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The quantum-number-projected generator coordinate method (QNPGCM) is applied to the neutron-rich Ge
and Se isotopes where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed
as an effective interaction. The energy spectra calculated with both axial and triaxial deformations are compared
to the shell-model results and the experimental data. In both cases, the QNPGCM reproduces well the energy
levels of the even-spin yrast states. However, the QNPGCM results by only assuming axial deformations are not
satisfactory enough to reproduce the energy levels of the quasi-γ bands. Taking account of triaxial deformations
is essentially important to describe the yrast and quasi-γ bands simultaneously.
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I. INTRODUCTION

The atomic nuclei exhibit, in general, prolate deformations,
when some nucleons are added to a spherical closed-shell
nucleus. On the other hand, they become oblate shapes when
some nucleons are extracted from the spherical closed-shell
nucleus. Neutron-rich 32Ge and 34Se isotopes in the mass A ≈
80 region have several valence protons outside the closed-
shell Z = 28 and several neutron holes with respect to the
close-shell N = 50. As a result, these nuclei are neither pro-
late nor oblate and may have triaxial deformations.

There are many theoretical and experimental studies to
investigate the triaxial characteristics of the even-even nuclei
in the mass A ≈ 80 region [1–12]. These results show that the
γ degree of freedom plays an important role in describing
these nuclei. After the triaxial deformation has been estab-
lished, a further question is whether this triaxiality has a γ -soft
(γ -unstable) or γ -rigid deformation. There are two simple
elementary models that describe these triaxialitys. The γ -soft
model of Wilets and Jean [13] has nearly flat potential minima
in the γ direction, whereas the rigid triaxial model of Davy-
dov and Filippov [14] has deep potential minima for some
γ deformation. The characteristics that distinguish between
the γ -rigid and the γ -soft nuclei can be seen in the energy
staggering of even-odd spin states in the quasi-γ band [15].

The experimental evidence for rigid triaxiality in 76Ge was
reported by Toh et al. [5]. In the paper, the staggering pattern
of the energy levels in the quasi-γ band suggested γ -rigid
deformation. A similar experimental result was also reported
on the neighboring nucleus, 74Ge [8]. The triaxiality of the
low-lying states in Ge and Se isotopes was theoretically in-
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vestigated in terms of the multiquasiparticle triaxial projected
shell model (TPSM) [6]. In order to reproduce the experimen-
tal data for both the yrast and the quasi-γ bands of 76Ge, it
was shown that a fixed triaxial deformation with γ = 30◦ is
required in the TPSM calculation, which is consistent with the
result of the rigid triaxial model [14]. The low-lying states in
the even-even 72–82Ge isotopes were calculated in the frame-
work of nuclear density functional theory [7]. The analysis
indicated that the mean-field potential of 76Ge was γ soft and
did not support the interpretation of γ -rigid deformation.

One of the purposes in the present paper is to inves-
tigate the important role played by the triaxial degree of
freedom for the low-lying states especially for the quasi-γ
bands. In order to achieve this end, we apply the quantum-
number-projected generator coordinate method (QNPGCM)
to 78Ge, 76Ge, 80Se, and 78Se. The model space and the
effective Hamiltonian were defined in our previous shell-
model studies in this region [16,17]. In the present QNPGCM
scheme, wave functions in each neutron or proton space are
constructed separately, and many-body wave functions for
an even-even nucleus are constructed as linear combinations
of them. Intrinsic states among identical nucleons are de-
termined from the Nilsson BCS model [18,19]. In order to
clarify the triaxiality of the low-lying states in Ge and Se
isotopes, we calculate the potential-energy surface (PES) with
the quadrupole deformations (β, γ ). Energy spectra and E2
transition rates are also calculated by assuming axial and triax-
ial deformations and compared to the shell-model results and
the experimental data. The QNPGCM results reveal important
effects of the triaxial components.

The paper is organized as follows. In Sec. II, the framework
of the QNPGCM and its form of the effective interac-
tions in the model space are presented. In Sec. III the
QNPGCM calculations are carried out for the even-even nu-
clei 78Ge, 76Ge, 80Se, and 78Se. The principal results are
summarized in Sec IV.
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II. THEORETICAL FRAMEWORK

The previous QNPGCM studies [20–23] made it clear that,
for a description of the nuclear collective and single-particle
motions in a transitional region, the angular momentum of
the neutron system (Iν) and that of the proton system (Iπ )
should be projected out separately, and the total spin I is
constructed by the angular momentum coupling. Thus, in the
present QNPGCM scheme, the angular momentum projection
is performed separately in each neutron or proton space. To
generate functions for the QNPGCM, we employ the Nilsson
BCS intrinsic states |�τ (βτ , γτ )〉 for either the neutron (τ =
ν) or the proton (τ = π ) system, where βτ and γτ indicate
axial and triaxial quadrupole deformations, respectively. Nei-
ther angular momentum Iτ nor the valence nucleon number Nτ

are good quantum numbers for the conventional Nilsson BCS
intrinsic state [18,19]. However, in the present scheme, we
construct the intrinsic state that conserves the valence nucleon
number Nτ .

The ρth QNPGCM wave function with angular momentum
Iτ and its projection Mτ in either neutron (τ = ν) or proton
space (τ = π ) is given by

∣∣	 (τ )
Iτ Mτ ρ

〉 =
∑

i

Iτ∑
K=−Iτ

F Iτ i
KρP̂Iτ

Mτ K |�τ (βi, γi )〉, (1)

where P̂Iτ
Mτ K is the spin projection operator [24] and i stands

for a representative point with deformation (β, γ ). The weight
functions F Iτ i

Kρ and the QNPGCM energies EIτ ρ are determined
by solving the Hill-Wheeler equation for each deformation
(βi, γi ),

∑
j

Iτ∑
K ′=−Iτ

[〈�τ (βi, γi )|Ĥτ P̂Iτ
KK ′ |�τ (β j, γ j )〉

×EIτ ρ〈�τ (βi, γi )|P̂Iτ
KK ′ |�τ (β j, γ j )〉]F Iτ j

K ′ρ = 0, (2)

under the normalization condition,〈
	

(τ )
Iτ Mτ ρ

∣∣	 (τ )
I ′
τ M ′

τ ρ
′
〉 = δIτ I ′

τ
δρρ ′δMτ M ′

τ
, (3)

where Ĥτ represents the interaction among like nucleons. Fi-
nally, a many-body wave function for an even-even nucleus
can be made from the angular momentum coupling of neutron
and proton wave functions as

|	IM (IνρIπσ )〉 = [∣∣	 (ν)
Iνρ

〉 ⊗ ∣∣	 (π )
Iπσ

〉](I )

M

≡
∑

MνMπ

(IνMνIπMπ |IM )
∣∣	 (ν)

IνMνρ

〉∣∣	 (π )
Iπ Mπ σ

〉
,

(4)

where I and M are the total spin and its projection, re-
spectively, and (IνMνIπMπ |IM ) stands for a Clebsch-Gordan
coefficient. Here the symbol ⊗ denotes the angular momen-
tum coupling of the neutron angular momentum Iν and the
proton angular momentum Iπ to the total angular momentum
I .

The Nilsson BCS intrinsic state |�τ (β, γ )〉 appearing in
Eq. (1) is constructed by the following procedure. First we
consider the Nilsson Hamiltonian for either neutron space

(τ = ν) or proton space (τ = π ),

ĥ(τ )
Nilsson =

∑
jm

ε jc
†
jmτ c jmτ

− h̄ωβ

b2

[
cos γ Q̂0τ − sin γ√

2
(Q̂2τ + Q̂−2τ )

]
, (5)

where ε j represents the single-particle energy in the orbital
j, c†

jmτ (c jmτ ) represents a nucleon creation (annihilation)
operator, and ( j, m) represents a set of quantum numbers nec-
essary to specify the spherical single-particle state (n, �, j, m).
The notation of the Nilsson Hamiltonian follows those of
Refs. [20,21]. The quadrupole operator Q̂Mτ is defined by

Q̂Mτ =
∑
j1 j2

Qj1 j2 [c†
j1τ

c̃ j2τ ](2)
M

=
∑

j1 j2m1m2

Qj1 j2 ( j1m1 j2m2|2M )c†
j1m1τ

c̃ j2m2τ , (6)

with

c̃ jmτ = (−1) j−mc j−mτ , (7)

Qj1 j2 = −〈 j1|r2Y (2)| j2〉√
5

. (8)

In the present scheme, harmonic-oscillator basis states with
the oscillator parameter b = √

h̄/Mω are used as the single-
particle basis states. The major shell separation energy h̄ω (in
units of MeV) is assumed to follow the conventional relation,

h̄ω = 41A−1/3. (9)

The Nilsson Hamiltonian in Eq. (5) is diagonalized in terms
of the spherical single-particle basis state | jmτ 〉 = c†

jmτ |−〉 as

ĥ(τ )
Nilsson|ατ 〉 = eατ |ατ 〉, (10)

where |ατ 〉 and eατ are the Nilsson single-particle state and
Nilsson single-particle energy, respectively, and α is an ad-
ditional quantum number required to completely specify the
state. Here eigenenergies are sorted in increasing order as
eα1τ � eα2τ � · · · . The Nilsson single-particle state |ατ 〉 =
b†

ατ |−〉 is related with the spherical basis state | jmτ 〉 as

|ατ 〉 =
∑

jm

Fjm,ατ | jmτ 〉. (11)

Using the Nilsson single-particle creation operator b†
ατ , the

many-body Nilsson states are written as

|�τ (β, γ )〉 =
Nτ∏

α=1

b†
ατ |−〉, (12)

where Nτ represents the valence particle number. The positive
parity is always ensured as a good quantum number for the
many-body Nilsson states.

Next, in order to include the pairing correlation, we per-
form the Bardeen-Cooper-Schrieffer (BCS) calculation for
the Nilsson single-particle states. The BCS Hamiltonian con-
sists of the Nilsson single-particle energies and the monopole
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pairing (MP) interaction,

ĥ(τ )
BCS =

∑
α>0

eατ (b†
ατ bατ + b†

ᾱτ bᾱτ )

−G0τ

∑
α,β>0

b†
ατ b†

ᾱτ bβ̄τ bβτ , (13)

where bατ represents a Nilsson single-particle annihilation
operator and ᾱ indicates the time reversal of state α. The
strength of the MP interaction is taken to be the same as used
in the shell-model calculation. By solving the BCS equations,
we obtain the Nilsson BCS intrinsic state,∣∣	 (τ )

BCS(β, γ )
〉 =

∏
α>0

(uατ + vατ b†
ατ b†

ᾱτ )|−〉, (14)

where uατ and vατ are the unoccupied and occupied ampli-
tudes for state α, respectively. As the Nilsson BCS intrinsic
state |	 (BCS)

τ (β, γ )〉 does not conserve the valence particle
number Nτ , a state with a good particle number is obtained
by using the following relation:

|�τ (β, γ )〉 = N
(∑

α>0

vατ

uατ

b†
ατ b†

ᾱτ

)Nτ /2

|−〉, (15)

where N denotes the normalization. Then, the QNPGCM
wave function in Eq. (1) is generated using this number con-
served BCS state. For some deformation points, the BCS
equation does not have any solutions. In such a situation
(normal phase), the Nilsson intrinsic state in Eq. (12) is used.

As an effective two-body interaction, we employ the
pairing plus quadrupole-type interaction. The effective shell-
model Hamiltonian is written as

Ĥ = Ĥν + Ĥπ + Ĥνπ , (16)

where Ĥν, Ĥπ , and Ĥνπ represent the neutron interaction,
the proton interaction, and the neutron-proton interaction, re-
spectively. The interaction among like nucleons Ĥτ (τ = ν

or π ) consists of spherical single-particle energies, MP inter-
action, quadrupole-pairing (QP) interaction, and quadrupole-
quadrupole (QQ) interaction,

Ĥτ =
∑

jm

ε jτ c†
jmτ c jmτ

−G0τ P̂†(0)
τ P̂(0)

τ − G2τ P̂†(2)
τ · ˜̂P(2)

τ − κτ :Q̂τ · Q̂τ :, (17)

where : : denotes normal ordering and the operator Q̂τ is the
quadrupole operator defined by Eq. (6). The MP operator P†(0)

τ

and the QP operators P†(2)
Mτ , P̃(2)

Mτ are defined as

P̂†(0)
τ =

∑
j

√
2 j + 1

2
Â†(0)

0τ ( j j), (18)

P̂†(2)
Mτ =

∑
j1 j2

Qj1 j2 Â†(2)
Mτ ( j1 j2), (19)

˜̂P(2)
Mτ = (−)M[P̂†(2)

−Mτ ]†, (20)

where the value of Qj1 j2 is given by Eq. (8). The creation
operator of a pair of nucleons in the orbitals j1 and j2 with

TABLE I. Adopted single-particle energies ε jτ for neutron holes
(τ = ν) or proton particles (τ = π ) in units of MeV.

j 0g9/2 1p1/2 1p3/2 0 f5/2

ε jν 0.0 0.5 1.0 3.0
ε jπ 3.3 1.1 0.6 0.0

a total angular momentum J and its projection M is defined as

Â†(J )
Mτ ( j1 j2) =

∑
m1m2

( j1m1 j2m2|JM )c†
j1m1τ

c†
j2m2τ

= [c†
j1τ

c†
j2τ

](J )
M . (21)

The interaction between neutrons and protons Ĥνπ is taken
as

Ĥνπ = −κνπ Q̂ν · Q̂π , (22)

where the operator Q̂τ is the quadrupole operator. The detailed
framework of the model is reported in Refs. [16,25].

Finally, the effective Hamiltonian in Eq. (16) is diagonal-
ized in terms of the many-body wave functions in Eq. (4) as

Ĥ
∣∣Iπ

η

〉 = E
(
Iπ
η

)∣∣Iπ
η

〉
, (23)

where |Iπ
η 〉 is the normalized eigenvector for the ηth state with

total spin I and parity π and E (Iπ
η ) is the eigenenergy for state

|Iπ
η 〉. Here angular momentum projection M is abbreviated.

III. NUMERICAL RESULTS

For the nuclei in the mass A ≈ 80 region, several valence
neutron holes and valence proton particles are coupled to
the doubly closed 78Ni core. Since the valence neutron holes
(proton particles) occupy the 0 f5/2, 1p3/2, 1p1/2, and 0g9/2

orbitals, we take into account the full 28 � N (Z ) � 50 config-
uration space for neutrons (protons) where valence neutrons
(protons) are treated as holes (particles).

For the single-particle energies and the interaction
strengths, we have used exactly the values given by the set
of equations used in the previous shell-model study of A ≈
80 nuclei [16] without any further modification. The single-
particle energies ε jτ (τ = ν or π ) employed in the present
calculations are listed in Table I.

In order to reproduce overall spectra of the even-even and
odd-mass nuclei in the mass A ≈ 80 region, linear depen-
dences of the interaction strengths on the valence neutron
and/or proton numbers was introduced. The determined set
of interactions is as follows (G0 of MP interaction in units
of MeV, and G2 of the QP interaction, and κ of the QQ
interaction, both in units of MeV/b4),

G0ν = 0.16 + 0.03N̄ν,

G2ν = 0.042 + 0.008N̄ν,

κν = 0.31 − 0.01N̄ν − 0.015Nπ ,

G0π = 0.30 − 0.01N̄ν − 0.01Nπ ,

G2π = 0.06 − 0.002N̄ν − 0.006Nπ ,
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FIG. 1. The contour plot of the energy gain on the β-γ plane calculated for 78Ge with (a) the neutron interaction, (b) the proton interaction,
(c) the QQ interaction between neutrons and protons, and (d) the total Hamiltonian. The contour line separation energy is 0.5 MeV. The point
where the energy gain takes its minimum is indicated by the symbol × (cross).

κπ = 0.08 + 0.015N̄ν − 0.005Nπ ,

κνπ = −0.20. (24)

Here N̄ν represents the number of valence neutron holes, and
Nπ represents the number of valence proton particles.

In the present paper we carry out the numerical analysis
in terms of the QNPGCM. Their results are compared with
those in the shell model. As for the single-particle energies
and the strengths of the effective interaction, we use the same
values given above. The detailed framework of the shell model
is presented in Ref. [16].

A. Potential-energy surface

Using the set of the interaction strengths determined above,
we calculate the PES on the β-γ plane for the Nilsson BCS
states. The potential energy for either the neutron system (τ =
ν) or the proton system (τ = π ) is defined as

Eτ (β, γ ) = 〈�τ (β, γ )|Ĥτ |�τ (β, γ )〉, (25)

where Ĥτ represents the interaction among like nucleons in
Eq. (17) and |�τ (β, γ )〉 is the Nilsson BCS state in Eq. (15).

In this paper, the QNPGCM wave functions are constructed
in each neutron or proton space separately, and the many-body
wave function for an even-even nucleus is constructed as
linear combinations of the wave functions in Eq. (4). Thus,
the present QNPGCM includes the many-body wave functions
made by different deformations of the neutron and proton
spaces. In order to examine underlying physics, we now cal-

culate the PES for the neutron-proton interaction assuming
that they have same deformations, i.e., (β, γ ) = (βν, γν ) =
(βπ, γπ ). The potential energy between neutrons and protons
is defined as

Eνπ (β, γ ) = −κνπ

∑
M

(−1)MQMν (β, γ )Q−Mπ (β, γ ), (26)

with

QMτ (β, γ ) = 〈�τ (β, γ )|Q̂Mτ |�τ (β, γ )〉. (27)

Using Eqs. (25) and (26), the potential energy for the total
Hamiltonian is defined as

E (β, γ ) = Eν (β, γ ) + Eπ (β, γ ) + Eνπ (β, γ ). (28)

Figure 1(a) and 1(b), respectively, show the contour plots of
the PESs for neutron and proton interactions of 78Ge. In each
neutron or proton space, the minimum of the PES exhibits
zero deformation (β = 0) and almost no barrier in the γ direc-
tion. Concerning the β direction, the PES for the proton space
shows a shallower slope compared with that for the neutron
space.

In Fig. 1(c), the contour plots of the PES for the neutron-
proton interaction are presented. In contrast to the neutron
and proton spaces, the potential energy becomes maximum
at zero deformation and decreases monotonically as β defor-
mation increases. This difference arises from the treatment
of the valence neutrons and protons. In the present paper
valence neutrons are treated as holes, and valence protons are
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FIG. 2. The same as Fig. 1 but for 76Ge.

treated as particles. Thus, the quadrupole interaction strength
between neutrons and protons κνπ is taken as negative.

In Fig. 1(d), the contour plots of the PES in Eq. (28) are
presented. A minimum of the PES appears at deformation
(β, γ ) = (0.14, 60◦), and the minima are very flat in the direc-
tion of the γ degree of freedom. This means that 78Ge exhibits
γ -soft triaxiality in the low-lying structure.

Figure 2 shows the contour plots of the PES for 76Ge. Like
78Ge, the energy minima are located at spherical shapes for
both neutron and proton spaces. The present calculation also
shows that the potential energy between neutrons and protons
is maximum at zero deformation and gradually decreases as
deformation β increases. Although the total potential-energy
minimum for the total Hamiltonian appears at deformation
(β, γ ) = (0.16, 60◦), the energy surfaces are soft with respect
to the γ direction. The previous studies suggested that 76Ge
may be a rare example of a nucleus exhibiting γ -rigid defor-
mation in their low-lying structure [5,6]. However, the present
result of the PES does not support the interpretation of γ -rigid
triaxiality.

Figures 3 and 4 show the contour plots of the PES for
80Se and 78Se, respectively. The physical situation for these
nuclei deviates from the cases of Ge isotopes. For both nuclei,
the proton PESs present areas drawn in white color on the
upper right side. In these areas, the Nilsson BCS model fails
in giving numerical solutions, and the Nilsson intrinsic state
is used to calculate the potential energy. The effect of the
unsolved BCS equations is also visible in the PESs for the
neutron-proton interaction, which are rather flat around these
regions. Concerning 78Se, the potential energy for the total
Hamiltonian is very shallow in the γ direction, although the
energy has its minimum for prolate deformation. As for 80Se,
triaxial minimum is seen, but the PES shows the γ softness
similar to 78Se.

B. Energy spectra

In order to see the effect of triaxially deformed shapes
explicitly, the QNPGCM calculations are carried out in two

FIG. 3. The same as Fig. 1 but for 80Se.

cases: (i) triaxial deformations (nine deformation points) with
β = 0.10, 0.20, 0.30, γ = 10◦, 30◦, 50◦; (ii) only axial de-
formations (49 points) with β = 0.00, 0.02, 0.04, . . . , 0.48,
and γ = 0◦, 60◦.

In Fig. 5, the theoretical energy spectra in the triaxial
QNPGCM and the axial QNPGCM are compared with the
experimental data for 78Ge. The energy spectrum of the shell
model taken from Ref. [16] is also shown in this figure. In
both cases of triaxial and axial deformations, not only the
low-lying yrast sequence is almost perfectly described, but
also a sudden decrease in the level spacing between 6+

1 and 8+
1

states in the yrast band is well reproduced. As for other excited
states, the QNPGCM calculation performed by assuming tri-
axial deformations is in good agreement with the shell-model
results especially for the 2+

2 , 3+
1 , 5+

1 , and 7+
1 states, which are

members of the quasi-γ band. However, their energy levels

FIG. 4. The same as Fig. 1 but for 78Se.
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FIG. 5. Comparison of the experimental energy spectrum with those in various models for 78Ge. (a) Experimental energy levels, taken
from Refs. [3,11,26]. (b) Calculated energy levels in the shell model [16], (c) in the triaxial QNPGCM, and (d) in the axial QNPGCM.

calculated by assuming only axial deformations appear higher
in energy than the shell-model ones.

In Fig. 6, the theoretical energy spectra in the triaxial and
axial QNPGCM are compared with the shell-model results
and the experimental data for 76Ge. The triaxial QNPGCM
calculations well reproduce the correct positions of the even-

spin yrast states as well as the 2+
2 , 3+

1 , 4+
2 , 5+

1 , 6+
2 , 7+

1 , and
8+

2 states in the quasi-γ band. Concerning the axial QNPGCM
calculation, a good correspondence with the shell-model re-
sults is achieved for the energy levels of the yrast states.
However, the axial QNPGCM result is not satisfactory enough
to describe the energy levels of the quasi-γ band.

FIG. 6. The same as Fig. 6 but for 76Ge. The experimental data are taken from Refs. [5,27].
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FIG. 7. The same as Fig. 6 but for 80Se. The experimental data are taken from Ref. [28].

Figures 7 and 8 show the theoretical spectra for 80Se and
78Se, respectively, compared with the experimental data. Like
Ge isotopes, the triaxial QNPGCM calculations almost per-
fectly reproduce the energy levels in the shell model. With
respect to the even-spin states of both the yrast band and the
quasi-γ band, the axial QNPGCM gives better agreement with
the shell-model results than those of Ge isotopes. However,
concerning the odd-spin states, there is a large discrepancy

between the energy levels in the axial QNPGCM and shell-
model results.

Apparently, for all the nuclei the QNPGCM calculations
performed by assuming triaxial deformations are in excel-
lent agreement with the shell-model results. However, the
description of the odd-spin states in the quasi-γ band is poorly
reproduced when assuming only the axially symmetric shape.
This means that the triaxial components play an essential role
in the description of these states in the quasi-γ band.

FIG. 8. The same as Fig. 6 but for 78Se. The experimental data are taken from Ref. [26].
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FIG. 9. Comparison of the theoretical staggering parameters S(I )
for the quasi-γ bands in (a) 78Ge, (b) 76Ge, (c) 80Se, and (d) 78Se with
experimental data. The filled circles, and the filled diamonds repre-
sent the parameters in the shell model and in the triaxial QNPGCM,
respectively. The open squares represent the experimental data, cal-
culated by using the excitation energies in Refs. [3,5,11,26,26–28].

In order to examine the staggering pattern of the energy
levels in the quasi-γ band, we calculate the staggering param-
eter [15]. The staggering parameter S(I ) is defined as

S(I ) = [E (I ) − E (I − 1)] − [E (I − 1) − E (I − 2)]

E (2+
1 )

, (29)

where E (I ) is the eigenenergy for the state in the quasi-γ band
with total spin I .

In Fig. 9, theoretical staggering parameters S(I ) for
the quasi-γ bands in the triaxial QNPGCM are compared
with the shell-model results and the experimental ones. For
78Ge, 76Ge, and 78Se, the even-odd staggering of the S(I )
values is observed in experiment. Concerning Ge isotopes,
the shell-model calculations almost perfectly reproduce the
experimental ones, especially the phase irregularity occurring
around total spin I = 7 in 78Ge. For 78Se, the staggering
amplitude in the shell model is larger compared with the
experimental ones, but the staggering pattern is in phase.
The triaxial QNPGCM calculations successfully reproduce
the shell-model results.

Since 5+
1 and 71

1 states for 80Se are not measured in ex-
periment, the staggering parameter is obtained only for the
total spin I = 4, which becomes negative. The theoretical S(4)
values in both the shell model and the triaxial QNPGCM are
smaller than the experimental ones, but there exists a one-to-
one correspondence between the theoretical and experimental
levels.

The energy staggering of even-odd spin states in the quasi-
γ band of 78Ge was considered as evidence for γ -rigid
triaxiality. As shown in Fig. 9 the staggering pattern is out of
phase with that in Se isotopes. However, in the present paper
good agreements between theoretical staggering patterns and
experimental ones are clearly seen, although the total potential
energy for 78Ge is very shallow in the γ direction. This fact

FIG. 10. Comparison of the theoretical B(E2) values for the
yrast states of (a) 78Ge, (b) 76Ge, (c) 80Se, and (d) 78Se with exper-
imental data. The filled circles, the filled diamonds, and the filled
triangles represent the transitions in the shell model, in the triax-
ial QNPGCM, and in the axial QNPGCM, respectively. The open
squares represent the experimental data, taken from Refs. [2,10,29–
32].

implies that calculating the staggering parameter is insuffi-
cient to distinguish between the γ -rigid and the γ -soft nuclei.

C. E2 transitions and electric quadrupole moments

The E2 transition rate is calculated as

B
(
E2; Iπ

η → Jπ
ξ

) = 1

2I + 1

∣∣〈Jπ
ξ

∥∥T̂ (E2)
∥∥Iπ

η

〉∣∣2
, (30)

where |Iπ
η 〉 is the normalized eigenvector in Eq. (23). Here the

E2 transition operator is defined as

T̂ (E2; M ) = eνQ̂Mν + eπ Q̂Mπ , (31)

where eτ (τ = ν or π ) represents the effective charge of the
nucleon and Q̂Mτ is the quadrupole operator defined by Eq. (6)
with the oscillator parameter b = 1.005A1/6 fm. The effec-
tive charges are assumed to follow the conventional relation
eπ = (1 + δ)e and eν = −δe, and the adopted values are eν =
−0.65e and eπ = 1.65e, which are taken from Ref. [16].

In Fig. 10, the B(E2) values for the yrast states in the shell
model [16] are compared with those in the axial QNPGCM
and the triaxial QNPGCM. The experimental B(E2) values
are also shown in this figure. In 78Ge and 80Se, the shell-
model results exhibit sudden decreases in the B(E2) values
between the 6+

1 and the 8+
1 states. This anomalous behavior

is attributed to a band crossing between the ground-state band
and the aligned neutron (0g9/2)2 band [16]. Concerning the
QNPGCM results, it is found that theoretical E2 transition
rates in both the triaxial and the axial QNPGCM agree well
with the shell-model results. In 76Ge and 78Se, the shell-
model results gradually increase as total spin I goes up. The
triaxial QNPGCM calculations successfully reproduce these
shell-model behaviors. However, the axial QNPGCM fails in
reproducing the B(E2) values in the shell model. These dis-
crepancies may suggest that the deformation obtained by the
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TABLE II. Comparison of the absolute B(E2) values (in Weisskopf units) obtained by the shell model (SM) and the triaxial QNPGCM
(QNPGCM) with the experimental data (Expt.). The experimental data are taken from Refs. [27,31,33]. No experimental data are available for
78Ge.

78Ge 76Ge 80Se 78Se

Iπ
i → Iπ

f SM QNPGCM SM QNPGCM Expt. SM QNPGCM Expt. SM QNPGCM Expt.

2+
2 → 2+

1 32.7 31.8 33.8 32.3 29.9+0.3
−0.8 28.4 27.4 14.0+1.7

−1.4 29.3 35.5 20 ± 4
2+

2 → 0+
1 1.48 <0.01 1.54 2.02 0.83+0.20

−0.18 <0.01 0.02 1.1 ± 0.1 <0.01 0.96 0.65+0.17
−0.15

3+
1 → 2+

2 39.5 39.2 40.1 40.6 20+2
−3 20.9 21.3 18.3 17.0

3+
1 → 4+

1 22.4 22.4 20.4 21.1 14+6
−3 11.0 10.4 14.3 13.1

3+
1 → 2+

1 2.54 0.53 2.63 3.50 0.50 ± 0.06 0.13 0.07 2.02 2.48
4+

2 → 2+
2 1.46 9.60 10.6 11.4 12.9 ± 0.3 17.3 19.4 24.4+6.2

−11.3 28.2 29.0
4+

2 → 3+
1 0.19 1.77 0.57 0.02 24+2

−5 0.04 0.10 0.22 0.86
4+

2 → 4+
1 0.89 4.60 9.87 11.0 22 ± 1 10.4 13.6 18.1 18.3

4+
2 → 2+

1 <0.01 0.30 <0.01 0.01 2.8+1.4
−0.7 <0.01 0.01 0.005+1.06

−0.005 0.09 0.13
0+

2 → 2+
2 0.01 0.02 0.63 <0.01 62.6 63.0 1.2+0.5

−1.2 89.7 92.2
0+

2 → 2+
1 0.20 0.22 <0.01 0.13 0.47 0.63 7.0+1.2

−1.1 4.87 5.44

axial QNPGCM scheme is not satisfactory enough to describe
the even-spin yrast states. The triaxial components play an
essential role in the description of the low-lying states.

In Table II, the B(E2) values in low-lying states cal-
culated by the shell model and the triaxial QNPGCM are
compared with the experimental data. Unfortunately, very few
experimental data are available for 80Se and 78Se, and no data
are available for 78Ge. The basic features of the experimental
data are well reproduced except for the transitions of 4+

2 →
3+

1 in 76Ge and 0+
2 → 2+

1 in 80Se, which are smaller than those
in the shell model. It is noted that a good agreement between
the triaxial QNPGCM results and those in the shell model is
achieved for all the nuclei.

The electric quadrupole moment is calculated as

Q
(
Iπ
η

) = 〈
Iπ
η Iπ

η

∣∣Q̂0

∣∣Iπ
η Iπ

η

〉
, (32)

where the electric quadrupole operator is given by

Q̂M =
√

16π

5
(eνQ̂Mν + eπ Q̂Mπ ). (33)

The quadrupole operator Q̂M , the effective charges, and the
oscillator parameter are taken to be the same as used for the

E2 transition rates. The electric quadrupole moments obtained
by the shell model and the triaxial QNPGCM for the 2+

1 , 2+
2 ,

and 4+
1 states are shown in Table III together with the ex-

perimental data. There are some disagreements between the
theoretical quadrupole moments and the experimental data.
In particular, for 76Ge and 78Se the theoretical quadrupole
moments are positive for the 2+

1 states, whereas the opposite
behavior is shown in the experimental values. Even though
these theoretical quadrupole moments are different in their
signs from those of 78Ge and 80Se, the basic features of the
potential energy for the total Hamiltonian are the same for all
the nuclei.

In order to interpret the QNPGCM results, we calculate
relative B(E2) values between the low-lying states. In Ta-
ble IV, the relative B(E2) values in low-lying states calculated
by the shell model and the triaxial QNPGCM are compared
with those in the O(6) limit of the interacting boson model
(IBM) [35]. For all the nuclei, the shell model gives the results
almost identical to the O(6) limit, which is known to describe
γ -soft nuclei [35–37]. Concerning the triaxial QNPGCM re-
sults, the relative B(E2) values are well reproduced except
for the ratio from the 0+

2 state of 78Ge. The nucleus 78Ge has
fewer valence neutrons and protons compared with the other

TABLE III. Comparison of the electric quadrupole moments (in eb) obtained by the shell model (SM) and the triaxial QNPGCM
(QNPGCM) with the experimental data (Expt.). No experimental data are available for 78Ge.

78Ge 76Ge 80Se 78Se

States SM QNPGCM SM QNPGCM Expt. SM QNPGCM Expt. SM QNPGCM Expt.

2+
1 −0.038 −0.035 +0.122 +0.152 −0.19 ± 0.06a −0.187 −0.209 −0.31 ± 0.07c +0.186 +0.206 −0.22 ± 0.07c

−0.24 ± 0.02b −0.20+0.03
−0.02

d −0.20 ± 0.07e

2+
2 +0.041 +0.037 −0.123 −0.153 +0.26+0.02

−0.05
b +0.184 +0.205 +0.40 ± 0.02d −0.161 −0.178 +0.17 ± 0.09e

4+
1 −0.067 −0.068 +0.017 +0.027 −0.26+0.01

−0.07
b −0.210 −0.223 −0.64+0.08

−0.05
d +0.229 +0.256 −0.68 ± 0.15e

aTaken from Ref. [1].
bTaken from Ref. [27].
cTaken from Ref. [34].
dTaken from Ref. [33].
eTaken from Ref. [31].
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TABLE IV. Comparison of calculated relative B(E2) values obtained by the SM and the triaxial QNPGCM with the predictions of the O(6)
limit of the IBM [O(6)].

78Ge 76Ge 80Se 78Se

Iπ
i → Iπ

f SM QNPGCM SM QNPGCM SM QNPGCM SM QNPGCM O(6)

2+
2 → 2+

1 100 100 100 100 100 100 100 100 100
→ 0+

1 4.5 0.9 4.5 6.3 0.0 0.0 <0.1 2.7 0
3+

1 → 2+
2 100 100 100 100 100 100 100 100 100

→ 4+
1 57 57 50 52 53 49 78 77 40

→ 2+
1 6.4 1.3 6.4 8.6 0.6 0.3 11 15 0

4+
2 → 2+

2 100 100 100 100 100 100 100 100 100
→ 3+

1 13 18 5.4 0.1 0.2 0.5 0.8 3.0 0
→ 4+

1 61 48 93 97 60 70 64 63 91
→ 2+

1 0.1 3.1 <0.1 0.1 0.0 0.1 0.3 0.5 0
0+

2 → 2+
2 6.6 6.8 100 <0.1 100 100 100 100 100

→ 2+
1 100 100 0.9 100 0.8 1.0 5.4 5.9 0

nuclei, 76Ge, 80Se, and 78Se. The quadrupole collectivity is
not so pronounced, and the single-particle nature still dom-
inates. For an accurate description for such states, we need
to expand the model space to include further single-particle
degrees of freedom. This will be one of our next important
projects.

IV. SUMMARY

In this paper the QNPGCM is applied to 78Ge, 76Ge, 80Se,
and 78Se. In the present scheme, the proton and neutron wave
functions are constructed separately by using the QNPGCM,
and they are coupled through diagonalization of the total
Hamiltonian. The effective Hamiltonian employed in this pa-
per consists of the single-particle energies and the pairing
plus quadrupole-quadrupole interaction, whose strengths were
determined so as to describe the energy levels of the even-even
and odd-mass nuclei in the previous shell-model study [16].

To clarify the triaxiality in the low-lying structure, it is
desirable to calculate the total potential energy. For all the
nuclei, the energy surfaces are soft with respect to the γ

direction, which results in a different interpretation from the
rigid triaxiality.

The theoretical energy spectra obtained by assuming axial
and triaxial deformations are compared to the shell-model
results and the experimental data. In both cases, the QNPGCM
reproduces well the energy levels of the even-spin states in the
yrast bands. However, the QNPGCM results for axial defor-
mations are not satisfactory enough to reproduce the energy
levels of the quasi-γ bands.

The E2 transition rates along the yrast bands are also cal-
culated, and an excellent agreement between the B(E2) values
in the triaxial QNPGCM and shell-model results is clearly
seen. Concerning the axial deformation, there are a few dis-
crepancies between the QNPGCM results and the shell-model
ones. Taking account of triaxial deformations is essentially
important to simultaneously describe the yrast and quasi-γ
bands.

This physical situation is supported by further analyses,
i.e., by calculation of the relative B(E2) values for the low-
lying states. Calculated relative B(E2) values reproduce very
well the results in the O(6) limit of the IBM, which is known
to describe γ -soft nuclei. These results are in accord with the
analysis of the total potential energy.

In the present paper the triaxiality of the low-lying states
is investigated theoretically. The PES with the quadrupole
deformations (β, γ ) is found to be soft with regard to the γ

deformation for all the nuclei considered here. It was reported
in previous studies [38,39] that the model-independent sum
rules construct the parameters Q and δ from the E2 transition
rates of the low-lying states, which are related to the axial and
triaxial quadrupole deformation parameters β and γ . In our
future work we plan to calculate the Q and δ parameters with
the use of the theoretical E2 transition rates and compare them
with those obtained by the total potential energy.
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