Possible 3^+ state in ¹²Be from the ¹¹Be(d, p) reaction

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 25 May 2021; accepted 6 July 2021; published 16 July 2021)

A simple calculation indicates that the observed energy and width of a state at 6.02(15) MeV in ¹²Be, populated in the ¹¹Be(d, p) reaction, are consistent with expectation for the first 3⁺ state with dominant configuration ¹⁰Be(ground state) ×(2 $s_{1/2}$)(1 $d_{5/2}$).

DOI: 10.1103/PhysRevC.104.014314

I. INTRODUCTION

An extension of the investigation of the ¹¹Be(d, p) ¹²Be reaction [1,2] discovered a 0⁻ state at an excitation energy of $3.21^{+0.12}_{-0.04}$ MeV and a 2⁻ state (or a 2⁻/1⁻ doublet) at 4.44(15) MeV [3]. The spectrum also contained a third peak that was strong and reasonably narrow at 6.02(15) MeV. The choice of possible states near this energy that would be expected to be narrow and strong in this reaction is severely limited. Here, I examine the likely nature of this state.

II. CALCULATIONS AND RESULTS

The most likely candidate for this third peak is the first 3^+ state in ¹²Be whose dominant structure is ¹⁰Be[ground state (g.s.)] × $(2s_{1/2})(1d_{5/2})$. I can use a simple model to estimate its expected energy. In ¹⁸O, the energy of the first 3^+ state is well described by the expression $E_{2n}(3^+) = E_d + E_s + V_{ds}(3^+)$, where E_d and E_s are the neutron energies of the $5/2^+$ and $1/2^+$ first excited states, respectively, in ¹⁷O, and the value of the two-body matrix element is $V_{ds}(3^+) = 0.607$ MeV [4].

A model that has been quite successful in reproducing energies and other properties of $(sd)^2$ states in many light nuclei is one in which local single-particle energies are used, but the two-body matrix elements are taken to be the same in different nuclei (and taken from ¹⁸O) [5–7]. Applied to ¹²Be, this model would predict $E_{2n}[^{12}\text{Be}(3^+)] = E_d + E_s + V_{ds}(3^+)$ where now E_d and E_s are the $5/2^+$ and $1/2^+$ energies in ¹¹Be, and V_{ds} (3⁺) is still 0.607 MeV. This expression provides $E_{2n} = 1.380$ MeV. Details of the calculation are given in Table I. With the 2n threshold at 3.673 MeV in ¹²Be [8], the resulting excitation energy is 5.053 MeV. But this is not the excitation energy relative to the physical $^{12}Be(g.s.)$. Rather, it is the excitation energy relative to the energy of the first $(sd)^2 0^+$ state. A g.s. wave function in common use has g.s. $= a(sd)^2 + b(p \text{ shell})$ with $a^2 = 0.68$, $b^2 = 0.32$ [9]. The excited 0^+ state at 2.24 MeV [10] has the orthogonal configuration. With these wave functions, the $(sd)^2 0^+$ state is at 0.717 MeV in ¹²Be so that $E_x(3^+) = 5.77$ MeV is the expected 3⁺ excitation energy relative to the physical ¹²Be g.s.

This is quite close to the observed energy of 6.02(15) MeV. Other 0^+ wave functions [1,2,11] have more $(sd)^2$ in the first excited 0^+ state. Using them would increase the predicted 3^+ energy slightly.

This 3⁺ state would have two main modes of decay: emission of a $d_{5/2}$ neutron to the $1/2^+$ g.s. of ¹¹Be and emission of a $s_{1/2}$ neutron to the $5/2^+$ state. Because the $5/2^+$ state is unbound, the latter would appear as a 2n decay, the former as 1n decay, of course. Because of its unnatural parity, simultaneous 2n decay to ¹⁰Be(g.s.) is forbidden. A reasonable spectroscopic factor for this 3⁺ state is in the range of S = 0.5-0.7. I can use the decay energies and a potential model to estimate the sp widths for the two decays. The sp width for decay to the g.s. is about 1.1 MeV. Widths for *s*-wave neutron decays are notoriously difficult to calculate, but they vary as $E_n^{1/2}$. In the absence of a barrier, the sp width can be approximated as

$$\Gamma_{sp} \approx \hbar/(\text{fly-by time}) = \hbar v/D = \hbar (2E_n/m_n)^{1/2}/D$$

= $2[(\hbar^2/2m_n)]^{1/2}E_n^{1/2}/D.$

Here, v is the magnitude of the velocity, and D is a measure of the nuclear diameter. In the MeV-amu-fm system of units, $\hbar^2/2m_n$ is 20.7, and I use $D \approx 4A^{1/3}$ [D is approximately twice $(R_0 + 2a)$, where a is the diffusivity], resulting in $\Gamma_{sp} \approx 1E_n^{1/2}$ with both Γ_{sp} and E_n in MeV.

Thus, the *s*-wave *sp* width of the $5/2^+$ state is about 1.03 MeV—very close to the g.s. *sp* decay width. Thus, one prediction of the present estimate is that the 1*n* and 2*n* decays of the 3⁺ state should be about equal. With S = 0.5-0.7, the expected total width is about 1.1–1.5 MeV, consistent with the observed width of 1.3(3) MeV. The width of the 6.02-MeV peak is clearly larger than that of the other two peaks. The experimental resolution width is about 1.0–1.2 MeV [3].

Another pair of states that should be strong in the (d, p) reaction is the 1⁺, 2⁺ states with configuration $(2s_{1/2})(1d_{3/2})$, but the 2⁺ state of that configuration should be above 8.5 MeV with 1⁺ even higher.

TABLE I. Energies (MeV) relevant to the first 3⁺ state in ¹²Be.

Quantity	Value
E_s	-0.503
E_d	1.276
V_{ds} (3 ⁺)	0.607
E_{2n} (3 ⁺)	1.380
$E_x (3^+)$	5.053 ^a
$E_x (3^+)$	5.77 ^b

^aCalculated energy relative to the first $(sd)^2 0^+$.

^bCalculated energy relative to the physical ¹²Be(g.s.).

III. SUMMARY

Using a simple model, I have calculated the expected energy and width for the first 3^+ state of ¹²Be with dominant configuration ¹⁰Be(g.s.) × $(2s_{1/2})(1d_{5/2})$. Both energy and width are consistent with observation for a peak at 6.02(15) MeV in the ¹¹Be(*d*, *p*) reaction.

ACKNOWLEDGMENT

I am grateful to J. L. Lou and J. Chen for informative correspondence.

- [1] J. Chen et al., Phys. Rev. C 98, 014616 (2018).
- [2] J. Chen *et al.*, Phys. Lett. B **781**, 412 (2018).
- [3] J. Chen et al., Phys. Rev. C 103, L031302 (2021).
- [4] R. D. Lawson, F. J. D. Serduke, and H. T. Fortune, Phys. Rev. C 14, 1245 (1976).
- [5] H. T. Fortune, M. E. Cobern, S. Mordechai, G. E. Moore, S. Lafrance, and R. Middleton, Phys. Rev. Lett. 40, 1236 (1978).
- [6] H. T. Fortune, Phys. Rev. C 89, 067302 (2014).
- [7] H. T. Fortune, Phys. Rev. C 91, 044321 (2015).
- [8] F. Ajzenberg-Selove, Nucl. Phys. A506, 1 (2004).
- [9] R. Sherr and H. T. Fortune, Phys. Rev. C 60, 064323 (1999).
- [10] S. Shimoura et al., Phys. Lett. B 560, 31 (2003).
- [11] Le Xuan Chung et al., Phys. Lett. B 774, 559 (2018).