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Nuclear matrix elements of neutrinoless double-β decay in the triaxial projected shell model
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The nuclear matrix elements of neutrinoless double-β decay for nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd are
studied within the triaxial projected shell model, which incorporates simultaneously the triaxial deformation and
quasiparticle configuration mixing. The low-lying spectra, the B(E2 : 0+ → 2+) values, and the occupancies
of single-particle orbits are reproduced well. The effects of the quasiparticles configuration mixing, the triaxial
deformation, and the closure approximation on the nuclear matrix elements are studied in detail. For nuclei
76Ge, 82Se, 100Mo, 130Te, and 150Nd, the nuclear matrix elements are respectively reduced by the quasiparticle
configuration mixing by 6%, 7%, 2%, 3%, and 4%, and enhanced by calculating explicitly the transitions through
odd-odd intermediate states by 7%, 4%, 11%, 20%, and 14%. Varying the triaxial deformation γ from 0◦ to 60◦

for the mother and daughter nuclei, the nuclear matrix elements change by 41%, 17%, 68%, 14%, and 511%,
respectively, for 76Ge, 82Se, 100Mo, 130Te, and 150Nd, which indicates the importance of treating the triaxial
deformation consistently in calculating the nuclear matrix elements.
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I. INTRODUCTION

The neutrinoless double-β− (0νββ) decay is a nuclear
weak process in which an even-even nucleus (N, Z ) decays
to its even-even neighbor (N − 2, Z + 2) by emitting only
two electrons. It is a lepton-number-violating process and
provides a sensitive probe to explore the Majorana nature
of the neutrino [1]. The 0νββ decay is also regarded as an
effective tool to determine the hierarchy of the neutrino mass
spectrum [2,3]. Due to its great importance in revealing infor-
mation associated with the fundamental physics, the detection
of 0νββ decay has become the goal of several experimental
projects worldwide [4–11].

In the light-neutrino exchange mechanism, the half-life
T 0ν

1/2 of the 0νββ decay connects directly with the effective
neutrino mass [12],

[
T 0ν

1/2

]−1 = G0νg4
A(0)

∣∣∣∣ 〈mββ〉
me

∣∣∣∣
2

|M0ν |2. (1)

Here, me is the electron mass, 〈mββ〉 is the effective neutrino
mass, gA(0) is the axial-vector coupling constant, and G0ν is
the kinematic phase-space factor [13]. Obviously, the accurate
determination of the nuclear matrix element (NME) M0ν is
crucial for extracting the 〈mββ〉 from the experimental half-
life.

The NME M0ν depends on the decay operator and the
nuclear many-body wave functions. The decay operator is de-
rived from the second-order weak Hamiltonian constructed by
the charged nucleonic and leptonic currents [14]. The effects
from the higher-order terms and the two-body currents on the
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decay operator have been studied extensively [15–18], and the
quality of nonrelativistic reduction of the decay operator is
also examined within a fully relativistic framework [14,19].
The nuclear many-body wave functions are obtained from var-
ious nuclear models, including the configuration interaction
shell model (SM) [20–23], the quasiparticle random-phase
approximation (QRPA) [24–27], the interacting boson model
(IBM) [28,29], the projected Hartree-Fock-Bogoliubov model
(PHFB) [30–32], and the generator coordinate method (GCM)
based on the relativistic [19,33,34] and nonrelativistic [35,36]
density-functional theories (DFTs), etc. These models are
restricted either by the model space or the many-body corre-
lations, which leads to the fact that the predicted NMEs differ
by a factor two to three [3].

The triaxial projected shell model (TPSM) carries out the
configuration mixing based on a Nilsson mean field with the
angular-momentum projection technique [37]. It has been suc-
cessfully applied to study the nuclear rotational excitations,
including the backbending phenomena [38], the superde-
formed rotational bands [39], the signature inversion [40],
the γ bands [41], and the chiral [42–44] and wobbling [45]
rotations.

The simplified version of TPSM, namely the PHFB in axial
deformation case, is performed to study the NMEs of 0νββ

decay [30–32]. With the help of the Pfaffian algorithm [46,47]
to evaluate the matrix elements of many-body operators, the
newly developed TPSM in Refs. [42,44] include triaxial de-
formation and the configuration interaction induced by the
quasiparticle excitations beyond the HFB vacuum, and treat
even-even and the odd-odd nuclear systems simultaneously.
This provides us an opportunity to study the effects of the tri-
axial deformation and quasiparticle configuration mixing, and
the effects beyond the closure approximation on the NMEs.
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In this paper, the TPSM is applied to investigate the NMEs of 0νββ decay for nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd.
The influence of the triaxial deformation, the quasiparticles configuration mixing, and the commonly used closure approximation
will be examined.

II. THEORETICAL FRAMEWORK

A. Decay operator

The charged-current weak Hamiltonian for the 0νββ decay is [48]

Hweak(x) = GF cos θC√
2

jμ(x)J †
μ (x) + H.c., (2)

where GF and θC are the Fermi constant and Cabbibo angle, respectively. The standard leptonic current jμ is

jμ = ē(x)γ μ(1 − γ5)νe(x), (3)

and the hadronic current is expressed in terms of nucleon field ψ as

J †
μ = ψ̄ (x)

[
gV (q2)γμ + igM

(
q2

) σμν

2mp
qν − gA

(
q2

)
γμγ5 − gP(q2)qμγ5

]
τ−ψ (x). (4)

Here, mp is the nucleon mass, qμ is the transferred momentum from hadrons to leptons, the isospin lowing operator τ− ≡
(τ1 − iτ2)/2, and σμν ≡ i/2[γμ, γν]. The momentum-dependent form factors gV (q2), gM (q2), gA(q2), and gP(q2) incorporate
the correction of the finite nucleon size and are reduced to the vector, weak-magnetism, axial-vector, and induced pseudoscalar
coupling constants, respectively, in the zero-momentum-transfer limit. The detailed formulas of the form factors can be found in
Ref. [15].

Assuming that 0νββ decay is mediated by the light Majorana neutrinos, adopting the long-wave approximation for the
outgoing electrons, and neglecting the small energy transferred between nucleons, the NME can be derived with the help of the
S matrix in the framework of second-order perturbative theory [19],

M0ν = 〈	D|Ô0ν |	M〉. (5)

Here, |	M〉 and |	D〉 are respectively the nuclear wave functions of the mother and daughter nuclei, and the decay operator Ô0ν

reads

Ô0ν = 4πR

g2
A(0)

∫∫
d3x1d3x2

∫
d3q

(2π )3

eiq·(x1−x2 )

|q|
∑

m

J †
μ (x1)|m〉〈m|J μ†(x2)

|q| + Em − (EM + ED)/2
. (6)

To make the NME dimensionless, R = 1.2 × A1/3 fm is introduced [3]. The wave functions and energies of odd-odd intermediate
nuclear states are denoted respectively by |m〉 and Em.

To simplify the calculations, the closure approximation is usually adopted, in which Em is replaced by an average one Ē
[3,49]. In such a way, using the relation

∑
m |m〉〈m| = 1, the decay operator becomes

Ô0ν = 4πR

g2
A(0)

∫∫
d3x1d3x2

∫
d3q

(2π )3

eiq·(x1−x2 )

|q|
J †

μ (x1)J μ†(x2)

|q| + Ed
, (7)

where Ed = Ē − (EM + ED)/2 represents the average energy. The empirical value Ed = 1.12 × A1/2 is used in the present
calculations [13].

In the TPSM calculations, it is necessary to reduce the decay operator in Eq. (7) to the nonrelativistic form. By neglecting the
small energy transferred between nucleons in the nonrelativistic expansion, the hadronic current J μ† is reduced as [15]

J μ†(x) →
A∑

n=1

τ n
−
[
gμ0J 0(q2) + gμkJ k

n (q2)
]
δ(x − xn), (8)

where xn represents the coordinate of the nth nucleon, and J 0(q) and Jn(q) are, respectively,

J 0(q) = gV (q2),

Jn(q) = −gMi
σn × q

2mp
+ gA(q2)σ − gP(q2)

qσn· q
2mp

.
(9)
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Substituting Eqs. (8) and (9) into Eq. (7), one can get the decay operator in the nonrelativistic form,

Ô0ν = 4πR

g2
A(0)

∫∫
d3x1d3x2

∫
d3q

(2π )3

eiq·(x1−x2 )

|q|
J †

μ (x1)J μ†(x2)

|q| + Ed

= 4πR

g2
A(0)

∫∫
d3x1d3x2

∫
d3q

(2π )3

eiq·(x1−x2 )

|q|(|q| + Ed )

∑
nm

[−hF (q2) + hGT (q2)σm· σn − hT (q2)Snm]τ n
−τm

− δ(x1 − xm)δ(x2 − xn),

(10)

with

Smn = 3(σn· q̂)(σm· q̂) − σm· σn. (11)

The terms hF (q2), hGT (q2), and hT (q2) respectively correspond to Fermi (F), Gamow-Teller (GT), and Tensor (T) momentum-
dependent couplings, i.e. [15],

hF (q2) = g2
V (q2),

hGT (q2) = g2
A(q2)

[
1 − 2

3

q2

q2 + m2
π

+ 1

3

(
q2

q2 + m2
π

)2
]

+ 2

3

g2
M (q2)q2

4m2
p

,

hT (q2) = g2
A(q2)

[
2

3

q2

q2 + m2
π

− 1

3

(
q2

q2 + m2
π

)2
]

+ 1

3

g2
M (q2)q2

4m2
p

,

(12)

where mπ and mp are pion and proton masses, respectively.

B. Nuclear wave functions

The nuclear wave functions of the mother and daughter
nuclei |	M〉 and |	D〉 in Eq. (5) are obtained from the TPSM.
The Hamiltonian in the TPSM is [50]

Ĥ = Ĥ0 − χ

2

∑
μ

Q̂†
μQ̂μ − GMP̂†P̂ − GQ

∑
μ

P̂†
μP̂μ, (13)

which includes a spherical single-particle Hamiltonian, a
quadrupole-quadrupole interaction, as well as a monopole and
a quadrupole pairing interaction. The intrinsic vacuum state
|0〉 is obtained by the following variational equation:

δ〈0|Ĥ − λpN̂p − λnN̂n|0〉 = 0. (14)

The Lagrange multipliers λp and λn are determined respec-
tively by the proton number Z and neutron number N .

Based on the obtained intrinsic vacuum |0〉, the two
quasiparticle states |κ〉 for even-even and odd-odd nuclei can
be constructed as

even-even nuclei : |κ〉 ∈ {β̂†
νi
β̂†

ν j
|0〉, β̂†

πi
β̂†

π j
|0〉},

odd-odd nuclei : |κ〉 ∈ {β̂†
νi
β̂†

π j
|0〉},

(15)

where β̂†
π (β̂π ) and β̂†

ν (β̂ν) are respectively the quasiparticle
creation (annihilation) operators for protons and neutrons. The
rotational symmetry restoration for intrinsic states |κ〉 is
realized by the angular-momentum projection, which leads to
the projected basis,

{
P̂I

MK |κ〉
}
, (16)

where the three-dimensional angular-momentum projection
operator [50] is

P̂I
MK = 2I + 1

8π2

∫
d�DI∗

MK (�)R̂(�). (17)

The diagonalization of the Hamiltonian in the symmetry re-
stored projected basis leads to the Hill-Wheeler equation,∑

κ ′K ′

{〈κ |Ĥ P̂I
KK ′ |κ ′ 〉 − EI〈κ |P̂I

KK ′ |κ ′ 〉}F I
κ ′K ′ = 0, (18)

where 〈κ |P̂I
KK ′ |κ ′ 〉 and 〈κ |Ĥ P̂I

KK ′ |κ ′ 〉 are respectively
the norm matrix element and the energy kernel. They can
be calculated with the efficient Pfaffian algorithm [46,47]. By
solving the Hill-Wheeler equation (18), one can get the eigen-
values EI and the corresponding projected wave functions,

|	I〉 =
∑
Kκ

F I
κK P̂I

MK |κ〉. (19)

The obtained projected wave functions are then used to calcu-
late the NME M0ν in Eq. (5).

C. Calculation of the nuclear matrix element

With the obtained projected wave functions and the decay
operator, the NME M0ν can be expressed as

M0ν
α = 〈

	I
D

∣∣Ô0ν
α

∣∣	I
M

〉
=

∑
KK ′

∑
κκ ′

2I + 1

8π2

∫
d�DI∗

K ′K (�)

× 〈
D

κ ′
∣∣Ô0ν

α R̂(�)
∣∣M

κ

〉
F I

KκF I∗
K ′κ ′ , (20)

where α denotes Fermi, Gamow-Teller, or Tensor, and P̂I†
M ′K ′

commutes with the decay operator Ô0ν
α and P̂I†

M ′K ′ P̂I
MK =

P̂I
K ′KδMM ′ .
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FIG. 1. Low-lying spectra for nuclei 76Ge, 76Se, 82Se, 82Kr, 100Mo, 100Ru, 130Te, 130Xe, 150Nd, and 150Sm calculated by the TPSM in
comparison with the data [58].

The rotational matrix element 〈D
κ ′ |Ô0ν

α R̂(�)|M
κ 〉 in the second-quantized form is〈

D
κ ′
∣∣Ô0ν

α R̂(�)
∣∣M

κ

〉 =
∑
μνδγ

〈μν|Oα (1, 2)|δγ 〉〈D
0

∣∣β̂D
b β̂D

a (ĉ†
μĉ†

ν )(d̂γ d̂δ )R̂(�)β̂M†
c β̂

M†
d

∣∣M
0

〉

=
∑
μνδγ

〈μν|Oα (1, 2)|δγ 〉〈D
0

∣∣β̂D
b β̂D

a (ĉ†
μĉ†

ν )(d̂γ d̂δ ) ˜̂βM†
c

˜̂βM†
d

∣∣̃M
0

〉
,

(21)

where ĉ† denotes the proton creation operator, d̂ denotes the
neutron annihilation operator, and |M

0 〉 and |D
0 〉 are respec-

tively the intrinsic vacuum states of the mother and daughter
nuclei. The indices μ, ν, δ, and γ run over the bases which are
the eigenstates |Nl jm〉 of the spherical harmonic-oscillator
potential in the present paper. The detailed calculation of the
two-body matrix element 〈μν|Oα (1, 2)|δγ 〉 can be found in
Ref. [19].

For the evaluation of the rotational overlap
〈D

0 |β̂D
b β̂D

a (ĉ†
μĉ†

ν )(d̂γ d̂δ ) ˜̂βM†
c

˜̂βM†
d |̃M

0 〉, according to the
strategy in Ref. [47], the following matrix elements of S(±)

and C(±) are defined:

S(+)
μk =

⎧⎪⎪⎨
⎪⎪⎩

−
〈
D

0

∣∣ẑk ĉ†
μ

∣∣̃M
0

〉〈
D

0

∣∣̃M
0

〉 , ẑk ∈ β̂D
b , β̂D

a〈
D

0

∣∣ĉ†
μ ẑk

∣∣̃M
0

〉〈
D

0

∣∣̃M
0

〉 , ẑk ∈ ˜̂βM
c , ˜̂βM

d ,

(22)

S(−)
μk =

⎧⎪⎪⎨
⎪⎪⎩

−
〈
D

0

∣∣ẑk d̂μ

∣∣̃M
0

〉〈
D

0

∣∣̃M
0

〉 , ẑk ∈ β̂D
b , β̂D

a〈
D

0

∣∣d̂μ ẑk

∣∣̃M
0

〉〈
D

0

∣∣̃M
0

〉 , ẑk ∈ ˜̂βM
c , ˜̂βM

d ,

(23)

C(+)
μν =

〈
D

0

∣∣ĉ†
μĉ†

ν

∣∣̃M
0

〉
〈
D

0

∣∣̃M
0

〉 , C(−)
μν = 〈D|d̂μd̂ν

∣∣̃M
0

〉
〈
D

0

∣∣̃M
0

〉 .

(24)

The rotational overlap can then be expressed as

〈
D

0

∣∣β̂D
b β̂D

a

(
ĉ†
μĉ†

ν

)(
d̂γ d̂δ

) ˜̂βM†
c

˜̂βM†
d

∣∣̃M
0

〉
= C(+)

μν C(−)
γ δ Pf(X )

〈
D

0

∣∣̃M
0

〉
+

∑
i j

(−1)i+ jαi jC
(+)
μν S(−)

δi S(−)
γ j Pf(X {i, j})

〈
D

0

∣∣̃M
0

〉

+
∑

i j

(−1)i+ jαi jC
(−)
δγ S(+)

μi S(+)
ν j Pf(X {i, j})

〈
D

0

∣∣̃M
0

〉

+
∑
i jkl

αi jkl S
(+)
μi S(+)

ν j S(−)
δk S(−)

γ l

〈
D

0

∣∣̃M
0

〉
, (25)

where αi j = 1 for i < j, αi j = −1 for i > j, and αi jkl =
αi jαikαilα jkα jlαkl . The skew-symmetric matrix X has a di-
mension 4 × 4 and its matrix element in the lower triangle
is [47]

Xi j =
〈
D

0

∣∣ẑi ẑ j

∣∣̃M
0

〉
〈
D

0

∣∣̃M
0

〉 , i < j. (26)

The X ({i, j}) in Eq. (25) represents a submatrix of X obtained
by removing the rows and columns of i, j. The matrix ele-
ments S(±)

μk , C(±)
μk , and Xi j can be evaluated by the formulas in

Ref. [47].
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TABLE I. B(E2 : 0+
1 → 2+

1 ) values (in e2 b2) for nuclei 76Ge, 76Se, 100Mo, 82Se, 82Kr, 100Ru, 130Te, 130Xe, 150Nd, and 150Sm calculated by
the TPSM in comparison with the data [59].

76Ge 76Se 82Se 82Kr 100Mo 100Ru 130Te 130Xe 150Nd 150Sm

TPSM 0.218 0.304 0.199 0.210 0.584 0.457 0.269 0.496 3.018 2.321
Expt. 0.278 0.419 0.180 0.225 0.530 0.493 0.296 0.634 2.707 1.347

III. NUMERICAL DETAILS

In the following, the NMEs for 0νββ decay candidates
76Ge, 82Se, 100Mo, 130Te, and 150Nd are calculated by the
TPSM. Three harmonic-oscillator major shells around the
Fermi surface are taken in the calculation for both pro-
tons and neutrons. The strengths of the monopole pairing
interaction for protons and neutrons are same as those
used in Ref. [30], Gp

M = 30/A MeV and Gn
M = 20/A MeV.

Similar to Refs. [51,52], the strength of the quadrupole pair-
ing interaction is chosen as GQ = 0.2GM . The strength of
the quadrupole-quadrupole interaction χ is associated with
the quadrupole deformation parameters (β, γ ) by the self-
consistent relation [37]. For nuclei 100Mo, 130Te, and 150Nd
as well as their daughter nuclei, the quadrupole deformation
parameters (β, γ ) are taken from Refs. [30,53], in which
the NMEs of 0νββ decay for these three nuclei have been
studied by the PHFB. For nuclei 76Ge and 82Se as well as their
daughter nuclei 76Se and 82Kr, the (β, γ ) values are obtained
self-consistently by the calculations of the relativistic DFT
[54–57].

IV. RESULTS AND DISCUSSION

The low-lying spectra for nuclei 76Ge, 82Se, 100Mo, 130Te,
and 150Nd as well as their daughter nuclei 76Se, 82Kr, 100Ru,
130Xe, and 150Sm calculated by the TPSM are shown in Fig. 1,
in comparison with the data. It is found that the level schemes
are reproduced satisfactorily by the TPSM calculations, es-
pecially for the 2+

1 states. For higher spins with I = 4h̄, 6h̄,
the calculated energy levels are slightly stretched compared
with the data. The reason for the deviation might be due to the
neglect of the four quasiparticle configurations in the present
calculation. It is expected that the inclusion of those configu-
rations would lower these states and work in this direction is
in progress.

The E2 transition probabilities B(E2 : 0+
1 → 2+

1 ) calcu-
lated by the TPSM are shown in Table I, in comparison with
the data [59]. The TPSM calculations reproduce the experi-
mental B(E2 : 0+

1 → 2+
1 ) values well except for 150Sm, which

might be associated with a slightly large quadrupole deforma-
tion parameter β adopted in the present TPSM calculation.

The calculated occupancies of single-particle orbits for
nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd as well as their

FIG. 2. The occupancies of single-particle orbits for neutrons (upper panels) and protons (lower panels) for nuclei 76Ge, 82Se, 100Mo, 130Te,
and 150Nd as well as their corresponding daughter nuclei, in comparison with the data available [60–64].
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TABLE II. The NMEs of 0νββ decay calculated by the TPSM (M0ν) and TPHFB (M0ν′
), together with their differences �M0ν for nuclei

76Ge, 82Se, 100Mo, 130Te, and 150Nd. The contributions from Gamow-Teller (M0ν
GT , M0ν′

GT ), Fermi (M0ν
F , M0ν′

F ), and Tensor (M0ν′
T , M0ν′

T ) transitions,
and the quadrupole deformation parameters (β, γ ) adopted for the mother and daughter nuclei are also listed.

(β, γ ) TPSM TPHFB

Decay process Mother Daughter M0ν M0ν
GT M0ν

F M0ν
T M0ν′

M0ν′
GT M0ν′

F M0ν′
T �M0ν

76Ge → 76Se (0.18, 0◦) (0.22, 60◦) 3.17 2.67 −0.72 −0.01 3.37 2.84 −0.77 −0.01 0.20
82Se → 82Kr (0.17, 0◦) (0.14, 0◦) 2.59 2.16 −0.59 −0.02 2.78 2.32 −0.63 −0.02 0.19
100Mo → 100Ru (0.23, 0◦) (0.21, 0◦) 3.92 3.46 −0.78 −0.03 3.99 3.52 −0.79 −0.03 0.07
130Te → 130Xe (0.12, 0◦) (0.17, 0◦) 2.92 2.64 −0.56 −0.01 3.00 2.71 −0.58 −0.01 0.08
150Nd → 150Sm (0.28, 0◦) (0.24, 0◦) 3.29 2.89 −0.55 −0.02 3.44 3.02 −0.58 −0.02 0.15

corresponding daughter nuclei are shown in Fig. 2, in com-
parison with the data available [60–64]. The occupancies
are calculated by Nnl j = ∑

m〈	|N̂nl jm|	〉, where |	〉 is the
wave function of the 0+ state, the particle number operator
is N̂nl jm = ĉ†

nl jmĉnl jm, and ĉ†
nl jm and ĉnl jm are the creation

and annihilation operators corresponding to the spherical
harmonic-oscillator basis. The calculated occupancies of
spherical single-particle orbits for both neutrons and protons
reproduce the data well, which add confidence to the obtained
wave functions.

With the wave functions of 0+ states obtained from the
TPSM, the calculated NME M0ν and the contributions from
Gamow-Teller (M0ν

GT ), Fermi (M0ν
F ), and Tensor (M0ν

T ) tran-
sitions for nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd are
shown in the fourth to seventh columns of Table II. The main
contribution of the NME comes from the Gamow-Teller M0ν

GT ,
which exhausts 85% of the total NME. The contributions of
Fermi and Tensor transitions to the total NME are around 14%
and 1%, respectively. Therefore, ignoring the Tensor contribu-
tion in the TPSM calculations can be a good approximation.

To study the effects of the quasiparticle configuration mix-
ing, the NME M0ν ′

calculated by the triaxial PHFB (TPHFB)
are shown in the 8th to 11th columns in Table II. The TPHFB
and the TPSM calculations are performed with the same inter-
action parameters in three harmonic-oscillator major shells.
The difference is that the quasiparticle configuration mixing
is not included in the TPHFB. The last column shows the
differences �M0ν between M0ν ′

and M0ν , which reveals the
effect of quasiparticle configuration mixing missing in the
TPHFB. It is found that the quasiparticle configuration mixing
reduces the NMEs ranging from 2% to 7%.

The NME M0ν for nuclei 76Ge, 82Se, 100Mo, 130Te, and
150Nd calculated by the TPSM are compared with those from
the NDFT [36], CDFT [34], IBM [28], PHFB [30], QRPA
[26], and SM [65], as shown in Fig. 3. In general, the larger
M0ν values are given by NDFT and CDFT, the smaller ones
are given by PHFB and SM, and the other results given by
TPSM, QRPA, and IBM are in between. Compared with the
PHFB calculation in Ref. [30], the valence space of the TPSM
is chosen as three major shells, and the contribution from
quasiparticle configuration mixing beyond the HFB vacuum
has been taken into account.

The NMEs shown in Table II are obtained by assuming that
the nuclei under consideration are all axially deformed. It is
interesting to explore the evolution of NMEs with the nuclear

triaxial deformation. In Fig. 4, the NMEs of 0νββ decay for
nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd as functions of
the triaxial deformation parameters for the mother (γM) and
daughter (γD) nuclei are shown. For nuclei 82Se and 130Te, the
NMEs remain roughly unchanged with the triaxial deforma-
tion parameters. For 82Se, the NME varies by 17%, with the
largest 3.02 at (γM = 60◦, γD = 60◦) and the smallest 2.59
at (γM = 0◦, γD = 60◦). For 130Te, the NME varies by 14%,
with the largest 3.00 at (γM = 0◦, γD = 0◦) and the smallest
2.63 at (γM = 60◦, γD = 0◦) The insensitivity of M0ν with
triaxial deformation can be explained by the potential-energy
curves of 0+ states shown in Fig. 5. The potential-energy
curves of 0+ states for 82Se and 130Te, together with their
corresponding daughter nuclei 82Kr and 130Xe, are rather soft,
which indicates the corresponding projected wave functions
are not sensitive to the triaxial deformation. This explains the
nearly unchanged NMEs for 82Se and 130Te with γM and γD.

For nuclei 100Mo and 150Nd, the NMEs depend sensi-
tively on the triaxial deformation parameters. The mother and
daughter nuclei with similar triaxial deformation parameters
trend to give larger M0ν . For 100Mo, the NME varies by 68%,
with the largest 4.46 at (γM = 40◦, γD = 60◦) and the small-
est 2.65 at (γM = 60◦, γD = 0◦). For 150Nd, the NME varies

FIG. 3. The NMEs of 0νββ decay calculated by the TPSM in
comparison with those from the nonrelativistic DFT (NDFT) [36],
relativistic DFT (CDFT) [34], IBM [28], PHFB [30], QRPA [26],
and SM [65].
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FIG. 4. The NMEs of 0νββ decay for nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd as functions of the triaxial deformation parameters for
the mother and daughter nuclei.

by 511%, with the largest 3.61 at (γM = 20◦, γD = 20◦) and
the smallest 0.59 at (γM = 60◦, γD = 0◦). The sensitivity of
M0ν with γM and γD can be explained by the stiffness of
the potential-energy curves for 100Mo and 150Nd, together
with their corresponding daughter nuclei 100Ru and 150Sm, as
shown in Fig. 5.

Although 76Ge and 76Se are axially deformed in the rel-
ativistic DFT calculations, the rotational symmetry restored
states 0+ in the TPSM for 76Ge and 76Se are triaxially de-
formed with γM = 30◦ and γD = 40◦, as shown in Fig. 5.
With these corresponding triaxial deformation parameters, the
resulting M0ν is 3.72 which is 17% larger than the value 3.17

in the axial deformation case shown in Table II. This indicates
the importance of treating the triaxial deformation correctly
when calculating the NMEs of 0νββ decay.

To simplify the calculations, the closure approximation
is usually adopted except in QRPA and some SM calcula-
tions. The present TPSM treats the even-even and odd-odd
nuclei in a unified way. We can investigate the effects of the
closure approximation and study the contributions of odd-
odd intermediate states to the NMEs. In Fig. 6, the NME
M0ν calculated by the TPSM with contributions of odd-odd
intermediate states at different spin for nuclei 76Ge, 82Se,
100Mo, 130Te, and 150Nd are shown, in comparison with the

FIG. 5. Potential-energy curves of 0+ states as functions of the triaxial deformation parameters γ for nuclei (a) 76Ge, 82Se, 100Mo, 130Te,
and 150Nd as well as (b) their corresponding daughter nuclei in the TPSM.
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FIG. 6. The NMEs of 0νββ decay for nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd calculated by the TPSM with odd-odd intermediate states
at different spin. The left panel in each subfigure denotes the contribution of the Gamow-Teller and Fermi transitions. The right panels denote
the total Gamow-Teller and Fermi NMEs in comparison with the corresponding ones calculated by the closure approximation (dashed line).

results from the closure approximation. The cutoff energy
for the nonclosure calculations is 6.5 MeV. The NMEs vary
less than 1% with cutoff energies 7.0 and 6.5 MeV. The
Gamow-Teller and the Fermi NMEs for the intermediate states
at different spin are denoted by bars, and the dashed lines
represent the results calculated by the closure approxima-
tion. The Gamow-Teller NMEs are mainly contributed from
the odd-odd intermediate states with I = 1h̄, which exhausts
more than 80% of the total Gamow-Teller NMEs. This can be
understood by the Gamow-Teller operator στ− and the initial
and finial states 0+ for the mother and daughter nuclei. The
Fermi NMEs are mainly contributed from the intermediate
states with I = 0h̄. The states with I = 2h̄, 4h̄ contribute less
than 10% to the total Fermi NMEs.

Comparing with the results in Table II with the closure
approximation, the explicit calculations of the transitions
through the odd-odd intermediate states enhance the NMEs.
For nuclei 76Ge, 82Se, 100Mo, 130Te, and 150Nd, the contribu-
tion of the odd-odd intermediate states increase respectively
the values of the NMEs by 7%, 4%, 11%, 20%, and 14%,
respectively. In comparison, an enhancement about 10% is
given by the SM calculations for 48Ca [66].

V. SUMMARY

In summary, the nuclear matrix elements of neutrinoless
double-β decay for nuclei 76Ge, 82Se, 100Mo, 130Te, and
150Nd are studied within the triaxial projected shell model,
which incorporates simultaneously the triaxial deformation
and quasiparticle configuration mixing. The low-lying spec-

tra, the B(E2 : 0+ → 2+) values, and the occupancies of
single-particle orbits for nuclei under consideration are re-
produced well. The effects of the quasiparticles configuration
mixing, the triaxial deformation, and the commonly used clo-
sure approximation are examined.

The inclusion of the quasiparticle configuration mixing in
the configuration space reduces the nuclear matrix element
ranging from 2% to 7%. In comparison with the results by
the closure approximation, the explicit calculation of the tran-
sitions through the odd-odd intermediate states systematically
enhance the nuclear matrix elements for nuclei 76Ge, 82Se,
100Mo, 130Te, and 150Nd by 7%, 4%, 11%, 20%, and 14%,
respectively.

The mother and daughter nuclei with similar triaxial shape
tend to give larger nuclear matrix elements. After examining
the nuclear matrix elements as functions of the triaxial defor-
mation parameters, it is found the nuclear matrix elements for
76Ge, 82Se, 100Mo, 130Te, and 150Nd vary with γ from 0◦ to
60◦ by 41%, 17%, 68%, 14%, and 511% respectively. This
indicates the importance of treating the triaxial deformation
consistently in calculating the nuclear matrix elements of neu-
trinoless double-β decay.

Although 76Ge and 76Se are axially deformed in the
calculations of the relativistic density-functional theory, the
rotational symmetry restored states 0+ in the triaxial projected
shell model for 76Ge and 76Se are triaxially deformed. With
these corresponding triaxial deformation γ = 30◦ and 40◦, the
resulting nuclear matrix element is 3.72, which is 17% larger
than the value 3.17 in the axial deformation case. Future work
in developing the generator coordinate method is necessary to

014320-8



NUCLEAR MATRIX ELEMENTS OF NEUTRINOLESS … PHYSICAL REVIEW C 104, 014320 (2021)

calculate the nuclear matrix elements for 76Ge by mixing the
nuclear shapes.
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