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Octupole and quadrupole modes in radon isotopes using the proton-neutron interacting boson model
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We have performed a systematic study of the spectroscopic properties of the isotopic chain 214−226Rn using
the spdf -IBM-2 interacting boson model. This model includes octupole degrees of freedom, what allows the
description of negative- and positive-parity states with the same Hamiltonian. We discuss how this model is
able to describe the transition from vibrational to rotational spectra in these nuclei with a rather small set
of parameters, which were obtained to reproduce the properties of 214−222Rn. Then the calculations regarding
224,226Rn can be considered a prediction, which compares very well with recent experimental data.
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I. INTRODUCTION

The present study is motivated by the growing interest in
finding particles with nonzero permanent electric dipole mo-
ments (EDMs). The existence of such particles would imply
a violation of the time-reversal (T) symmetry at a level higher
than the one present in the standard model through a phase in
the Cabbiobo-Kobayashi-Maskawa matrix responsible for the
mixing of the quark flavors. Thus the existence of fundamental
interactions would be confirmed where the combined charge
(C) and parity (P) operation would be violated, assuming that
the CPT operation is a universal symmetry. Many extensions
of the standard model include sources of CP violation in a
natural way, such as supersymmetry theories, left- and right-
handed current models, or those with multiple Higgs bosons,
which in many cases are necessary to account for the imbal-
ance between matter and antimatter observed until now.

Atoms whose nuclei with odd mass number exhibit static
octupole deformation are good candidates for atomic EDM
experiments, where T violation can be constrained, because
the sensitivity can be enhanced 2–3 orders of magnitude
through the nuclear Schiff moment [1]. In this context,
radon, radium, or francium atoms have been proposed as
suitable for EDM measurements [2] because their nuclei ex-
hibit experimental signatures of octupole correlations such as
alternating-parity rotational bands and enhanced E1 and E3
transitions [3–5]. Although the octupole correlations reported
about them are dynamic, there are studies which show that the
Schiff moments are also enhanced [6–8].

In this work we decided as a first step to study the
chain 214−226Rn in a systematic way. There is only one re-
cent study of two of these nuclei (214,216Rn) using the shell
model [9]. Other studies consider radon isotopes with neu-
tron number below shell closure N = 126 using the shell
model [10] or the nucleon pair approximation model [11]. The
218,220,222Rn were also studied using the spdf -IBM-1 model in
Refs. [12,13]. Previous studies using this model were reported
in Refs. [14–17], but as far as we know none of them uses

the proton-neutron degree of freedom. In our study we use
the spdf -IBM-2 model for the first time, in which proton and
neutron bosons are distinguished. There exist very few works
with the octupole degree of freedom considered in which
proton and neutron bosons are distinguished. In Ref. [18],
sdf -IBM-2 is considered with emphasis on the dynamical
symmetry aspects of the model, while E1 transitions between
the 3−

1 and 2+
1,ms states are studied in Ref. [19]. In addition

there is a work [20] using sdf g-IBM-2 where one f boson
is considered in the calculations. More recently sdf -IBM-1
based in energy density theory has been applied to study
phase transitions in light actinide and rare-earth nuclei [21]
and spdf -IBM-1 has been used to unveil possible double
octupole phonon structure in 240Pu [22]. In our work we aim
to obtain a nuclear structure picture of the isotopes under
study from a phenomenological point of view. In addition,
our study represents a systematic study of even-even radon
isotopes from 214Rn to 226Rn for the first time, apparently
beyond the capabilities that the shell model can reach today
without a sizable truncation of the space model for the heav-
iest isotopes in the chain. The calculations were performed
considering the experimental information up to 222Rn. Just
very recently experimental information on 224Rn and 226Rn
has been released [23] and our results compare extremely well
with the experimental data.

II. THE spdf -IBM2 MODEL

The interacting boson model is a model designed to de-
scribe collective properties in atomic nuclei. This can be
considered an approximation of the shell model and there exist
several different ways to connect both models when proton
and neutron bosons are distinguished, as we do in this work.
Usually correlated pairs of valence nucleons coupled to the
integer angular momenta L and the parity π are treated as
bosons that can occupy orbitals characterized by the same
values of angular momenta and parity. Then the ground state
and the low-lying states in even-even nuclei are obtained from
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interactions between a system of N bosons allowed to occupy
the abovementioned orbitals, where N is the total number of
valence nucleons divided by 2.

In the spdf -IBM-2 model the bosons are allowed to occupy
the four orbitals Lπ = 0+, 1−, 2+, and 3−, which motivates
us to call those in each orbital s, p, d , and f bosons. As
we mentioned proton and neutron bosons are distinguished,
which corresponds to correlated pairs of protons and neutrons,
respectively. Using a second quantization formulation, cre-
ation and annihilation operators are introduced for each orbital
as s†

ρ , p†
ρ,α , d†

ρ,β , and f †
ρ,γ and as sρ , pρ,α , dρ,β , and fρ,γ , where

ρ = π is for protons and ρ = ν is for neutrons, and

α = −1, 0, 1, (1)

β = −2,−1, 0, 1, 2, (2)

γ = −3,−2,−1, 0, 1, 2, 3 (3)

are the magnetic quantum numbers. These operators satisfy
Bose commutation relations. The algebraic structure of the
model corresponds to Uπ (16) × Uν (16). To write the Hamil-
tonian of the system, spherical tensor operators are used for
the annihilation operators:

s̃ρ = sρ, (4)

p̃ρ,α = (−1)α pρ,−α, (5)

d̃ρ,β = (−1)βdρ,−β, (6)

f̃ρ,γ = (−1)γ fρ,−γ . (7)

The most general Hamiltonian contains a huge number
of terms and hence parameters. We used a restricted version
based in the Talmi Hamiltonian [24], which reduces drasti-
cally the number of parameters:

Ĥ = εp
(
n̂pπ

+ n̂pν

) + εd
(
n̂dπ

+ n̂dν

) + ε f
(
n̂ fπ + n̂ fν

)
+ κQ̂(2)

π · Q̂(2)
ν + M̂πν. (8)

This Hamiltonian is the natural extension of the one used in
Ref. [12] to include proton-neutron degrees of freedom. Here
the number operators read as n̂pρ

= −p†
ρ · p̃ρ , n̂dρ

= d†
ρ · d̃ρ ,

and n̂ fρ = − f †
ρ · f̃ρ , and εp, εd , and ε f are the boson energies

with respect to the s boson energy. We take εp = ε f because
microscopic considerations in Refs. [16,17] suggest that the
dipole and octupole pairs occur at the same order of magni-
tude in the intrinsic state. Actually these references justify
the use of a p boson to simulate the appearance of a dipole
nucleon pair with finite probability in the intrinsic state when
a Hamiltonian with spherical, quadrupole, and octupole mean
fields is used. Q̂(2)

ρ is the quadrupole operator:

Q̂(2)
ρ = [s†

ρ d̃ρ + d†
ρ s̃ρ](2) + χρ[d†

ρ d̃ρ](2)

+ χ ′
ρ[p†

ρ f̃ρ + f †
ρ p̃ρ](2) + χ ′′

ρ [p†
ρ p̃ρ + f †

ρ f̃ρ](2), (9)

where χρ , χ ′
ρ , and χ ′′

ρ are free parameters and M̂πν is the so-
called Majorana operator:

M̂πν = ξspM̂sp + ξsd M̂sd + ξs f M̂s f + ξd pM̂d p + ξdf M̂df ,

(10)

TABLE I. Values in MeV of the parameters used in this work.

Nucleus εd εp, f κ

214Rn 0.61 0.95 −0.001
216Rn 0.40 0.94 −0.001
218Rn 0.38 0.94 −0.030
220Rn 0.37 0.92 −0.050
222Rn 0.36 0.90 −0.050
224Rn 0.35 0.88 −0.050
226Rn 0.34 0.86 −0.050

where ξsp, ξsd , ξs f , ξd p, and ξdf are free parameters and

M̂sp = [s†
π p†

ν − s†
ν p†

π ](1) · [s̃π p̃ν − s̃ν p̃π ](1)

− 2[d†
ν p†

π ](1) · [d̃ν p̃π ](1), (11)

M̂sd = [s†
πd†

ν − s†
νd†

π ](2) · [s̃π d̃ν − s̃ν d̃π ](2)

− 2
∑

k=1,3

[d†
ν d†

π ](k) · [d̃ν d̃π ](k), (12)

M̂s f = [s†
π f †

ν − s†
ν f †

π ](3) · [s̃π f̃ν − s̃ν f̃π ](3)

− 2
∑

k=1,3,5

[ f †
ν f †

π ](k) · [ f̃ν f̃π ](k), (13)

M̂d p =
3∑

k=1

[d†
π p†

ν − d†
ν p†

π ](k) · [d̃π p̃ν − d̃ν p̃π ](k), (14)

M̂df =
5∑

k=1

[d†
π f †

ν − d†
ν f †

π ](k) · [d̃π f̃ν − d̃ν f̃π ](k). (15)

M̂sd is identical to the Majorana operator in the sd-IBM-2.
M̂sp and M̂s f are similar, but replacing the d-boson operator
with the p-boson and f -boson operators, respectively, as it
was done in Ref. [25] for the g-boson operator. M̂df was used
in Ref. [18] and M̂d p is similar, but replacing the f -boson op-
erator with the p-boson operator. The full Majorana operator
should include additional terms, but we postulate ξsp = ξs f

and ξd p = ξdf to reduce the number of free parameters and
to consider finally only three independent parameters.

III. RESULTS AND DISCUSSION

We have applied the spdf -IBM-2 model to the isotopic
chain 214−226Rn without any restriction in the number of
bosons of each kind, in contrast with other studies where, for
example, the number of p and f bosons is limited to one [13].
In Table I we quote in MeV the values of εd , εp = ε f and κ

which change from one nucleus to another. Their evolution is
smooth except for the jump given by εd from 214Rn to 216Rn.
The values of εd and εp = ε f for 224,226Rn were obtained fol-
lowing the linear behavior of the values for 218−222Rn while
the value of κ was maintained constant to −0.050 MeV, also
following the same trend in 220−222Rn. Note that εp = ε f > εd

guarantees that yrast states with Jπ = 1− and Jπ = 3− have
similar energies that are above the energy of the first excited
state Jπ = 2+. The values of the rest of the parameters remain
fixed and their values are χπ = χν = −1.3, χ ′

π = χ ′
ν = −1.3,
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FIG. 1. Each subfigure shows calculated (left) and experimental (right) level energies of yrast states below 2 MeV. The experimental data
were taken from Refs. [23,26–30].

χ ′′
π = χ ′′

ν = −1.3, ξsd = 0.07 MeV, ξsp = ξs f = 0.02 MeV,
and ξd p = ξdf = 0.10 MeV.

In Figs. 1 and 2 we show the calculated and experimen-
tal level energies. The experimental level schemes for both

parities are well reproduced in general. The mean devia-
tion between calculated and experimental energies is below
0.5 MeV. Only large differences are observed in 214Rn, whose
level scheme deviates from a vibrational spectrum as angu-
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FIG. 2. Same as Fig. 1, but here for 226Rn. The experimental data
were taken from Ref. [23].

lar momentum increases, in contrast to, for example, 216Rn,
whose level scheme is pretty similar to the one found in a
vibrator. The peculiar spectrum of 214Rn also happens in the
isotone chain N = 128 to which it belongs, something which
deserves a separate study with a different Hamiltonian or
using an extended set of parameters. In this work we fol-
lowed the premise to keep the parametrization as simple as
possible. For the rest of the nuclei the energy levels are well
reproduced, as was mentioned earlier, where a transition from
vibrational to rotational patterns is observed. With respect to
the negative-parity states, experimental information in 214Rn
and 216Rn is absent. However there are reported states without
angular momentum and parity assignments that eventually
could correspond to our calculations. 218Rn is the first nuclide
which shows a negative-parity band starting at 3−, although
our calculations show the same band starting at 1−. This
could be solved taking different values for εp and ε f with
εp > ε f for this particular nucleus, but we prefer to follow the
systematic behavior of the parameters. In 220Rn and 222Rn the
negative-parity band starts at 1−, almost degenerate with the
3− member of this band, which is nicely reproduced by our
calculations, except in 224Rn and 226Rn. The energy levels of
these nuclei were not used in the fitting process, because at the
time of performing the calculations experimental information
was absent. However we are aware of a recent publication
[23] where experimental information about these nuclei is
published. We calculated their level energies by extrapolating
the values of the parameters obtained in lighter nuclides, as

TABLE III. Values of the parameters used in Q(1) and Q(3).

L α(L)
π β (L)

π γ (L)
π α(L)

ν β (L)
ν γ (L)

ν

1 −1.5 −1.9 1.2 −1.3 −1.6 1.5
3 −50 58 −72 −91 68 −191

we mentioned at the beginning of this section. We can observe
that this extrapolation works fine in 224Rn for both parities, but
negative-parity states in 226Rn are underestimated with respect
to the experimental values.

Aside from the energy levels, we have calculated some
electric transition probabilities. In Table II we show the re-
duced transition probabilities B(E1) in Weisskopf units (W.u.)
calculated using the following operator:

Q(1) = e(1)
π Q(1)

π + e(1)
ν Q(1)

ν , (16)

where e(1)
π = e(1)

ν = 1 e fm are bosonic charges, and

Q̂(1)
ρ = α(1)

ρ [p†
ρ s̃ρ + s†

ρ p̃ρ](1) + β (1)
ρ [p†

ρ d̃ρ + d†
ρ p̃ρ](1)

+ γ (1)
ρ [d†

ρ f̃ρ + f †
ρ d̃ρ](1), (17)

with α(1)
ρ , β (1)

ρ , and γ (1)
ρ being parameters that allow us to

specify the relative weight of each term in Q̂(1)
ρ . Both the

bosonic charges and these parameters were kept fixed for
all the nuclides in the chain. In Table III the values of the
parameters are quoted. These were obtained using the Otsuka-
Arima-Iachello (OAI) method [32] to map the shell model
operator Q̂(1)

SM to Q̂(1) following the same steps in Ref. [33].
More details can be found in the Appendix. We observe that
the calculated values are less than 10−1 single-particle units
(spu), typically around 10−2 spu, except the transition 3− →
4+, which is strongly hindered. When we compare the calcu-
lated values with the experimental information in 220Rn the
agreement is reasonable in terms of the order of magnitude.
More experimental information would be desirable to confirm
if our calculations are accurate.

Table IV shows the reduced transition probabilities B(E2)
along with experimental data and values calculated using the
shell model (SM) only for 214Rn and 216Rn. Our calculated
quantities were obtained using the quadrupole operator

Q̂(2) = e(2)
π Q̂(2)

π + e(2)
ν Q̂(2)

ν , (18)

where Q̂(2)
ρ (ρ = π, ν) is given in Eq. (9) and the values of the

parameters χρ , χ ′
ρ , and χ ′′

ρ are the same as those used in the
Hamiltonian of Eq. (8) to obtain the states and their energies.

TABLE II. B(E1) transition probabilites in Weisskopf units between states of the negative-parity band and the ground-state band.
Experimental data of 220Rn were found in Ref. [31].

Jπ
i Jπ

f
214Rn 216Rn 218Rn 220Rn (Expt.) 220Rn 222Rn 224Rn 226Rn

1− 0+ 1.75 × 10−1 8.67 × 10−2 3.84 × 10−2 <1.5 × 10−3 6.34 × 10−3 8.09 × 10−4 7.81 × 10−4 7.76 × 10−3

1− 2+ 7.98 × 10−2 2.87 × 10−2 2.95 × 10−2 <3 × 10−3 8.43 × 10−3 2.57 × 10−3 3.76 × 10−6 2.52 × 10−3

3− 2+ 3.65 × 10−3 4.19 × 10−3 3.74 × 10−3 <20 × 10−4 4.05 × 10−4 7.17 × 10−5 3.02 × 10−6 1.72 × 10−6

3− 4+ 5.37 × 10−7 1.62 × 10−7 4.17 × 10−6 3.63 × 10−5 5.83 × 10−5 4.20 × 10−5 1.67 × 10−5

5− 4+ 7.54 × 10−3 7.98 × 10−3 2.40 × 10−3 3.0+2
−1.6 × 10−5 6.07 × 10−5 3.29 × 10−4 4.37 × 10−4 4.14 × 10−4

7− 6+ 1.16 × 10−2 1.22 × 10−2 1.68 × 10−3 <500 × 10−3 2.78 × 10−3 4.30 × 10−3 4.03 × 10−3 3.23 × 10−3
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TABLE IV. B(E2) transition probabilites in Weisskopf units between states of the ground-state band and between states of the negative-
parity band. The experimental data were taken from Refs. [26,28,30,31]. Values calculated with the shell model (SM) [9] are also quoted for
comparison purposes. Values calculated with the IBM in 214Rn that involve the Jπ = 10+ state are absent because 8 is the maximum value of
the angular momentum for positive-parity states that spdf -IBM-2 can compute for this nucleus. Also, values calculated with IBM in 214Rn and
216Rn that involve the states Jπ = 8+ and Jπ = 10+, respectively, are absent because the corresponding model spaces are strongly reduced,
which makes them not reliable.

214Rn 216Rn 218Rn 220Rn 222Rn 224Rn 226Rn

Jπ
i Jπ

f Expt. IBM SM IBM SM Expt. IBM Expt. IBM Exp. IBM IBM IBM

2+ 0+ >0.03 13 17 17 29 >23 26 48 ± 3 40 58 ± 4 52 65 81
4+ 2+ >0.28 17 23 25 41 43 63 ± 3 68 87 109 134
6+ 4+ 3.817

−9 13 22 26 41 48 73 ± 8 76 101 127 157
8+ 6+ 3.3+3

−1 16 17 10 42 72 100 131 164
10+ 8+ 2.9 ± 0.7 6 3 26 57 89 124 160
3− 1− 3 3 7 60+50

−30 7 7 8 7
5− 3− 8 12 19 60+100

−50 25 31 38 45

We fixed the bosonic charges as e(2)
π = e(2)

ν = 18 e fm2 for all
the nuclides in the chain. This value is the usual one in this
region of the chart of nuclides [12]. We can see that the values
obtained follow an increasing trend, according to a transition
from a vibrational to a deformed regime. The agreement of
our calculations with the experimental data is remarkable for
the positive-parity states. However the calculations provide
smaller values than the experimental ones for the negative-
parity states in the only case where we found experimental
data, which is 220Rn. Actually the calculated values for the
transition 3− → 1− are systematically smaller than the rest of
the calculated quantities. This indicates that the structure of
the 1− and 3− states are rather different, as we will see shortly
in the discussion of the reduced transition probabilities B(E3).
When we compare our calculations with those obtained using
the shell model, we observe that our data are slightly smaller
and then closer to the experimental value in the transition
6+ → 4+ in 214Rn, at least.

Also, we have calculated the reduced transition prob-
abilities B(E3), which are important to unveil octupole
correlations, using the operator

Q̂(3) = e(3)
π Q̂(3)

π + e(3)
ν Q̂(3)

ν , (19)

where e(3)
π = 2 e fm3 and e(3)

ν = 6 e fm3, and

Q̂(3)
ρ = α(3)

ρ [ f †
ρ s̃ρ + s†

ρ f̃ρ](3) + β (3)
ρ [p†

ρ d̃ρ + d†
ρ p̃ρ](3)

+ γ (3)
ρ [ f †

ρ d̃ρ + d†
ρ f̃ρ](3). (20)

In Table V we show our calculated values along with ex-
perimental data only for 220Rn. The values of the bosonic
charges were fitted to reproduce the order of magnitude of
the experimental data measured in 220Rn, and they are the
same for all the nuclides of the chain. The parameters α(3)

ρ ,
β (3)

ρ , and γ (3)
ρ also are kept fixed for all the nuclides and were

obtained using the same method used to obtain α(1)
ρ , β (1)

ρ , and
γ (1)

ρ in Eq. (16), which is explained in the Appendix. The
calculated data show increasing values with A in the transition
3− → 2+, which indicates a change of the structure of the 3−
state. In fact, the d-boson content of these states increases
when A increases, as will be explained later. In contrast, the
transition 1− → 2+ is hindered in general and exhibits again
the very different behavior of the 1− state with respect to
the 3− state. In this case the 2+ states are made of s and d
bosons, while the contents of the 1− states are essentially s
and p bosons and d bosons to a lesser extent. Then the E3
strength between these states is small because contributions
arise only from terms like d†

ρ p̃ρ in the E3 operator. The terms
d†

ρ f̃ρ or s†
ρ f̃ρ provide very small values and the rest of them

contribute nothing. The rest of the transitions show values
with small variations around 80, 55, 40, and 25 W.u., except
for 214Rn, where the values are smaller. In the case of 220Rn
we can observe that our calculated value for the transition
3− → 0+ is higher than the experimental value, while for the
transition 5− → 2+ the calculated value is found between the
error bars. Eventually the comparison between calculated and
experimental data may improve by choosing different values

TABLE V. B(E3) transition probabilites in Weisskopf units between states of the negative-parity band and the ground-state band.
Experimental data of 220Rn were found in Ref. [31].

Jπ
i Jπ

f
214Rn 216Rn 218Rn 220Rn (Expt.) 220Rn 222Rn 224Rn 226Rn

3− 0+ 49 73 78 33 ± 4 77 81 85 91
5− 2+ 31 52 60 90 ± 50 54 56 54 52
7− 4+ 16 35 39 40 43 42 39
9− 6+ 0 18 22 26 32 32 30
1− 2+ 3 5 2 <760 1.5 1 1 1
3− 2+ 83 91 120 <1400 165 178 192 207
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TABLE VI. B(M1) transition probabilites in Weisskopf units between some states of positive and negative parity.

Jπ
i Jπ

f
214Rn 216Rn 218Rn 220Rn 222Rn 224Rn 226Rn

0+
1 1+

1 6.87 × 10−6 2.78 × 10−5 4.76 × 10−2 2.24 × 10−1 2.97 × 10−1 3.76 × 10−1 0
2+

1 1+
1 3.99 × 10−6 1.15 × 10−5 1.47 × 10−2 4.98 × 10−2 5.87 × 10−2 6.63 × 10−2 0

2+
1 2+

2 2.51 × 10−1 2.82 × 10−1 1.15 × 10−3 3.60 × 10−5 1.50 × 10−5 1.92 × 10−4 5.50 × 10−4

1−
1 1−

2 8.35 × 10−2 7.51 × 10−2 4.35 × 10−2 2.04 × 10−2 1.23 × 10−2 5.79 × 10−3 2.21 × 10−3

1−
1 2−

1 3.15 × 10−7 3.32 × 10−7 2.52 × 10−3 7.72 × 10−3 1.19 × 10−2 1.57 × 10−2 1.92 × 10−2

3−
1 3−

2 5.01 × 10−1 5.64 × 10−1 4.77 × 10−1 1.23 × 10−4 2.73 × 10−5 2.27 × 10−4 4.32 × 10−4

for the parameters α(3)
ρ , β (3)

ρ , and γ (3)
ρ , but more experimental

data would be necessary to follow this step.
Regarding the magnetic properties, we have calculated the

reduced transition probabilities B(M1) between some selected
states, of both positive and negative parity. The magnetic
dipole operator used is

T (M1) =
√

3

4π
(gπ L̂π + gν L̂ν ), (21)

(a)

(b)

eb
eb

FIG. 3. Quadrupole moments in electron barns of positive (a) and
negative (b) states. Lines correspond to our work and dots to shell
model values [9].

where

L̂ρ =
√

2[p†
ρ p̃ρ](1) +

√
10[d†

ρ d̃ρ](1) + 2
√

7[ f †
ρ f̃ρ](1) (22)

is the angular momentum operator [15] and the effective pro-
ton and neutron boson g factors gπ = 0.63 and gν = 0.05
were taken from Ref. [34]. Table VI shows the results of
our calculations. We can see that the transitions between the
ground and the first excited state to the 1+

1 state are hindered in

(a)

(b)

FIG. 4. Magnetic dipole moments in μN of positive (a) and neg-
ative (b) states. Lines correspond to our work and dots to shell model
values [9]. The experimental point corresponding to 222Rn was taken
from Ref. [30].
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FIG. 5. s- (blue), p- (green), d- (red), and f -boson (orange) contents for protons and neutrons of the low-lying states, for positive as well
as negative parity in 214,216,218Rn.

the lightest isotopes, while they are of the order of the tenths
for the ground states and 1 order of magnitude less for the
2+

1 states in 218Rn and heavier isotopes. In 226Rn these transi-
tions are forbidden, which indicates that the 1+

1 state changed

its structure in this nucleus. The transitions between the 2+
states, however, show the opposite behavior, where the values
decrease as we move to the heavier isotopes. This trend also
happens between the 3− states, but the transitions between the
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FIG. 6. Same as Fig. 5, but here for 220,222,224Rn.

1− and the 2− states show again an increasing trend in the
values, as happens for the transitions where the 1+ state is
involved. Only the transitions between the 1− states maintain
a smooth and slowly decreasing behavior as we move to the
heavier isotopes.

In addition to the electromagnetic transition probabilities
we have calculated the electric quadrupole moments and the
magnetic dipole moments for both positive- and negative-
parity states. They are shown in Figs. 3 and 4, respectively.
The general trend in the quadrupole moment is the increase
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FIG. 7. Same as Fig. 5, but here for 226Rn.

in the absolute values with mass number A, according to the
increase in deformation as the nuclei move away the shell
closure at N = 128. This behavior also happens for the values
calculated with the shell model for all the positive-parity states
except Jπ = 10+. Also, they compare well with our calculated
values. All the values are negative for positive-parity states,
while they are positive for the 1− and 3− states, negative for
the 7− and 9− states, and positive close to zero for the 5−
states in 214Rn, 216Rn, and 218Rn and negative in 220Rn, 222Rn,
and 224Rn. Also, the absolute values for the positive-parity
states increase with the angular momenta systematically. This
effect is absent in the negative-parity states, where the maxi-
mum values are dominated by the 3− states for all the nuclei.
We omitted the values of the quadrupole and magnetic mo-
ments in 214Rn and 216Rn for the states with the highest value
of J , because the subspace associated with them is strongly
reduced and the calculations where they are involved are not
reliable. Regarding the magnetic moment, their values show a
smooth and decreasing behavior for the positive-parity states,
while the values corresponding to the negative-parity states
show a different trend, where they seem to converge to a value
below 2μN in 224Rn for all the angular momenta except 1−,
which shows a rather constant value around 0.4μN . When
we compare our results with those from the shell model for
the positive-parity states in 214Rn and 216Rn, we find some
discrepancies. Our values are higher in general. Also, there is
an experimental value in 222Rn which is slightly higher than
the value we calculated.

Finally we show the s-, p-, d-, and f -boson contents of
the low-lying states, both for positive and negative parity, in
Figs. 5–7. In the proton case, there is a clear pattern for the
negative-parity states with J � 3 where the sum of the sπ - and
dπ -boson contents is almost the same around 70% and the rest
correspond to fπ -boson content. This ratio changes slightly in
214Rn, where the fπ -boson content reduces to less than 20%.
The relative proton boson content in the 1− states is differ-
ent and changes with A. In the lightest isotopes, 214Rn and
216Rn, there is 65% sπ -boson content and the rest correspond
to pπ -boson content. When A increases dπ - and fπ -boson

contents appear, which increase with A. This very different
structure between the 1− and the 3− states, which also hap-
pens in the neutron sector, explains the different behavior of
the electromagnetic transitions that involve them. Regarding
the positive-parity states, they do not contain negative-parity
bosons, except in the highest values of J , where the dimension
of the subspace is strongly reduced. For instance, the 8+ and
10+ states in 214Rn and 216Rn, respectively, contain fπ bosons.
This effect also appears in the other isotopes for higher values
of J , although they are absent in Fig. 5. For this reason, calcu-
lations like the quadrupole moment that involve these states
are not reliable. With respect to the relative neutron boson
contents, the positive-parity bosons dominate the negative-
parity bosons as A increases. The sum of the sν- and dν-boson
contents is almost the same for the negative-parity states in
each isotope, and the rest correspond to fπ -boson content, but
as we move to heavier isotopes the ratio between the fπ -boson
content and the sν- and dν-boson contents reduces. This effect
is clear starting at 218Rn and less pronounced in 214Rn and
216Rn, where again the states with the highest values of J
depart from this systematic behavior. The pν-boson content is
present only in the 1− states, but in lower amounts than in the
proton case. Only in 214Rn is the pν-boson content comparable
to the pπ -boson content.

In summary, we have used for the first time the spdf -
IBM-2 model, which treats negative- and positive-parity
configurations on equal footing. We applied this model to
the chain of even-even isotopes from 214Rn to 226Rn, where
octupole configurations are important. Also, this is the first
time that a model has been applied to this chain, because
previous studies have considered only the lightest members
of this chain. The comparison of our calculations with the
available experimental data is fair. More experimental data
would be desirable to compare with the theoretical calcula-
tions and check the validity of this model. Only the lightest
isotope, 214Rn, shows some departures from the systematical
behavior. Actually the chain of isotones that includes this
isotope deserves a separate study, because the yrast 8+ states
show anomalous positions in the excitation spectra.
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APPENDIX

In this section we show how we obtained the parameters
α(L)

ρ , β (L)
ρ , and γ (L)

ρ in Q(L)
ρ for L = 1 and 3, corresponding to

Eqs. (17) and (20). They are calculated when we map the shell
model operators to the corresponding ones in the space of the
IBM, specifically spdf -IBM-2:

Q(L)
SM,ρ

�→ Q(L)
ρ .

The procedure is the same for protons (ρ = π ) and neutrons
(ρ = ν). The only difference is the major shells where valence
nucleons occupy the different single-particle levels. Hence we
will omit the label ρ from now on. The shell model operator
to map is explicitly

Q(L)
SM,M =

∑
p,q

〈p‖rLY (L)‖q〉(a†
pãq)(L)

M ,

where Y (L)
M is the spherical harmonic of degree L, and p

and q refer to the quantum numbers that characterize the
shell model single-particle states |p, mp〉 = |np, lp

1
2 , jp, mp〉

and |q, mq〉 = |nq, lq
1
2 , jq, mq〉. a†

p,mp
is the creation operator

of a nucleon in the |p, mp〉 state, and ãq,mq = (−1) jq−mq aq,−mq ,

where aq,mq is the annihilation operator of a nucleon in the
|q, mq〉 state. The IBM operators are

Q(L) = α(L)[b†
Ls̃ + s†b̃L](L) + β (L)[p†d̃ + d† p̃](L)

+ γ (L)[ f †d̃ + d† f̃ ](L),

where bL can be s, p, d , or f if L = 0, 1, 2, or 3, respectively.
Following the OAI method [32], a mapping between shell
model and IBM states is established:

|SN ; J = 0〉 �→ |sN ; J = 0〉,
|SN−1BL; J = L〉 �→ |sN−1bL; J = L〉,

where the shell model states are on the left-hand side and
the IBM states are on the right-hand side, both of them nor-

malized. N is half the number of valence nucleons. The shell
model states are built from correlated pair operators C†

LM :

|SN ; J = 0〉 = 1

NN,0
(C†

0 )N |0〉,

|SN−1BL; J = L〉 = 1

NN,L
(C†

0 )N−1C†
LM |0〉,

where NN,L is a normalization factor and

C†
LM =

∑
p,q

c(L)
p,q(a†

pãq)(L)
M .

The structure of the correlated pair operators is dictated by
the coefficients c(L)

p,q. They can be calculated using different
means. We have obtained them from the components of the
first state with the angular momentum L that arise when a
surface delta interaction is diagonalized in the space of two
particles, corresponding to a semimagic nucleus with two
valence particles above (or two valence holes below) a closed
shell. This calculation needs as input the energies of the
single-particle levels used in the space of the two particles,
which are taken from the excitation spectra of real semimagic
nuclei with one nucleon above or below a closed shell. In our
case, the use of bosons with negative parity implies the use of
single-particle levels of both parities and hence one space that
spans two major shells.

Once the shell model states are established firmly, the
mapping to the IBM is performed by imposing the equality of
matrix elements of the operators between the mapped states
in each model. The matrix elements in the shell model were
calculated using recurrence relations found in Ref. [36]. The
matrix elements in the IBM are straightforward. Then, finally,

α(L) = 〈SN ; J = 0‖Q(L)
SM‖SN−1BL; J = L〉

〈sN ; J = 0‖Q(L)‖sN−1bL; J = L〉 ,

β (L) = 〈SN D; J = 2‖Q(L)
SM‖SN−1P; J = 1〉

〈sN d; J = 2‖Q(L)‖sN−1 p; J = 1〉 ,

γ (L) = 〈SN D; J = 2‖Q(L)
SM‖SN−1F ; J = 3〉

〈sN d; J = 2‖Q(L)‖sN−1 f ; J = 3〉 ,

where we use S, P, D, and F for BL with L = 0, 1, 2, and 3,
respectively.
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