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Correlations of α-decay properties and isospin-asymmetry
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The isospin-asymmetry nuclear chains with N − Z from 2 to 60 are investigated to find the correlations of α-
decay properties and isospin asymmetry. Both the proton- and neutron-skin thicknesses of α emitters belonging
to different N − Z chains are tightly aligned along straight lines, the slope of which depends on the shell closure.
For even-even α emitters, the neutron-skin thickness Δn multiplied by N − Z is a parabolic function of the
isospin-asymmetry parameter I = (N − Z )/A. For the nuclei of incomplete neutron shells, the α-decay half-life
Tα exponentially increases with Δn in the isospin chain. In the nuclei with valence neutrons and/or protons
outside the magic core, Tα exponentially decreases with increasing Δn. The values of Tα and Qα are almost
exponential functions of isospin asymmetry.
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I. INTRODUCTION

The study of α decay has a long history. Its explanation
was the first application of quantum theory. The success
of this explanation predetermined the development of the
methods to describe also cluster decays. In the microscopic
consideration, the α-decay half-life Tα is inversely propor-
tional to the product of spectroscopic factor and penetrability
through the Coulomb barrier. These two values certainly de-
pend on Qα and nuclear structure. As a result, the known
phenomenological expressions [1–10] for Tα mainly depend
on Qα and the charge Z of the mother nucleus, which are
related to the threshold for α emission. These expressions
contain several phenomenological parameters required to take
into account the spectroscopic factor and peculiarities of the
nucleus-nucleus interaction. The number of parameters is usu-
ally reduced if the spherical square well radius is used to
define the size of the touching configuration consisting of
α particle and daughter nucleus. The correlations between
nuclear structure and α-decay mode have been confirmed in
many studies, for example, in Refs. [11–17]. The knowledge
of nuclear density distributions is necessary to calculate the
interaction between α particle and mother nucleus as well as
the spectroscopic factors.

The study of α decays improves our knowledge about the
nature and properties of nuclear matter. The consideration of
various correlations allows us to relate the formation of an α

particle on the nuclear surface to the nuclear structure and to
find some dependence of Tα on the nucleon-density profile,
which can be useful for prediction of Tα for new isotopes. In
Refs. [18–20], the correlation between Tα and neutron-skin
thickness has been found. The α decay occurs easier at smaller
neutron-skin thickness. Also, the difference of neutron-skin
thicknesses in mother and daughter nuclei must be small. The

smaller the difference of neutron-skin thickness, the smaller
the value of Tα at the same Qα values.

The isospin asymmetry of heavy and superheavy nuclei
is one of the key quantities that determine their structure,
stability, and fission barriers [16,21–23]. It affects their partial
lifetimes against different decay modes such as α [16,22], β

[23], and cluster decays [24]. In Fig. 1, the measured internal
quadrupole momenta Q2 of nuclei [25] with the same N − Z
value are shown as functions of mass number A. The nuclei
with the same N − Z form a chain where the nuclei differ by
an α particle. As seen, in all these isospin chains of nuclei, the
dependencies of Q2 on A are similar regardless of the value
of N − Z and the starting nucleus with indicated Z . So, the
isospin asymmetry plays an important role in establishing the
correlations between the nuclear characteristics.

Generally, the isospin asymmetry of the involved nuclei
impacts different stages of α and heavier cluster decays of
heavy nuclei, starting from the preformation of the emitted
light clusters in the surface region of parent nuclei and up to
their penetrability [22]. Taking the nuclear isospin effects into
account considerably improves the half-life and branching-
ratio calculations [16,22,26,27]. It was found that, for α

emitters with valence protons and neutrons outside closed
shells, the preformation probability Pα of an α particle inside
them increases upon increasing their isospin asymmetry co-
efficient I . If the shells in the parent nucleus require a few
nucleons to be closed, the larger isospin asymmetry favors de-
creasing Pα . For given shell closures of an α emitter, Pα varies
linearly with the isospin asymmetry parameter multiplied by
the number of valence protons (Np) and neutrons (Nn). These
linear dependencies correlate with the closed shells core (Z0,
N0). Similar individual linear behaviors were obtained as a
function of NpNnI [22,28]. Pα was found to exhibit a nearly
general linear trend as the function NpNn/(Z0 + N0) [22].
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FIG. 1. (a) The internal quadrupole moment as a function of
A for the isospin-asymmetry (N − Z) chains stating from the nu-
clei with indicated charge numbers 50 < Z < 82. (b) The same as
in panel (a) but for nuclei with Z > 82. The data are taken from
Ref. [25].

In the present paper, we use the self-consistent Skyrme
Hartree-Fock-Bogoliubov (SHFB) calculations to find the
neutron-skin thicknesses for many α emitters. Using these re-
sults, we study the correlations of neutron-skin thickness with
Tα and isospin asymmetry N − Z . Knowing the correlations
and establishing simple dependencies, one can predict Tα for
new isotopes. Any correlations found can be useful to improve
the energy-density functional and make simple estimates for
presently unknown isotopes.

The paper is arranged as follows: In Sec. II, we outline the
theoretical framework adopted for the mean-field calculations
of the nuclear structure of the investigated nuclei, based on a
Skyrme-like effective nucleon-nucleon force. The results and
the experimental values for the even-even nuclei belonging to
the investigated isospin-asymmetry chains are presented and
discussed in Sec. III. Finally, we give brief conclusions in
Sec. IV.

II. THEORETICAL FRAMEWORK

The self-consistent SHFB model is a successful nonrela-
tivistic method which is widely used to investigate the nuclear
structure and low-energy dynamics [29]. Because the SHFB
equations are nonlinear in the wave functions [30], the mean-
field and pairing field are self-consistently computed to obtain
an optimized iterative solution [29]. In this method, the total
energy of the nuclear system is expressed as a sum of the
kinetic Hkin, Skyrme HSk , Coulomb HC , and pairing energy
HPair terms, in addition to the correction term Ecor [29,31]:

E =
∫

dr[Hkin + HSky + HC] + HPair + Ecor. (1)

The correction term in Eq. (1) approximately cancels the
energy of spurious center-of-mass motion due to broken sym-
metries. The kinetic, nuclear and Coulomb energy density
functionals read [29,30,32]
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and

HC = e2
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|r − r′|dr′ − 3e2

4

(
3

π

)1/3

[ρp(r)]4/3. (4)

Here, ρi (i = p, n) represent the protons’ (p) and neutrons’
(n) local density, while τi and Ji, respectively, define the
kinetic energy and the spin-orbit densities of protons and
neutrons (ρ = ρp + ρn and τ = τp + τn). These densities are
determined in terms of single-particle wave functions as the
sums over the single-particle occupied states [30,33]. The
Skyrme energy functional (3) consists of zero- and finite-
range, effective-mass, and density-dependent contributions,
in addition to the spin-orbit and tensor couplings [33]. In
the present work, we consider the SLy4 parametrization of
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(a)

(b)

FIG. 2. (a) The neutron-skin thickness as a function of N for
various indicated isospin-asymmetry chains. (b) Total number of
known even-even nuclei belonging to different N − Z chains with
N − Z from 2 to 60, and the number of α emitters among them.

the Skyrme force with the parameters (x0,1,2,3, t1,2,3, α, W 0)
[33]. This SLy4 parametrization effectively allows us to de-
scribe well the nuclear structure and nuclear matter properties
[18,34–37]. It is also widely used in the nuclear reactions
[19,38–40] and neutron stars [41,42] studies, and in the
investigation of the α and cluster decays of heavy nuclei
[13,20,43,44]. While the first term in Eq. (4) gives the direct
part of the Coulomb energy, the second term accounts for its
exchange parts in the Slater approximation [45]. The pairing
energy functional is added in Eq. (1) with the constant pairing
matrix elements Gi as

HPair = −
∑
i=p,n

Gi

[∑
βi

√
nβi

(
1 − nβi

)]2

. (5)

The BCS occupation numbers nβ are given in terms of pairing
gap δi and Fermi energy εFi as

nβi = 1

2

⎡
⎣1 − εβi − εFi√(

εβi − εFi
)2 + δ2

i

⎤
⎦. (6)

In the constant force treatment of pairing, δi and εFi are
simultaneously determined by the gap equation δi/Gi =∑

βi

√
nβi [1 − nβi ] and the particle number Ni = ∑

βi
nβi con-

dition. Also, the pairing gap might be directly parametrized in
the constant-gap approximation [29]. To obtain the nucleon-
density profiles, we perform the calculations using the code of

Ref. [46]. The local proton and neutron densities are obtained
by the single-particle wave functions ϕl (r, σ ) and the occupa-
tion numbers nβi in terms of the orbital l and spin σ quantum
numbers β = (l, σ ) as a sum over the single-particle occupied
states [30,33],

ρi=p(n)(r) =
∑
βi

∣∣ϕl
i (r, σ )

∣∣2
nβi . (7)

The kinetic (τi) and the spin-orbit (Ji) densities are obtained
similarly as

τi(r) =
∑
βi

∣∣∇ϕl
i (r, σ )

∣∣2
nβi , (8)

and

Ji(r) =
∑

βi (l,σ ),σ ′
ϕl∗

i (r, σ ′)∇ϕl
i (r, σ ) × 〈σ ′|σ|σ 〉nβi . (9)

For stationary ground-state of spherical nuclei, we can sepa-
rate the single-particle wave function in terms of its radial part
Rl,σ and the spinor spherical harmonics Yjl,σ �l,σ [46],

ϕl,σ (r) = Rl,σ

r
Yjl,σ �l,σ (θ, φ).

In this case, Rl,σ and the local (ρi), kinetic (τi), and spin-orbit
(Ji) densities and fields can be radially represented, on an
equidistant radial grid. The Hartree-Fock equations for Rl,σ

can be found by varying the energy functional relative to Rl,σ ,
with the constraint that Rl,σ are orthonormal. The obtained
single-particle wave functions describe the many-body state
as a Slater determinant given by the antisymmetrized product
of occupied single-particle states. While a pure Slater state is
reasonable for doubly magic nuclei, high density of degen-
erate states in the nuclei of partially open shells allows the
residual two-body interaction to mix these states, to find a
unique ground state [47] with the help of the used nuclear
pairing scheme [48]. A careful treatment should be employed
to evaluate the second derivative for the inversion of the
mean-field Hamiltonian, with regard to the inverse gradient
step. The pairing equations can be solved iteratively by using
Newton’s tangential method to satisfy the particle-number
condition Ni = ∑

β∈i ωβ for a given group of single-particle
energies εβ . After obtaining the self-consistent solution of
the SHFB equations using the considered density functionals
with pairing, we can explicitly evaluate the single-particle
wave functions, the corresponding single-particle energies,
and the total energy of the system. The SHFB equations can be
solved either by the two-basis method [49] with diagonalizing
the particle-particle part of the Hamiltonian considering box
boundary conditions, or by the canonical-basis method with
spatially localized eigenstates of the one-body density matrix
far away from the quasiparticle representation [50,51].

The root mean square radii of the proton and neutron dis-
tributions are obtained as

Rrms
i = 〈

R2
i

〉1/2 =
(∫

r2
i ρi(r)dr∫
ρi(r)dr

)1/2

. (10)

The neutron-skin thickness, which defines the extension of the
neutron density distribution relative to the proton density, is
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established in terms of the obtained rms radii as

Δn = 〈
R2

n

〉1/2 − 〈
R2

p

〉1/2
. (11)

The neutron-skin thickness directly addresses the isospin-
asymmetry of nuclei associated with number of neutrons
exceeding the proton number.

III. RESULTS AND DISCUSSION

Figure 2(a) shows the neutron-skin thickness for different
nuclear N − Z chains with even N − Z from 14 to 60. The
presented nuclei are distinguished according to their α ra-
dioactivity. While the solid symbols represent α emitters, the
open symbols represent stable nuclei against α emission. As
found, all the even-even α emitters with N − Z � 12 have a
proton skin instead of neutron skin. For the nuclei of (N − Z)-
chain, the heavier nuclei exhibit less neutron-skin thickness
and tend to emit α particles [Fig. 2(a)], producing daughter
nuclei with larger Δn. The larger the value of Δn, the larger
the stability against α emission. The α emission is accompa-
nied by less increase of Δn from parent to daughter nuclei
than the corresponding increase of Δn from (Z, N) nucleus to
(Z − 2, N − 2) nucleus if there is no α emission. As seen, Δn

varies along the N − Z = 14 chain with four different rates.
The α emitters show the smallest increase rate of Δn from
(Z, N) to (Z − 2, N − 2) nuclei. The steepness of this increase
is larger for the successive nuclei which do not show α emis-
sion. This rate increases for the nuclei with 50 < N � 82 and
increases even more for the 28 < N � 50 nuclei. The steepest
increase of Δn with decreasing N is assigned to the light
nuclei with N � 28. The α emitters belonging to different
chains always exhibit the less increasing rate of Δn, from
parent to daughter nuclei, except for the N − Z = 50 chain
in which the (Z − 2, N − 2) nucleus approaches N = 126 and
demonstrates small change of Δn with respect to the (Z, N)
nucleus.

Figure 2(b) displays the total number of the known even-
even nuclei of different N − Z chains with N − Z from 2 to
60, and the number of α emitters among them. At N − Z >

8, the number of nuclei generally decreases with increas-
ing isospin asymmetry N − Z . For the N − Z chains with
N − Z � 40, the share of α emitters does not exceed 37%
(10 nuclei). Only one even-even α emitter is observed for
the chain with N − Z = 6(3%), while none is observed for
the N − Z = 8 chain. The share of α emitters significantly
increases at N − Z = 42, reaching a maximum value of about
78% (14 α emitters) for the distinctive N − Z = 50 chain. The
number and share of α emitters decrease again for the chains
with N − Z > 50.

Regarding the isospin dependence of Δn, Fig. 3(a) shows
the neutron-skin thickness of the nuclei belonging to the N −
Z chains displayed in Fig. 2(a) in addition to the N − Z = 2
and 10 chains, as a function of the isospin symmetry parame-
ter I = (N − Z )/A. The nuclei are grouped in different panels
of Fig. 3(a) according to the neutron and proton shell closures.
Namely, a group of incomplete proton shells with Z0 = 50,
two groups with extra protons above Z0 = 50 and 60, and
three groups of extra protons and neutrons above (Z0, N0) =
(82, 82), (82,126), and (82,150) are shown in Fig. 3(a). As

FIG. 3. (a) The neutron-skin thickness of even-even α emitters
(solid symbols) and non α emitters (open symbols) in nuclei of
N − Z chains indicated as a function of I . The nuclei are grouped
according their shell or subshell closures at Z0 = 50, 60, and 82
and N0 = 126 and 150. (b) The neutron-skin thickness of even-even
α emitters as a function of I for the nuclei of the N − Z chains
indicated.

seen, in each group of nuclei the value of Δn depends almost
linearly on I . All calculated Δn versus I for even-even α

emitters are presented in Fig. 3(b). Regardless of the value of
N − Z , the neutron-skin thicknesses are roughly aligned along
the line

Δn = 1.091I − 0.091. (12)
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FIG. 4. (a) The dependencies of Δn(N − Z ) on I for even-even nuclei belonging to the N − Z chains indicated. The nuclei are grouped
according their shell closures. The nuclei which emit and do not emit α particles are marked by close and open symbols, respectively. (b) The
same as in panel (a), but for all even-even nuclei belonging to the indicated isospin chains. (c) The same as in panel (b), but only for even-even
α emitters.

Sothe value of Δn depends approximately linearly on I . Even
the nuclei with a proton-skin thickness (Δn < 0) follows this
trend. The corresponding Δn for the non α emitters [open
symbols in Fig. 3(a)] considerably deviate from the line (12).

Figure 4(a) shows the products Δn(N − Z ) as functions
of the isospin asymmetry parameter I , for the same isospin
chains as in Fig. 3(a). As seen, the symbols in each group lie
on a parabola. If the values of Δn(N − Z ) for all nuclei of
various groups are displayed in one panel [Fig. 4(b)], we see
that the Δn(N − Z ) for even-even α emitters are maximal and
well aligned along the parabolic curve

Δn(N − Z ) = 342I2 − 44I + 1, (13)

which is separately depicted in Fig. 4(c). The nuclei with
proton-skin thickness (Δn < 0) also correspond to Eq. (13).
So, the value of Δn for an unknown α emitter can be estimated
from Eq. (13). The neutron-skin thicknesses of non α emitters
[the open symbols in Fig. 4(b)] substantially deviate from the
curve defined by Eq. (13). Comparing Eqs. (12) and (13),
we conclude the better parametrization of Δn with the latter
expression.

Figure 5(a) shows the observed half-lives Tα against α

decay as functions of Q−1/2
α for even-even α emitters be-

longing to various isospin asymmetry N − Z chains. As seen,
the value of Tα exponentially increases with Q−1/2

α . How-
ever, the increase rates are different in each group of nuclei
matching certain shell closures. This exponential relation-
ship covers a wide range of half-lives, about 32 orders of
magnitude.

To consider the dependence of Tα on neutron-skin thick-
ness, we display in Figs. 5(b) and 5(c) the experimental Tα as a
function of Δn for the isospin chains with N − Z from 2 to 60.
In Fig. 5(b), the results are presented for even-even nuclei with
neutron and/or proton holes below the corresponding closed
shells at N0 and/or Z0 (N − N0 < 0 and/or Z − Z0 < 0). For
the nuclei with uncompleted shells, the half-lives increase
with neutron-skin thickness. For example, there are nine even-
even nuclei in the N − Z = 32 chain with the measured values
of Tα . The lightest nuclei 184Os and 180W of this isospin chain
are more stable and have the largest neutron-skin thickness.
Despite some deviations, Tα approximately depends exponen-
tially on Δn in the isospin chain. The deviations can be related
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FIG. 5. (a) The observed α-decay half-lives versus Q−1/2
α for even-even nuclei belonging to the isospin-asymmetry chains indicated. The

nuclei are grouped according to their shell closure. (b) The observed α-decay half-lives versus Δn for the even-even nuclei with neutron and/or
proton holes to complete closed shells (at N0 and Z0) The nuclei are grouped according to their isospin asymmetry. (c) The same as in panel (b),
but for the nuclei with an excess of neutrons and/or protons outside closed shells. The nuclei are grouped according to their isospin asymmetry
and closed shells. (d) The observed Tα and (e) corresponding Qα values versus ΔnNn(N − Z ) for even-even α emitters grouped according to
their neutron shell closure (N0).

to different single-particle levels of the nucleus that emitted
the α particle. These peculiarities of nuclear structure are not
taken into account in our consideration.

Figure 5(c) shows the data for nuclei with valent neutrons
and/or protons outside closed shells (N − N0 > 0 and/or
Z − Z0 > 0). As seen, the half-life against α decay for the
nuclei of the isospin chain decreases with increasing Δn.
Tα still shows an increasing trend with isospin asymmetry
(N − Z). For N0 = 126, the six isospin asymmetry chains with
N − Z = 38, 42, 44, 46, 48, and 50 are depicted in Fig. 5(c).
Even though Tα show a steadily decreasing behavior with
increasing Δn, the irregularity in the rate of decrease can be
related to different origins of nucleons forming the emitted α

particle. While two neutrons forming the α particle emitted
from 218Po and 222Ra probably come from the neutron orbital
ν2g9/2, those forming the α particle in 226Rn and 230Th come
from the ν1i11/2 orbital. The protons forming the α particles in
these four nuclei are probably from the same π1h9/2 orbital.

In Figs. 5(d) and 5(e), we respectively display the observed
α-decay half-lives [52] and corresponding Qα values [53] as
functions of isospin asymmetry ΔnNn(N − Z ) for the even-
even α emitters. The results for the nuclei with a number
of neutrons between the given magic or semimagic numbers
(N0 = 50, 82, 126, 164, 184) are lined up along the lines
indicated. The four sets of nuclei in Figs. 5(d) and 5(e) are
distinguished by the excess number of neutrons outside the
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N0 = 50, 82, and 126 closed neutron shells, and the lack of
neutrons to N0 = 126 and 164, 184 neutron shell or subshell
closures. The largest deviations of Tα from the corresponding
lines are usually observed for nuclei with large uncertainty in
the definition of the α-decay branching ratio [52]. Using the
correlations found in Figs. 5(d) and 5(e), one can estimate Tα

for currently unknown isotopes.

IV. SUMMARY

We found the correlations between the properties of α

decay of even-even nuclei and their isospin asymmetry N − Z .
The isospin-asymmetry chains with N − Z from 2 to 60 were
considered. In most cases, the α emitters exhibit smaller
change of Δn from (Z, N) to (Z − 2, N − 2) nuclei than the
nuclei which do not emit α particles. The neutron-skin thick-
nesses Δn in α emitters are tightly aligned along a straight
line as a function of isospin-asymmetry parameter I . Even the
nuclei possessing a proton-skin thickness (−Δn) are closely
aligned along this trendline. The values of Δn(N − Z) in the
α emitters are closely aligned along a parabola as a func-
tion of I . Generally, the Tα tends to increase with isospin

asymmetry N − Z , indicating relatively more stable nuclei
against α decay. For the nuclei of incomplete closed shells of
neutrons, the half-life against α decay increases with neutron-
skin thickness. This can be understood in the context of the
number of neutron holes to the next shell closure and in terms
of the nucleon orbitals from which the nucleons forming α

particles are coming. For the nuclei with valence neutrons
and/or protons outside a magic core, the Tα in the nuclei of the
same isospin chain decreases with increasing Δn. Distinct lin-
ear dependencies of both log10(Tα ) and Qα on ΔnNn(N − Z )
are obtained for the corresponding closed neutron core. The
correlation found can be used to estimate the values of Tα

and Qα if only the nucleon density profiles are calculated or
measured.
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