4) 5/2– 568.10 (4) 3/2– 0.0050 0.054 (8)
671.876 (22) 5/2+ 0.0 7/2+ 0.0079 >0.00019
740.80 (4) 3/2– 623.12 (4) 5/2– 0.0039 >0.0065
740.80 (4) 3/2– 568.10 (4) 3/2– 0.0069 >0.015
740.80 (4) 3/2– 373.99 (3) 1/2– 0.060 >0.0058
855.99 (4) 5/2– 740.80 (4) 3/2– 0.0093 >0.017
855.99 (4) 5/2– 623.12 (4) 5/2– 0.0090 >0.017
855.99 (4) 5/2– 568.10 (4) 3/2– 0.0005 >0.0053
861.00 (8) 9/2+ 409.74 (3) 7/2+ 0.00071
861.00 (8) 9/2+ 0.0 7/2+ 0.00001
926.76 (4) 5/2– 740.80 (4) 3/2– 0.0060 0.0053 (16)
926.76 (4) 5/2– 623.12 (4) 5/2– 0.0073 0.0034 (11)
926.76 (4) 5/2– 568.10 (4) 3/2– 0.0036 0.0016 (6)
1011.60 (4) 3/2+ 426.759 (19) 5/2+ 6.3 × 10–8

1026.46 (3) (5/2, 7/2)+ 671.876 (22) 5/2+ 0.00011 >0.00022
1026.46 (3) (5/2, 7/2)+ 426.759 (19) 5/2+ 0.00008 >0.00013
1026.46 (3) (5/2, 7/2)+ 409.74 (3) 7/2+ 2.4 × 10–5 > 6.9 × 10–5

1026.46 (3) (5/2, 7/2)+ 0.0 7/2+ 0.00044 >0.00011
1096.25 (4) (9/2)+ 0.0 7/2+ 0.00090
1096.25 (4) (9/2)+ 409.74 (3) 7/2+ 0.0013

the two-mixing configuration model calculations are con-
sistent for the low-lying states. In conclusion, the mixing
amplitudes confirm the weak nature of the mixing, in par-
ticular, the purity of the K = 1/2 intruder band. This work
is part of a more systematic study of the A ≈ 100 region for
which high-lying states should provide more information. We
hope that, combined with solvable models, these systematic
investigations will allow an understanding of structure of
rotational bands in these nuclei. Investigations of high-lying
states in neutron-rich isotopes using the same approach are in
progress.
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