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Improved naive Bayesian probability classifier in predictions of nuclear mass
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Background: Recently, novel statistical methods such as neural networks and Bayesian learning methods are
implemented to describe the nuclear masses.
Purpose: Based on previous studies, an improved naive Bayesian probability (iNBP) classifier is proposed to
study the nuclear masses by refining the results of sophisticated nuclear models.
Method: In the iNBP method, the prediction for nuclear masses is treated as a classification problem. The
residuals are classified into several groups to generate prior and conditional probabilities, and the posterior prob-
abilities are further determined by the Bayesian formula. We choose the expectation with maximum probability
as the final prediction. Reliability of the iNBP method is assessed by analyzing the global optimizations and the
extrapolating capabilities.
Results: The iNBP method exhibits impressive improvements on global descriptions for different mass models.
Moreover, the method shows robust extrapolating capabilities. Results demonstrate the iNBP method can be
applied to predict the nuclear masses of unknown regions.
Conclusions: Considering the local mass relations, the iNBP method can offer considerable fine-tuning of the
mass descriptions from nuclear models. The methodology proposed in this paper can also be applied to other
model-based extrapolations of nuclear observables.
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I. INTRODUCTION

The mass of a nucleus, originating from complex interac-
tions between nucleons, is a basic and indispensable property
in nuclear physics. Researches on nuclear masses not only
provide guidance in searches for superheavy nuclei [1,2],
but also help understand problems in nuclear structure [3–5],
nuclear decays [6–8], nuclear reactions [9–11], and nuclear
astrophysics [12–14]. There are mainly two types of exper-
imental methods to measure the nuclear masses. The direct
methods are based on mass spectrometry, such as Penning trap
[15] and storage ring [16]; while the indirect methods con-
strain nuclear masses by determining the Q values of nuclear
reactions or decays [17,18].

As more and more nuclear mass data are being filled up
in the mass database, there has been a great development in
theoretical mass models. Three classes of nuclear models are
proposed to describe changing rules of nuclear mass. The first
class of these models are the local mass models such as the
Garvey-Kelson relations (GKs) [19–22], which can predict
unknown masses from neighboring nuclei. The predictions
of the local mass models are typically accurate, but the poor
behaviors in extrapolation become a limitation of such models
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[20]. Secondly, there are some macroscopic models includ-
ing the finite-range droplet model (FRDM) [23] and other
semiempirical models with microscopic corrections [24–26].
These models are able to give global descriptions of the gen-
eral tendency of the changes of nuclear masses, whereas some
of the parameters fail to elucidate inner physical interactions
in nuclei. The third class are purely microscopic models,
such as Hartree-Fock-Bogoliubov (HFB) models [27–32] and
relativistic mean-field (RMF) models [33–40]. These models
exploit several effective physical interactions, and can provide
global descriptions on nuclear masses, of which the accuracy
can almost match that of microscopic-macroscopic models
[41]. However, recent researches in nuclear structure, nuclear
decay, and nuclear reactions require higher accuracy of the
predictions of nuclear masses.

Recently, in addition to the development of the theoreti-
cal mass models, statistical methods have been proposed to
improve the descriptions of nuclear properties. The neural net-
works got employed in addressing different nuclear physics
issues including many-body problems [42–45], radii predic-
tions [46–48], decay descriptions [49–52], reactions [53–56],
and especially nuclear mass systematics [57–63]. There are
a series of advantages of neural networks in predicting nu-
clear masses. First of all, compared with other traditional
statistical methods, neural networks do not require a for-
mal fitting function, which makes them more flexible and
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accessible. Secondly, complex nonlinear mass relationships
can be incorporated in a neural network with adjustable
connection weights for predicting nuclear masses. Finally, a
neural network belongs to the class of universal approxima-
tors, which can make global predictions for nuclear masses.
Despite these advantages, there are two non-negligible dis-
advantages of neural networks. First, the neural network is a
“black box”, which makes it difficult to study any relationship
deeply in the data [64]. Besides, the structures of neural net-
works are usually complicated, which requires a large amount
of computations.

In order to overcome these disadvantages, some machine
learning algorithms different from neural networks have also
been applied to predict nuclear properties. In a recent paper, a
naive Bayesian probabilities (NBP) classifier was introduced
to refine the nuclear charge radii, which regarded predictions
as a classification problem [65]. By constructing a naive
Bayesian classifier, nuclear charge radii can be well described.
For certain physical problems which can be converted to
classification tasks, the naive Bayesian algorithm can perform
better than other more sophisticated learning schemes [66].
It is the special zero-one loss function of the naive Bayesian
method that is responsible for the surprising performances
[66–68]. Moreover, due to the simple structure of the method,
the naive Bayesian method is capable of uncovering the inner
relationships in the data, which is helpful for the physical
analysis. Additionally, the amount of computation for the
naive Bayesian algorithm is much smaller than that for other
machine learning schemes.

In this paper, an improved naive Bayesian probabilities
(iNBP) classifier is put forward to describe the nuclear
masses. Compared with the classical Bayesian formula, there
are two innovations in the iNBP method. One is that a more
appropriate classification is given by the k-means algorithm,
and the other is that local relationships between nuclear
masses are considered by introducing the weight functions.
The key strategy of the iNBP method is to turn the prediction
of nuclear masses to a classification problem. Based on cer-
tain nuclear mass models, the mass residuals δ(Z, N ), which
represent the deviations between experimental data and theo-
retical results, are provided initially for each nucleus. Then,
the residuals δ(Z, N ) are clustered into several groups by the
k-means methods. For each group, there is a classification
value δi defined as the mean value of residuals in the group.
The original residuals δ(Z, N ) in the group are recalibrated
as the classification value δi. Next, we calculate the posterior
probability of different classification values δi based on the
Bayesian formula, and choose the value δi with the maximum
probability as the estimated residual. During the calculations,
the local relations between the neighboring nuclei are taken
into account by introducing weight functions. Finally, the
raw results of theoretical models are refined by adding the
predicted residuals from the iNBP method.

To examine its effectiveness, the iNBP method is applied
to three different types of sophisticated nuclear models: the
microscopic-macroscopic FRDM model, the nonrelativistic
HFB model, and the relativistic RMF model in this pa-
per. Both the interpolating and extrapolating capabilities of
the iNBP method are evaluated. The nuclei with the proton

number Z � 8 are analyzed. For the interpolation, the data set
includes 3245 nuclei between 16O and 295Og in the atomic
mass evaluation of 2016 (AME2016) [69]. For the extrapo-
lation, the learning set consists of 3007 nuclei in the atomic
mass evaluation of 2003 (AME2003) [70], while the val-
idation set includes 238 nuclei which got newly added in
the AME2016. In addition, we display the corrections of the
binding energies for Ca outside of the AME compilation by a
graphic depiction. Our results illustrate that the iNBP method
has good interpolating and extrapolating capabilities, and can
be applied to predict nuclear masses in unknown regions of
the nuclear chart.

This paper is organized as follows. In the next section,
the theoretical framework of the iNBP classifier is discussed
in detail. The results of predictions and corresponding dis-
cussions are presented in Sec. III. Finally, in Sec IV a brief
summary is given.

II. FORMALISM

The iNBP method involves two steps. In the first step,
we use the k-means algorithm to classify all the residuals
in certain groups, and the residuals are recalibrated as the
corresponding classification values. In the second step, the
probabilities of all the classification values are calculated by
the Bayesian formula for the predicted nucleus, and the esti-
mated residual of the predicted nucleus is obtained from these
probabilities. Assessment criteria of accuracy and uncertain-
ties of iNBP method are also presented in this section.

A. Classification by the k-means algorithm

In this step, we choose the k-means algorithm to classify
all the raw residuals. The k-means algorithm automatically
divides a data set into k groups by an iterative refinement
technique [71,72]. Starting from generating k initial group
centers δ

(0)
i (i = 1, ..., k) randomly, the Euclidean distances

between each residual δ(Z, N ) and each group center δ
(0)
i

are calculated. Then, the residual is assigned to the group
with the nearest group center. Next, the new group center is
recalculated as the mean value of the residuals in this group:

δ
(t )
i = 1

Ni

∑
ci

δ(Z, N )|ci , (1)

where ci represents the group label. δ(Z, N )|ci is the residual
in the group ci, and Ni indicates the number of the residuals in
this group. By iterative calculations with the procedure men-
tioned above, the group centers can converge to final stable
classification values δi, and the assignment of the residuals to
groups is not further changed [71]. The residuals δ(Z, N ) in
each group are recalibrated as the final classification value δi.

In Table I, we present an example for the classification
with the k-means method, in which the residuals of 3245
nuclei are separated into ten groups. The theoretical mass
values are calculated by the RMF model with NL3* param-
eter set [73], and the experimental data are taken from the
AME2016 [69]. The intervals of these ten groups are shown in
Table I with their classification values δi displayed. Residuals
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TABLE I. An example of the classification by the k-means algo-
rithm with ten groups and the corresponding classification values δi.
The number of the residuals in each group is given as well.

Intervals (MeV) δi (MeV) Ni

(−∞, −12.48) δ1 = −15.8 17
(−12.48, −7.00) δ2 = −8.91 82
(−7.00, −4.03) δ3 = −5.01 277
(−4.03, −2.24) δ4 = −3.05 404
(−2.24, −0.70) δ5 = −1.42 440
(−0.70, 0.67) δ6 = 0.03 496
(0.67, 1.91) δ7 = 1.31 558
(1.91, 3.16) δ8 = 2.51 494
(3.16, 4.74) δ9 = 3.81 358
(4.74, +∞) δ10 = 5.68 119

δ(Z, N ) = Mexp − Mth in each interval are recalibrated as the
corresponding δi.

B. Prediction from the iNBP classifier

Based on the classification table presented in Table I, the
residuals δ(Zt , Nt ) for certain nuclei with proton number Zt

and neutron number Nt are predicted by the iNBP classifier in
this part. Supposing the proton numbers and neutron numbers
are independent, the posterior probability P(δi| Zt , Nt ) of a
certain classification value δi given Zt and Nt can be calcu-
lated from the prior probabilities P(Zt ), P(Nt ), P(δi ) and the
conditional probabilities P(Zt | δi ), P(Nt | δi ) with the Bayesian
formula [65]

P(δi| Zt , Nt ) = P(Zt , Nt | δi )P(δi )

P(Zt , Nt )
= P(Zt | δi )P(Nt | δi )P(δi )

P(Zt )P(Nt )
.

(2)

The prior probabilities P(Zt ), P(Nt ), and P(δi ) repre-
sent the occurrence frequencies of features Zt , Nt , and δi

in the sample, respectively. The conditional probabilities
P(Zt | δi ) and P(Nt | δi ) represent the occurrence frequencies
of features Zt and Nt in the group with the classification
values δi.

In order to take into account the local relations between the
neighboring nuclei, a weight function is further introduced in
calculating the prior and conditional probabilities:

w(Z, N ) = exp

[
− (Z − Zt )2 + (N − Nt )2

2ρ2

]
. (3)

The weight function Eq. (3) models the spatial dependence of
the nearby nuclei. There is only one parameter ρ in Eq. (3).
For different predicted nuclei, the parameter ρ is the same.
In Eq. (4) of Ref. [63], an exponential quadratic covariance
kernel is defined in Gaussian processes (GP) to take into ac-
count the correlations between the masses of different nuclei.
In this paper, the role of the weight function of the iNBP
method is similar to the kernel function of the GP method in
Ref. [63].

During the studies, the variance ρ of Eq. (3) is set to be
ρ = 3. Then the prior probabilities P(Zt ), P(Nt ), P(δi ) in the

Bayesian formula Eq. (2) are converted to Pwt(Zt ), Pwt(Nt ),
and Pwt(δi ):

P(Zt ) =
∑

Z,N
δZ,Zt∑

Z,N
1

−→ Pwt(Zt ) =
∑

Z,N
δZ,Zt × w(Z, N )∑

Z,N
w(Z, N )

,

P(Nt ) =
∑

Z,N
δN,Nt∑

Z,N
1

−→ Pwt(Nt ) =
∑

Z,N
δN,Nt × w(Z, N )∑

Z,N
w(Z, N )

,

P(δi ) =
∑

δ=δi
1∑

Z,N
1

−→ Pwt(δi ) =
∑

δ=δi
w(Z, N )∑

Z,N
w(Z, N )

, (4)

where δZ,Zt is the Kronecker δ function. The summation∑
Z,N 1 represents the amount of the nuclei in the sample set,

and the summation
∑

δ=δi
1 represents the number of nuclei in

the group with classification values δ = δi.
Similarly, the expressions of the conditional probabilities

P(Zt | δi ), P(Nt | δi ) are also converted to Pwt(Zt | δi ), Pwt(Nt | δi ):

P(Zt | δi ) =
∑

δ=δi
δZ,Zt∑

δ=δi
1

−→ Pwt(Zt | δi )

=
∑

δ=δi
δZ,Zt × w(Z, N )∑
δ=δi

w(Z, N )
,

P(Nt | δi ) =
∑

δ=δi
δN,Nt∑

δ=δi
1

−→ Pwt(Nt | δi )

=
∑

δ=δi
δN,Nt × w(Z, N )∑
δ=δi

w(Z, N )
. (5)

The parameter ρ in Eq. (3) can describe the contributions
of the adjacent nuclei to the target nucleus. The smaller the
value of ρ, the greater the contributions of the adjacent nuclei.
When ρ → ∞, the weight function w(Z, N ) → 1 in Eqs. (4)
and (5), and all the nuclei contribute equally to the predicted
nucleus in the Bayesian formula Eq. (2). The smaller the value
of ρ, the higher for the improvement of the accuracy of the
iNBP method. However, for too small ρ, the weight function
Eq. (3) for certain predicted nucleus is very small, and in this
case, the prediction cannot be made. Because for very small
ρ, the prior probabilities P(Z ) or P(N ) are very close to zero
for certain nuclei in Bayesian formula Eq. (2), which causes
the posterior probabilities for different classification values
δi cannot be calculated. By comprehensivly considering the
prediction accuracy and the number of the predicted nuclei,
we finally choose ρ = 3 in the paper. Detailed discussion is
presented in Sec. III B to illustrate the influences of values of
ρ on the prediction accuracy and the number of the predicted
nuclei.

It should be noted that the law of total probability is also
satisfied after introducing the weight functions:

Pwt(Zt (Nt )) =
∑

Pwt(Zt (Nt )| δi )Pwt(δi ),

Pwt(δi ) =
∑

Pwt(δi| Zt (Nt ))Pwt(Zt (Nt )), (6)

which reflects the fundamental relations between conditional
probabilities Eqs. (5) and the prior probabilities Eqs. (4).
The law of total probability Eqs. (6) ensures the adjusted
posterior probability Pwt(δi| Zt , Nt ) still satisfies the Bayesian
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TABLE II. The prediction of residual for 29Si with Zt = 14 and
Nt = 15, based on ten classification values of Table I. The sample
set contains 3245 nuclei with Z � 8, except the predicted nucleus
29Si. The prior probabilities Pwt(δi ) and conditional probabilities
Pwt (Zt | δi ), Pwt(Nt | δi ) are also presented in this table, where the
weight functions are introduced during the calculations.

δi (MeV) Pwt(δi ) Pwt(Zt | δi ) Pwt(Nt | δi ) Pwt(δi| Zt , Nt )

−15.8 0 0 0 0
−8.91 8.3 × 10−3 0 0 0
−5.01 3.0 × 10−2 0 0 0
−3.05 8.0 × 10−2 5.1 × 10−2 9.7 × 10−2 1.8 × 10−2

−1.42 4.3 × 10−2 6.6 × 10−2 6.4 × 10−2 8.4 × 10−3

0.03 0.16 9.7 × 10−2 7.8 × 10−2 5.5 × 10−2

1.31 0.13 6.5 × 10−2 0.21 8.4 × 10−2

2.51 0.24 2.1 × 10−2 0.23 5.4 × 10−2

3.81 0.19 0.29 8.4 × 10−2 0.22
5.68 0.12 0.32 0 0

formula. Combining Eqs. (4) and (5), the posterior prob-
abilities Pwt(δi| Zt , Nt ) can be calculated by the Bayesian
formula Eq. (2). By comparing the posterior probabilities
Pwt(δi| Zt , Nt ) of each δi, the residual δm with the maximum
Pwt(δm| Zt , Nt ) is regarded as the predicted residual of the
nucleus (Zt , Nt ).

As an example of the iNBP method, we refine the theoret-
ical nuclear mass of 29Si to illustrate the prediction process.
There are 3245 nuclei with Z � 8 in AME2016 whose ex-
perimental masses are known. The raw residuals δ(Z, N ) are
calculated by the RMF model with the NL3* parameter set
[73]. The sample set contains 3245 nuclei in AME2016, ex-
cept 29Si itself. All the residuals δ(Z, N ) are grouped into
ten classes in Table I, and recalibrated as representing clas-
sification values δi. The prior probabilities Pwt(δi ), Pwt(Zt =
14), Pwt(Nt = 15) and the conditional probabilities Pwt(Zt =
14| δi ), Pwt(Nt = 15| δi ) are calculated using Eqs. (4) and (5),
and presented in Table II. Thereafter the posterior probability
Pwt(δi| Zt = 14, Nt = 15) of each classification value δi are
updated by the Bayesian formula Eq. (2), which is also pre-
sented in Table II.

One can see in Table II that the classification value δ9 =
3.81 MeV has the maximum posterior probability Pwt(δ9| Zt =
14, Nt = 15) = 0.22, which is much larger than those of other
classification values. Therefore, the estimated residuals δest

of 29Si are chosen to be δ9 = 3.81 MeV. For 29Si, the raw
theoretical binding energy from the RMF model is Braw =
241.06 MeV. By applying the iNBP method, the refined the-
oretical binding energy is Brefi = Braw + δest = 244.87 MeV.
Compared with the experimental data Bexp = 245.01 MeV,
we obtain a 96% improvement of the accuracy for 29Si.
It should be mentioned that, though all the data in the
AME2016 are used as an input, most of the nuclei have
little contributions to the prior and conditional probabilities
in Eq. (2), due to the introduction of the weight function. For
the 29Si, about 5% of AME2016 data contribute to the final
predictions.

C. Assessment criteria for model accuracy and uncertainties

The assessment criteria for the predicted results and the
associated uncertainties are presented below. The standard
deviation σrms can quantify the quality of the global deviations
between theoretical results and experimental data for a certain
model, and it is defined with

σ 2
rms = 1

X

X∑
i=1

(
Mi

exp − Mi
th

)2
, (7)

where X represents the total number of the nuclei in the data
set. By comparing the standard deviations before and after the
application of the iNBP method, we can evaluate the power of
nuclear mass prediction of this method.

As a statistical model always produces a nondeterministic
inference, the assessment for its uncertainty is essential. For
the iNBP method, the uncertainties are contributed from the
variety of the classification tables. The predictions in Table II
are based on the classification table given in Table I. If we
choose other classification tables, different results will be
obtained. In this paper we choose 51 different classification
tables whose number of groups varies from 10 to 60. The
predicted nuclear mass 〈M〉 is the mean value of all estimated
M obtained from 51 classifications tables. The uncertainty of
the result �M is

�M =
√

〈M2〉 − 〈M〉2, (8)

where 〈M2〉 is the mean value of the square of the mass.

III. RESULTS

In this section, the theoretical nuclear masses are refined
following the iNBP method, with the raw results calculated
within the semiempirical model FRDM, the nonrelativistic
HFB model, and the relativistic RMF model, respectively.
51 classification tables are used to generate predictions. The
global optimizations are carried out and the extrapolating
capabilities of the iNBP method are assessed. Moreover, to
intuitively test the validity of the iNBP method, we present the
corrections for the nuclear binding energies of the Ca isotopic
chains outside of the AME compilation.

A. Global optimization of iNBP method

We first analyze the performances of the iNBP method
in global optimizations. 3245 nuclei with Z � 8 in the
AME2016 [69] are chosen as the entire set. The theoretical
binding energies for each nuclei in the entire set are calculated
by the FRDM model, the HFB model with UNEDF1 parame-
ter set [74], and the RMF model with NL3* parameter set [73],
respectively. Then the corresponding raw residual δraw(Z, N )
for each nucleus is obtained. In Table III, we present the
standard deviations σpre of the theoretical masses for 3245
nuclei in the entire set.

After the calculations of the nuclear masses, the iNBP
method is further applied to refine the theoretical results.
The sample set for each target nucleus includes 3245 nuclei
in AME2016 except the target nucleus itself. Firstly, each
residual is classified into a certain group by the k-means
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TABLE III. The standard deviation σpre (MeV) from theoretical
models and σpost (MeV) from the iNBP method. 3245 nuclei in
AME2016 with Z � 8 are chosen as the entire set.

Models FRDM HFB RMF

σpre 0.89 2.11 3.35
σpost 0.33 0.56 1.34
�σ/σpre 63% 73% 60%

algorithm and recalibrated as a corresponding classification
value δi. For the targeted nucleus (Zt , Nt ), the prior proba-
bilities Pwt(Zt (Nt )), Pwt(δi ) and the conditional probabilities
Pwt(Zt (Nt )| δi ) are calculated with Eqs. (4) and (5). With
these probabilities, the posterior probabilities Pwt(δi| Zt , Nt )
are given for each classification values δi by the Bayesian for-
mula Eq. (2). The classification value δm with the maximum
posterior probability is identified as the estimated residual of
the target nucleus. Repeating this procedure 51 times with
different classification tables and averaging the estimated
residuals, we can obtain the final predicted residual of the
targeted nucleus. Adding the predicted residual to the raw the-
oretical nuclear mass, we finally obtain the corrected nuclear
mass.

We also calculate the σpost for the corrected nuclear masses
from the iNBP method. The power of the global optimization
of the iNBP method can be quantified as the relative change of
the standard deviation, �σ/σpre = (σpre − σpost )/σpre. In Ta-
ble III one can see that convincing improvements are obtained
with the iNBP refinement. For the FRDM model, the standard
derivation is σpost = 0.33 MeV after the iNBP corrections, and
the accuracy of the descriptions on the nuclear mass improves
by 63%. For the HFB model, after the iNBP refinements the
standard derivation σpost becomes 0.56 MeV, and the accuracy
of the descriptions on the nuclear mass improves by 73%.
For the RMF model, the standard deviation is improved to
σpost = 1.34 MeV, with a 60% reduction in σ after the iNBP
refinements.

To illustrate graphically the performance of the iNBP
method in refining mass predictions, in Fig. 1 we compare
the raw residuals and the corrected residuals of 3245 nuclei
in the entire set. Raw residuals from the FRDM, HFB, and
RMF models are displayed on the left panels and the corrected
residuals from the iNBP method are on the right panels. It can
be seen from Fig. 1 that the iNBP method greatly improves the
accuracy of the descriptions of the nuclear masses, especially
on the region of heavy nuclei for the FRDM model, and the
nuclei near the drip line for the HFB and RMF models.

Overall, by combining the iNBP method with the empirical
and microscopic models and utilizing data, we arrive at a
stronger predictive power for nuclear masses. This suggests
that the iNBP method incorporates the mass information of
nuclei with the same Z or N in a statistical way, and pro-
vides necessary and rational corrections to the results from
mean-field theories. However, it should be noticed that there
is a limitation of the iNBP method. Specifically, predictions
cannot be made for nuclei with the proton number or neutron
number absent from the sample set, because the prior prob-

FIG. 1. Left panels: Raw residuals δraw of theoretical nuclear
masses for the FRDM model, the HFB model, and the RMF
model with respect to the entire set, which includes 3245 nuclei in
AME2016. Right panels: The corresponding corrected residuals δcorr

of nuclear masses by the iNBP method. The values of the standard
deviations before and after the iNBP refinements on the entire set are
also presented in the figure.

ability P(Z ) or P(N ) is zero in these cases. There are 3245
nuclei in the entire set. For the FRDM model, masses of 3240
nuclei can be predicted. For the HFB and RMF models, the
number of nuclei for which predictions can be made is 3242.
For the nuclei unpredicted by the iNBP method, the prior
probability Pwt(δi ) is regarded as the posterior probability
Pwt(δi| Zt , Nt ) as an approximation.

B. Extrapolating capabilities of the iNBP method

It is essential to investigate the capabilities of extrapolation
of the iNBP method, since extrapolation is more challenging
than interpolation. In this part, we analyze the extrapolating
capabilities of the iNBP method and illustrate the effect of
the value of ρ. Before the extrapolation, all 3245 nuclei with
Z � 8 in the entire set were assigned to the learning set and
the validation set. The learning set includes 3007 nuclei in the
AME2003 [70], and the validation set consists of the newly
added 238 nuclei in the AME2016 [69].

First, we assess the extrapolating capability of the iNBP
method based on the FRDM model. In Table IV we provide
the raw standard deviations σpre calculated by the FRDM
model for the learning set and the validation set. For the
learning set the deviation σpre is 0.87 MeV, and for the val-
idation set the deviation σpre is 1.16 MeV. This indicates that
the raw FRDM model extrapolates well. Then we employ the
iNBP method to make predictions for the validation set, where
the prior and the conditional probabilities are obtained from
data in the learning set. In Table IV we display the standard
deviations σpost for the learning set and the validation set after
the iNBP corrections. The relative change of the standard
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TABLE IV. The standard deviation σpre (MeV) of nuclear masses
obtained from the raw FRDM, HFB, and RMF models, and the
standard deviation σpost (MeV) after the iNBP corrections. The entire
set includes 3245 nuclei with Z � 8 in the AME2016 compilation.
The learning set includes 3007 nuclei with Z � 8 in AME2003
compilation, and the validation set includes newly added 238 nuclei
in AME2016 compilation.

Learning set Validation set Entire set

Models FRDM HFB RMF FRDM HFB RMF FRDM HFB RMF

σpre 0.87 2.08 3.20 1.16 2.45 4.90 0.89 2.11 3.35
σpost 0.34 0.56 1.38 0.50 1.06 2.81 0.33 0.56 1.34
�σ/σpre 61% 73% 57% 57% 57% 43% 63% 73% 60%

deviation �σ/σpre is used to quantify the improvements of
the accuracy of the mass predictions. From Table IV it can be
seen that by applying the iNBP method on the FRDM model,
the accuracy of the prediction for the validation set improves
by 57%. Compared with the improvement for the learning set
(61% for the standard deviation reduction), one can see the
iNBP method has a reliable extrapolating capability.

Besides the FRDM model, the extrapolating capabilities of
the iNBP method are also discussed based on the HFB model
and the RMF model. According to the calculations by the
HFB model, for the learning set the raw standard deviation
σpre = 2.08 MeV, and for the validation set σpre = 2.45 MeV,
which illustrates the HFB model has the extrapolating ability.
Similarly, the nuclear masses in the validation set are pre-
dicted by the iNBP method based on the learning set. For the
validation set, we obtain a 57% improvement on the mass de-
scriptions after the iNBP corrections from the relative change
between σpre and σpost. Compared with the relative changes of
the standard deviation of the learning set (73% improvement),
we demonstrate a robust extrapolating ability for the iNBP
method when applied to the HFB model.

For the RMF model, the raw prediction results are also
presented in Table IV. For the learning set the raw standard
deviation is σpre = 3.20 MeV, and for the validation set it is
σpre = 4.90 MeV. This indicates the RMF model also has the
extrapolating capability. With the iNBP refinements, we ob-
tain a 57% reduction in the standard deviation for the learning
set and a 43% reduction for the validation set. Compared with
the relative changes between σpre and σpost for the learning set
and the validation set, one can see the iNBP method also has
the definite extrapolating capability when applied on the RMF
model.

Furthermore, we display the corrected results for the nuclei
with relatively large raw residuals in Table V. For nuclei with
the raw residuals | δraw| > 12 MeV in the validation set, we
present the associated corrected residuals | δcorr| . In Table V
one can see impressive improvements in the mass predictions
after the iNBP corrections. For example, the raw residual for
220Np is | δraw| = 12.60 MeV. After the iNBP corrections,
the corrected residual is | δcorr| = 3.22 MeV, where a 74%
improvement is obtained. This is because the inner mass rela-
tions between the neighboring nuclei are implicit in the iNBP
method, unlike in the mean-field theories.

TABLE V. Nuclei in the validation set with raw residuals |δraw| >

12 MeV, calculated by the RMF model with NL3* parameter set, and
the corrected residuals |δcorr|, following the corrections from iNBP
method. All residuals are in MeV.

Z N |δraw| |δcorr|
89 131 13.09 4.18
90 131 13.37 4.46
91 127 12.09 3.18
91 130 16.25 0.43
91 131 15.65 0.17
91 132 13.53 4.62
92 130 16.29 0.47
92 131 14.79 1.03
93 126 12.48 3.35
93 127 12.60 3.22
93 132 14.52 1.31
93 133 14.08 5.17

The results of Tables IV and V indicate that the iNBP
method has good extrapolating capabilities. The improve-
ments on the validation set show the stability of the iNBP
method in extrapolations, and illustrate the rationality of the
approach that incorporates local mass relations through the
Bayesian formula. This improves the success of the iNBP
method in predicting the masses of the unknown nuclei. There
are also limitations for the iNBP extrapolations. As we already
mentioned, if the proton number or the neutron number of
a nucleus is absent from the learning set, the nuclear mass
cannot be predicted by the iNBP method. There are 238 nuclei
in the validation set. For the FRDM model, 229 corrected
nuclear masses are obtained. For the HFB model, we obtain
234 corrected nuclear masses, and for the RMF model we
obtain 233 corrected nuclear masses. For the unpredictable
nuclei, we also use the prior probability Pwt(δi ) as the posterior
probability Pwt(δi| Zt , Nt ) as an approximation.

The value of ρ in weigh function Eq. (3) also influences the
predicted abilities of the iNBP method. In Table VI we present
the predicted abilities of different ρ2 for the extrapolation in
the case of the NL3* parameter set. One can see that as the
value of ρ2 decreases, the predicted accuracy of iNBP method
is gradually improved. However, for too small ρ, the weight
function can be very small, and in this case the prediction

TABLE VI. The predicted abilities of different ρ2 in weight
function for the extrapolation. The raw nuclear masses are calcu-
lated by the RMF model with NL3* parameter set. The learning
set includes 3007 nuclei with Z � 8 in the AME2003 compilation,
and the validation set includes newly added 238 nuclei in AME2016
compilation. Nunpre represents the number of nuclei which cannot be
predicted by the iNBP method.

ρ2 σpre σpost �σ/σpre Nunpre

1 4.90 2.63 46% 16
3 4.90 2.67 45% 8
9 4.90 2.81 43% 5
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FIG. 2. (a) The theoretical and experimental binding energies for
the Ca isotopes. The red circles represent raw results from the FRDM
model and the blue circles represent the corrected results from the
iNBP method. (b) The same as (a), but for the corrections on the
results of HFB model. (c) The same as (a), but for the corrections on
the results of RMF model.

cannot be made for certain predicted nucleus, which has been
discussed in Sec. II B of this paper. By comprehensive consid-
ering the prediction accuracy and the number of the predicted
nuclei for different nuclear models, we finally choose ρ = 3
in the paper.

C. Predictions of nuclear mass outside the AME compilation

As a follow-up to the previous discussions, we present a
further illustration of the iNBP refinements by considering nu-
clear chains outside the AME compilation. The neutron-rich
Ca isotopes are chosen as candidates. At present, the heaviest
Ca isotopes observed is 60Ca [75], and the predicted drip
line is up to 70Ca [62]. Compared with the odd-A nuclei, the
even-even nuclei are more bound, and the 2n drip line extends
further away. With the 3245 nuclei of Z � 8 in AME2016 as
the learning set, the binding energies of even-even isotopes
of 58–70Ca are predicted and presented in Fig. 2. The raw
theoretical values obtained by the FRDM model [23], the
HFB model with UNEDF1 parameter set [74], and the RMF
model with NL3* parameter set [73] are also presented in the
figures.

In Fig. 2(a), the raw binding energies of the isotopes
47–57Ca of the FRDM model are smaller than the experimental
data. However, after the iNBP refinements, the corrected bind-
ing energies can well reproduce the experimental data, which
can be attributed to the local mass correlations brought about
from the Bayesian formula Eq. (2). From Figs. 2(b) and 2(c),
one can also see that satisfactory improvements are obtained
after the iNBP corrections on the raw results of HFB and
RMF models. This also shows the considerable effects of the
embedded local mass relations on the descriptions of nuclear
binding energies.

In order to exhibit the validity of iNBP method, the extrap-
olations towards the neutron drip line are carried out for the
FRDM, HFB, and RMF models in Figs. 2. From the calcula-
tions of three base models, the raw binding energies of 68,70Ca
are almost equal to each other, which means the 2n drip line
located around the 70Ca in theoretical predictions. However,
the binding energies of 60−70Ca obtained from the HFB model
are nearly 5 MeV smaller than those from the FRDM and
RMF models. After the iNBP refinements, the predicted nu-
clear mass of isotopes 60–64Ca for the three models are very
close to each other, which means the extrapolations outside
the AME compilation with the different base models are in
agreement. For 68,70Ca, its neutron number is too far from the
AME data set, and the impacts of the raw results are much
larger than existing experimental data in AME compilation.
This causes the corrected results of RMF model is still larger
than those of FRDM and HFB models.

The essence of the iNBP method can be reflected in Fig. 2.
The sophisticated semiempirical models and mean-field the-
ories convincingly describe the global changing trends of
nuclear binding energies, and the descriptions can be system-
atically fine-tuned by the iNBP method. The extrapolations
in Fig. 2 further suggest that the iNBP method captures
effects of residual interactions missing in the FRDM and
mean-field approaches, which results in visible corrections
on the binding energies. Therefore, the iNBP method can be
applied to predict the nuclear mass outside the AME tables.
In follow-up studies, we will further take into account more
results of different energy density functionals and consider
the impacts of model mixing to study the extent of bound
nuclei.

IV. SUMMARY

Nuclear mass is a basic and important characteristic in nu-
clear physics. Many successful theoretical models have been
proposed to describe nuclear masses, including the semiem-
pirical models and the microscopic theories. Besides these, in
recent years statistical methods such as neural networks have
also been implemented to improve the descriptions on nuclear
masses. In our previous work, we applied the naive Bayesian
probability (NBP) classifier to refine the nuclear charge radii.
In the present paper, an improved naive Bayesian probability
(iNBP) classifier is further proposed to address the predictions
of nuclear masses. There are two main innovations in the
iNBP method. On one hand, a classification is given in terms
of the k-means algorithm; on the other hand, the local mass
relationships between neighboring nuclei are induced with the
weight functions.

Global optimizations and extrapolating capabilities have
been discussed in assessing the effectiveness of the iNBP
method. First, we analyze the global optimizations of the
method. Our results demonstrate that the iNBP method can of-
fer considerable and reasonable corrections within the global
description of nuclear masses. Second, the extrapolating ca-
pabilities of the iNBP method are analyzed. We use the iNBP
method to predict the nuclear masses of the nuclei newly
added in AME2016, based on the data in AME2003. Com-
pared the relative changes of the standard deviation �σ/σpre
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for the learning set and the validation set, one can see the
iNBP method has reliable extrapolating capabilities. Finally,
the iNBP corrections for the isotopes outside the AME com-
pilation are exhibited in Fig. 2 to provide qualitative insights.
The extrapolations with the different base models outside the
AME compilation are in agreement with each other, which
indicates the iNBP method can predict nuclear masses in the
unknown regions. Combining the global optimizations and
extrapolating analysis, we find that the iNBP method can
provide necessary fine adjustments on the robust trends of
binding energies from sophisticated nuclear models, and the
corrected binding energies well reproduce the experimental
data.

With the application of the iNBP method, the description
of the nuclear masses is significantly improved. This is due to
the local relations statistically taken into account by the iNBP
method. Theoretical nuclear models convincingly describe
the principal changing trends of nuclear masses, and iNBP
method provides sizable and reliable fine-tuning. In iNBP
method, the Bayesian formula reflects the statistical mass
relations of the nuclei with the same Z and N , and the weight

functions include the local mass correlations between the
neighboring nuclei. The extrapolation results obtained from
the iNBP method can provide support for the experimental
studies on masses of exotic nuclei near the drip line. The iNBP
method proposed in this paper can also be used to study other
nuclear properties such as nuclear decay, nuclear charge radii,
and nuclear reactions.
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[2] S. Ćwiok, P.-H. Heenen, and W. Nazarewicz, Nature (London)
433, 705 (2005).

[3] B. Sun, R. Knöbel, Y. A. Litvinov, H. Geissel, J. Meng et al.,
Nucl. Phys. A 812, 1 (2008).

[4] S. Péru and M. Martini, Eur. Phys. J. A 50, 88 (2014).
[5] D. Bai and Z. Ren, Phys. Rev. C 101, 034311 (2020).
[6] J. Giovinazzo, B. Blank, M. Chartier, S. Czajkowski, A. Fleury,

M. J. Lopez Jimenez, M. S. Pravikoff, J.-C. Thomas, F. de
Oliveira Santos, M. Lewitowicz, V. Maslov, M. Stanoiu, R.
Grzywacz, M. Pfützner, C. Borcea, and B. A. Brown, Phys. Rev.
Lett. 89, 102501 (2002).

[7] M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier
et al., Eur. Phys. J. A 14, 279 (2002).

[8] N. Wan, C. Xu, and X. Zhang, J. Phys. G 47, 055107
(2020).

[9] P. Möller, D. G. Madland, A. J. Sierk, and A. Iwamoto, Nature
(London) 409, 785 (2001).

[10] S. Panebianco, J.-L. Sida, H. Goutte, J.-F. Lemaître, N. Dubray,
and S. Hilaire, Phys. Rev. C 86, 064601 (2012).

[11] D. Regnier, N. Dubray, N. Schunck, and M. Verrière, Phys. Rev.
C 93, 054611 (2016).

[12] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82,
035804 (2010).

[13] D. Martin, A. Arcones, W. Nazarewicz, and E. Olsen, Phys.
Rev. Lett. 116, 121101 (2016).

[14] P.-C. Chu, Y. Zhou, X.-H. Li, and Z. Zhang, Phys. Rev. D 100,
103012 (2019).

[15] J. Hakala, J. Dobaczewski, D. Gorelov, T. Eronen, A. Jokinen,
A. Kankainen, V. S. Kolhinen, M. Kortelainen, I. D. Moore,
H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen,
V. Sonnenschein, and J. Äystö, Phys. Rev. Lett. 109, 032501
(2012).

[16] B. Franzke, H. Geissel, and G. Münzenberg, Mass Spectrom.
Rev. 27, 428 (2008).

[17] R. Kalpakchieva, H. G. Bohlen, W. von Oertzen, B. Gebauer,
M. von Lucke-Petsch, T. N. Massey, A. N. Ostrowski, T. Stolla,
M. Wilpert, and T. Wilpert, Eur. Phys. J. A 7, 451 (2000).

[18] B. H. Sun, Y. A. Litvinov, I. Tanihata, and Y. H. Zhang, Front.
Phys. 10, 1 (2015).

[19] G. T. Garvey and I. Kelson, Phys. Rev. Lett. 16, 197 (1966).
[20] J. Barea, A. Frank, J. G. Hirsch, P. Van Isacker, S. Pittel, and V.

Velázquez, Phys. Rev. C 77, 041304(R) (2008).
[21] J. Piekarewicz, M. Centelles, X. Roca-Maza, and X. Viñas, Eur.

Phys. J. A 46, 379 (2010).
[22] Y. Y. Cheng, Y. M. Zhao, and A. Arima, Phys. Rev. C 89,

061304(R) (2014).
[23] P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data

Nucl. Data Tables 109-110, 1 (2016).
[24] N. Wang, M. Liu, and X. Wu, Phys. Rev. C 81, 044322 (2010).
[25] M. Liu, N. Wang, Y. Deng, and X. Wu, Phys. Rev. C 84, 014333

(2011).
[26] Y. Y. Zong, C. Ma, Y. M. Zhao, and A. Arima, Phys. Rev. C

102, 024302 (2020).
[27] L. Wang, J. Liu, T. Liang, Z. Ren, C. Xu, and S. Wang, J. Phys.

G 47, 025105 (2020).
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