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Role of quadrupole deformation and continuum effects in the “island of inversion” nuclei 28,29,31F

Yu-Xuan Luo (���),1 Kévin Fossez ,2,3 Quan Liu (��) ,1,* and Jian-You Guo (���) 1

1School of physics and materials science, Anhui University, Hefei 230601, People’s Republic of China
2FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

3Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

(Received 16 January 2021; revised 12 May 2021; accepted 24 June 2021; published 8 July 2021)

Background: The peculiar properties of nuclei in the so-called “island of inversion” around Z = 10 and N = 20
are the focus of current nuclear physics research. Recent studies showed that 28F has a negative-parity ground
state and thus lies within the southern shore of the island of inversion, and 29F presents a halo structure in
its ground state, but it is unclear which effects, such as deformation, shell evolution due to tensor forces, or
couplings to the continuum, lead to this situation.
Purpose: We investigate the role of quadrupole deformation and continuum effects on the single-particle
structure of 28,29,31F from a relativistic mean-field approach and show how both phenomena can lead to a
negative-parity ground state in 28F and halo structures in 29,31F.
Methods: We solve the Dirac equation in the complex-momentum (Berggren) representation for a potential
with quadrupole deformation at the first order obtained from relativistic mean-field calculations using the NL3
interaction and calculate the continuum level densities using the Green’s function method.
Results: We extract single-particle energies and widths from the continuum level densities to construct the
Nilsson diagrams of 28,29,31F in the continuum and analyze the evolution of both the widths and occupation
probabilities of relevant Nilsson orbitals in 28F and find that some amount of prolate deformation must be present.
In addition, we calculate the density distributions for bound Nilsson orbitals near the Fermi surface in 29,31F and
reveal that, for a quadrupole deformation 0.3 � β2 � 0.45 (prolate), characteristic halo tails appear at large
distances.
Conclusions: Using the relativistic mean-field approach in the complex-momentum representation with the
Green’s function method, we demonstrate that in neutron-rich fluorine isotopes, while in the spherical case
the p f shells are already inverted and close to the neutron emission threshold, a small amount of quadrupole
deformation can dramatically reduce the gap between positive- and negative-parity states and increase the
role of continuum states, ultimately leading to the negative parity in the ground state of 28F and the halo structures
in 29,31F.
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I. INTRODUCTION

The description of the so-called magic numbers 2, 8, 20,
28, 50, and 82 for both protons and neutrons, as well as 126
for neutrons, in stable nuclei [1,2] was a major achievement
for our understanding of nuclear structure close to β stability.
Magic numbers emerge due to large energy gaps in the single-
particle structure of nuclei, which results in closed-shell nuclei
with increased stability, spherical ground states and first 2+
excited state, and smaller B(E2) values than their neighbors
on the nuclear chart.

However, later experiments showed a weakening or even
disappearance of the shell effects associated with magic num-
bers in closed-shell nuclei away from β stability. Thibault
et al. [3] first reported the observation of the disappearance of
the magic number (N = 20) based on mass measurements of
the neutron-rich nuclei 31,32Na. Later on, similar observations
were made in several other neutron-rich nuclei around N = 20

*quanliu@ahu.edu.cn

[4–8], indicating strong deviations of the shell ordering com-
pared with the standard shell model [9].

The breakdown of the N = 20 shell closure has been
discussed extensively in Refs. [10–12] and is associated
with the emergence of deformation [13–15], the natural shell
evolution due to tensor forces [16,17], and weak binding. The
rearrangement of the single-particle structure in this region
[9,18–20] favors a strong mixing of the positive-parity sd
shells with negative-parity f p shells or intruder shells, leading
to parity inversions in the ground states of several nuclei as
compared with the standard shell-model predictions. Such
nuclei, in which intruder configuration dominate the ground
state, form the so-called island of inversion (IOI). In recent
years, with the development of experimental technology, the
boundaries of the IOI have been greatly expanded. Some
nuclei, such as 28,29F [21,22], 28Ne [23], 29,30Na [24–27], and
31,35,36Mg [28–30], have all been experimentally confirmed
as part of the IOI.

Neutron-rich fluorine isotopes lie near or on the southern
shore of the IOI. In recent years, a series of experiments had
been conducted on these isotopes to explore the impact of
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intruder states on their single-particle levels [21,22,31–36]. In
particular, the isotope 28F presents an interesting situation. It
was found to be unbound with respect to neutron emission
by Schiller et al. [32] from its relatively low upper limit for
production in the reaction products of a secondary beam of
29Ne. Later, using invariant-mass spectroscopy, Christian et al.
[33,34] determined the ground state of 28F to be a resonance
at 220(50) keV above the ground state of 27F, which is in good
agreement with the USDA and USDB shell-model predictions
[37], suggesting that p f shell intruder configurations play a
minor role in the structure of the ground state of 28F, even
though calculations using the SDPF-U-MIX interaction [38]
predict several low-lying negative parity states.

However, in 2020, Revel et al. reported the first detailed
spectroscopic study of 28F [21] and found the ground state
of 28F to be a resonance at 199 keV with a negative parity.
The reconstructed 28F + n momentum distribution following
the neutron removal from 29F indicated that it arises mainly
from the p3/2 neutron shell, with a l = 1 content of about
80%, placing 28F inside the IOI. In line with this finding, a
subsequent study by Bagchi et al. [39] demonstrated the pres-
ence of a halo structure in the ground state of 29F dominated
by l = 1 partial waves, and Gamow shell-model calculations
[40] suggested the formation of a two-neutron halo in 31F.

Despite the experimental and theoretical studies mentioned
previously, our understanding of the structure of neutron-rich
fluorine isotopes is still rather limited. For that reason, the
use of models with effective degrees of freedom, in which an
intuitive interpretation of the mechanisms at play is possible,
can be helpful to better understand the structure of these sys-
tems. Among the main factors that can impact the structure of
neutron-rich fluorine isotopes are couplings to the continuum
and nuclear deformation.

In this work, we study the single-particle structure of
28,29,31F by solving the Dirac equation for one particle in a
deformed Woods-Saxon potential obtained from relativistic
mean-field (RMF) calculations [41–44], similarly to what was
done for the relativistic deformed case in Ref. [45]. Com-
pared to Ref. [45], to extract resonance parameters with more
accuracy, we calculate the continuum level density (CLD)
[46] using the Green’s function (GF) method [47] obtained
in the so-called complex-momentum representation (CMR)
[48], which is introduced below. This approach will allow us
to start from a reasonable mean-field description of 28,29,31F,
from which we can study the effect of quadrupole deformation
while accounting for couplings to the continuum.

The RMF approach has been used to successfully describe
masses and radii in stable nuclei [43,44,49] as well as to
contribute to nuclear astrophysics problems [50–54], but it can
also be extended for the explicit description of decaying res-
onances in exotic nuclei [55–58]. Here, as mentioned above,
couplings to continuum states are included in the Dirac equa-
tion using the CMR, which is a particular case of Berggren
basis [59] built using spherical Bessel functions analytically
continued in the fourth quadrant of the complex-momentum
plane. The idea is to represent the problem at hand in a basis
including states having explicitly outgoing asymptotics, so
that its diagonalization provides eigenvectors whose asymp-
totics can be that of either a bound state, a scattering state,

or a decaying resonance, and its eigenvalues Ẽ can be real
Ẽ = E or complex with Ẽ = E − i�/2 where E is the energy
position and � the width of the resonance.

While the Berggren basis has been applied in various
many-body calculations [60–65], the CMR specifically has
been applied in the context of the RMF approach to study
resonances in both spherical [48,66] and deformed [45] nu-
clei, and, like all Berggren-basis expansion methods, has the
advantage of describing both narrow and broad single-particle
resonances naturally, providing the completeness of the basis
is ensured. Another way to probe the resonant single-particle
structure of a nucleus is to look at the CLD mentioned
previously. This method offers an increased accuracy for res-
onances close to E = 0 [67,68] as compared with the CMR
alone or approaches based on the complex-scaled Green’s
function method as in Refs. [69–71], where a small depen-
dence on the mathematical parameters of the method can
remain. In this work, all single-particle energies and widths
are extracted from the CLD using the Green’s function in the
CMR.

We introduce the formalism of the RMF + CMR + GF
approach and the numerical details in Sec. II, present the
results in Sec. III, and give the conclusion in Sec. IV.

II. MODEL AND METHODS

The starting point of this work is the RMF framework in
the Berggren basis. This relativistic many-body method with
nucleons as degrees of freedom allows us to generate effective
spherical mean-field potentials for each isotope considered by
using a single nucleon-nucleon interaction. These spherical
potentials are then used to fix the parameters of Woods-Saxon
(WS) potentials where quadrupole deformation can be explic-
itly included, and whose resonant spectra can be determined
using the Dirac equation for deformed systems. Here, we use
the NL3 interaction [72], which is given by the parametriza-
tion of an effective nonlinear Lagrangian density of relativistic
mean-field theory, and which provides a good description of
both nuclei at and away of the valley of β stability.

For open-shell nuclei, pairing correlations are handled in
the BCS approximation. They are included using the constant
gap approximation by occupation numbers of BCS-type [73],
which is possible in this work because resonant states are
well separated from the continuum. Basically, it is assumed
that pairing matrix elements are constant in the vicinity of
the Fermi level [74]. When the resonances are accounted for,
pairing correlations can be dealt with using the gap equation:

∑
i

�i√
(εi − λ)2 + �2

= 2

G
, (1)

and the particle number equation:

∑
i

�i

[
1 − εi − λ√

(εi − λ)2 + �2

]
= N, (2)

where G is the pairing strength, N is the particle number, and
�i = ji + 1

2 with i for the single-particle state.
In a second step, the spherical mean-field potentials ob-

tained for each considered isotope and using the same
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interaction are replaced by WS potentials adjusted so as to
reproduce the single-particle spectra of the mean-field poten-
tials. These WS potentials have the advantage of including
quadrupole deformation explicitly (see below), so they can be
used in the Dirac equation for deformed systems.

The Dirac equation for a particle moving in a repulsive
vector potential V (�r ) and an attractive scalar potential S(�r )
can be written as

{�α · �p + β[M + S(�r )] + V (�r )}ψ (�r ) = εψ (�r ), (3)

where �α and β are Dirac matrices, and M and �p are the
nucleon mass and momentum, respectively. E = ε − M rep-
resents the single-particle energy, and ψ is the wave function.
To introduce quadrupole deformation in the Dirac equation,
we write the vector and scalar potentials V (�r ) and S(�r ) as
follows:

V (�r ) = V0 f (r) − β2V0k(r)Y20(cos θ ),

S(�r ) = S0 f (r) − β2S0k(r)Y20(cos θ ), (4)

where β2 is the quadrupole deformation parameter, and the
radial functions f (r) and k(r) take WS forms:

f (r) = 1

1 + e
r−R

a

, (5)

and k(r) = rdf (r)/dr. One notes that the form of Eq. (4)
is similar to the first-order expansion in β2 of a deformed
WS potential, and the usual spin-orbit coupling added in
the Schrödinger equation is automatically included in the

Dirac equation. To obtain the resonant spectrum of the po-
tentials in Eq. (4), we include couplings to continuum states
by expressing the Dirac equation in the complex-momentum
representation:

∫
d�k′〈�k|H |�k′〉ψ (�k′) = εψ (�k), (6)

where H = �α · �p + β(M + S(�r )) + V (�r ) is the Dirac Hamil-
tonian, ψ (�k) is the momentum wave function, and |�k〉
represents the wave function of a free particle with wave
vector �k = �p/h̄. For an axially deformed system, the parity
π and the third component of the total angular momentum mj

are good quantum numbers. Hence, ψ (�k) can be split into the
radial and angular parts as

ψ (�k) = ψmj (�k) =
∑

l j

(
f l j (k)φl jm j (�k )
gl j (k)φl̃ jm j

(�k )

)
. (7)

The angular part of the wave function is a two-
component spinor, represented as φl jm j (�k ) =∑

ms
〈lm 1

2 ms| jm j〉Ylm(�k )χms . The quantum number of
the orbital angular momentum corresponding to the upper
(lower) component of Dirac spinor is denoted as l (l̃). The
relationship between these two quantum numbers and the
total angular-momentum quantum number j reads l̃ = 2 j − l .
Putting the wave function (7) into the equation (6), the radial
Dirac equation becomes a set of coupled-channel equations:

M f l j (k) − kgl j (k) +
∑
l ′ j′

∫
k′2dk′V +(l ′, j′, l, j, mj, k, k′, θ ) f l ′ j′ (k′) = ε f l j (k), (8)

−k f l j (k) − Mgl j (k) +
∑
l ′ j′

∫
k′2dk′V −(l̃ ′, j′, l̃, j, mj, k, k′, θ )gl ′ j′ (k′) = εgl j (k), (9)

with

V +(l ′, j′, l, j, mj, k, k′, θ ) = (−1)l il+l ′ 2

π

∫
r2dr[V (r) + S(r)] jl (kr) j′l (k

′r)�(l, j, l ′, j′, mj, θ ), (10)

and

V −(
l̃ ′, j′, l̃, j, mj, k, k′, θ

) = (−1)l̃ il̃+l̃ ′ 2

π

∫
r2dr[V (r) − S(r)] jl̃ (kr) jl̃ ′ (k

′r)�(l̃, j, l̃ ′, j′, mj, θ ), (11)

where the angular factor is simply

�(l, j, l ′, j′, mj, θ ) =
∑
ms

〈lm|Y20(cos θ )|l ′m〉 〈
lm 1

2 ms

∣∣ jm j
〉〈

l ′m′ 1
2 ms

∣∣ j′mj
〉
, (12)

with m = mj − ms.
The coupled-channel equations can be seen in a matrix form and diagonalized, and the solutions obtained be used to calculate

the CLD. One starts with the Green’s function in momentum space defined as follows:

G(E , �k, �k′) = 〈�k| 1

E − H
|�k′〉, (13)

and the extended completeness relation of Ref. [75]:

Nb∑
b

|ψb(�k)〉〈ψ̃b(�k)| +
Nr∑
r

|ψr (�k)〉〈ψ̃r (�k)| +
∫

dEc|ψc(�k)〉〈ψ̃c(�k)| = 1, (14)
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where ψb(�k), ψr (�k), and ψc(�k) denote the wave functions for
the bound, resonant, and continuum (scattering) states. The
tilde in Eq. (14) denotes the Hermite conjugate. Substituting
Eq. (14) into Eq. (13), the approximate density of states ρN (E )
with the basis number N can be expressed as

ρN (E ) =
Nb∑
b

δ(E − Eb)

+ 1

π

Nr∑
r

�r/2

(E − Er )2 + �2
r /4

+ 1

π

N−Nb−Nr∑
c

EI
c(

E − ER
c

)2 + EI2

c

, (15)

where Eb, Er , and Ec are the eigenvalues for the bound states,
resonances, and the continuum states, respectively, �r is the
width of the resonance, and Nb and Nr are the numbers of
bound states and resonant states, respectively. The CLD is
then calculated as �ρ(E ) = ρN (E ) − ρN

0 (E ), where ρN
0 (E )

is the density of continuum states defined as

ρN
0 (E ) = 1

π

N∑
c

E0I
c(

E − E0R
c

)2 + E0I2

c

, (16)

and which corresponds to the level density of the asymptotic
Hamiltonian H0 for r → ∞.

III. RESULTS

In this work, our goal is to explore the effect of quadrupole
deformation and continuum couplings on the ground-state
properties of 28,29,31F using the RMF theory with the CMR-
GF method. To this end, we adjust the parameters in the
potentials defined in Eq. (4), except for β2 which is kept at
zero, as to reproduce the single-particle levels of the self-
consistent potentials obtained in RMF calculations using the
NL3 interaction [72] in 28,29,31F. One notes that the use of
other standard interactions such as the NL1, NL2, or PK1
gives similar vector and scalar potentials.

With a similar fitting method as Ref. [76], the Woods-
Saxon potential parameters are obtained from relativistic
mean-field (RMF) calculations. The depth of the potential
is adjusted to reproduce the separation energy obtained in
the experiment. The resonance parameters can then be ex-
tracted by calculating the CLD while varying the quadrupole
deformation. We start by checking the completeness of the
momentum expansion used to compute the CLD in the rest of
the study. In Fig. 1, we show the density of states ρN (E ), the
density of continuum states ρN

0 (E ), and the CLD �ρ(E ) for
the resonant state 7/2[303] in 28F with β2 = −0.5 for four
different contours in the complex-momentum plane, where
7/2[303] is labeled with the asymptotic quantum numbers
�[Nnz�].

These results were obtained by using complex continua
represented by four contours in the complex-momentum
plane, each made of three segments defined by the points k1 =
0.0, k2, k3 = 1.0, and kmax = 2.0 (all in fm−1), and where k2 =
(0.3 − i0.2), (0.3 − i0.25), (0.2 − i0.2), and (0.8 − i0.2) (all

FIG. 1. Density of states ρN (E ), density of continuum states
ρN

0 (E ), and CLD �ρ(E ) for the 7/2[303] in 28F with β2 = −0.5 by
the present calculations in four different contours for the momentum
integration. These level densities are denoted with the black dash-
dotted, red dashed, and blue solid lines, respectively.

in fm−1 for the contours 1, 2, 3, and 4, respectively). Each seg-
ment was discretized by using a Gauss-Legendre quadrature
with a total of 120 scattering states on each contour, which
was enough to ensure proper convergence.

While both ρN (E ) and ρN
0 (E ) change with the contours,

their difference, which gives the CLD �ρ(E ) is invariant, as
it should be. This will give us confidence to extract the energy
and width of resonances of deformed potentials. The corre-
sponding position and width in a half height of the resonance
peak represent the energy and width of the resonant state,
respectively.

We note in passing that, for all other calculations, we will
use the following enlarged contour as in Ref. [45] to avoid
unnecessary readjustments: k1 = 0.0, k2 = (0.5 − i0.5), k3 =
1.0, and kmax = 4.0 (all in fm−1).

Using the CMR-GF method, we calculate all the resonant
neutron single-particle energies of 28F by using the potential
defined previously for −0.6 � β2 � 0.6, given by the energy
positions extracted from the CLD �ρ(E ), and we label their
trajectories using the quantum numbers �[Nnz�] correspond-
ing to the so-called Nilsson orbitals. The results are shown
in Fig. 2. Solid lines represent bound levels and dashed lines
represent resonant levels (decaying resonances). The corre-
sponding spherical labels are marked in the position β2 = 0.0.

We can see that, in the spherical case β2 = 0.0, the ex-
pected shell-model order is respected up to the 1d3/2 shell,
which is about 1.5 MeV below the threshold. However, the
order of the f and p shells above the 1d3/2 shell differs from
the expected shell-model order. The 2p1/2 and 2p3/2 shells lie
close to the threshold, while the 1 f7/2 shell is almost 5.0 MeV
above it.

This result shows that the lowering of the p shells, which
is a critical factor in obtaining a negative-parity ground state
in 28F, is not solely due to deformation. Among the possi-
ble reasons for this lowering of the p shells are the natural
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FIG. 2. The neutron single-particle levels of 28F as a function of
β2. Every level is labeled with the Nilsson’s asymptotic quantum
numbers �[Nnz�]. The bound and resonant states are marked by
solid and dashed lines, respectively.

shell evolution due to tensor forces [16,17], and weak binding
which tends to affect low-� partial waves more strongly.

Nevertheless, according to the present result, the last neu-
tron in 28F should occupy the 1d3/2 shell for β2 = 0.0,
effectively giving a positive-parity ground state, providing
that the remaining neutrons form pairs coupled to Jπ = 0+
and that the last proton occupies a positive-parity shell, as
expected from the shell model. However, as such, this result
would be in contradiction with the last experimental result on
28F [21].

At this point, we can discuss the role of deformation in
the ground-state properties of 28F. Indeed, when the spheri-
cal symmetry of the system is broken (β2 �= 0.0), the 1d3/2

and 2p3/2 shells split into their respective Nilsson orbitals
(1/2[211], 3/2[202]) and (1/2[310], 3/2[301]), while the
2p1/2 shell becomes the 1/2[301] orbital. The energy po-
sitions of the Nilsson orbitals coming from the p shells
1/2[310], 3/2[301], and 1/2[301] do not vary significantly
in the typical range of deformation −0.3 � β2 � 0.3, but the
energies of the 1/2[211] and 3/2[202] orbitals coming from
the 1d3/2 shell increase rapidly for oblate (β2 < 0) and prolate
(β2 > 0) deformation, respectively.

This result indicates that even a small amount of
quadrupole deformation in either way can dramatically reduce
the energy gap between positive- and negative-parity states in
28F. The disappearing of the N = 20 shell gap in IOI nuclei
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FIG. 3. Single-particle energies and widths for 1/2[310],
1/2[301], 3/2[301] as a function of β2. The heights of the rectangles
represent the widths of this resonance.

is, of course, largely due to quadrupole deformation, and it is
interesting to see hints of the same mechanism in 28F.

In fact, several shell-model calculations [38] have already
shown the emergence of deformation around 29F [77], pro-
viding that the 2p3/2 shell is included [18]. The universal
character of deformation in this region of the nuclear chart
is simply a consequence of the Jahn-Teller effect [78,79]
due to the near-degeneracy of the 1d3/2 and 2p3/2 shells
[80]. The experimental finding of a negative-parity ground
state in 28F thus suggests that some deformations might be
present.

If one admits that some level of quadrupole deformation is
present, then two questions remain. Is the deformation prolate
or oblate, and is the negative parity coming mostly from the
2p3/2 shell, as suggested by shell-model calculations, or the
2p1/2 shell?

The latter can be answered by looking at the widths of
the Nilsson orbitals 1/2[310], 3/2[301], and 1/2[301] as a
function of β2, as shown in Fig. 3. While the 1/2[301] Nilsson
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orbital (2p1/2) is a broad resonance for all values of β2, as
shown in the bottom panel of Fig. 3, the 3/2[301] (middle
panel) becomes broader as β2 increases, i.e., for prolate de-
formation, and the width of the 1/2[310] orbital (top panel)
decreases rapidly with β2 and vanishes (bound state) around
β2 = 0.3. This suggests that the Nilsson orbitals coming from
the 2p3/2 shell will dominate low-lying negative-parity states
in 28F.

Whether the deformation should be prolate or oblate in
28F cannot be determined unambiguously from the qualitative
nature of the present results. However, the increased binding
in heavier fluorine isotopes and the fact that 31F is bound, a
nucleus in which the 2p3/2 shell is presumably being filled,
suggests a lowering of this shell in A > 28 fluorine isotopes.
This scenario favors a prolate deformation since, in the present
model, it leads to a drop of the 1/2[310] orbital below the
threshold for positive values of β2 in 28F.

Additional information can be gathered by assessing the
weight of each single-particle state ψ (�k) in the Nilsson or-
bitals ψmj (�k) by calculating the occupation probabilities Pmj

as

Pmj = Re

⎛
⎝∫ ∑

l j

[ f l j (k) f l j (k) + gl j (k)gl j (k)]k2dk

⎞
⎠.

(17)

We found that, for an oblate deformation of β2 = −0.3, the
occupation probability of the 1 f7/2 shell in the 1/2[310] and
3/2[301] Nilsson orbitals is limited to 3% in both cases, and
while the 3/2[301] orbital is entirely dominated by the 2p3/2

shell (97%), the remaining occupation probabilities in the
1/2[310] orbital spilt almost evenly between the 2p3/2 (52%)
and the 2p1/2 (45%) shells.

However, for a prolate deformation of β2 = 0.3, both the
1/2[310] and 3/2[301] orbitals are dominated by the 2p3/2

shell (77% and 89%, respectively) and have a significant
mixing with the 1 f7/2 shell of about 8% in both cases, even
though the 1/2[310] orbital in particular has a 15% contribu-
tion form 2p1/2. Overall, it appears that, compared with oblate
deformation, prolate deformation favors the occupation of the
2p3/2 shell as measured by the occupation probabilities for the
1/2[310] orbital.

To provide more perspective on the situation in neutron-
rich fluorine isotopes in general, we show the Nilsson
diagrams for 29F in Fig. 4. One notes that a similar diagram is
obtained in 31F (not shown).

The single-particle structure of 29F (and 31F) is similar to
that of 28F in the spherical case, with an inversion of f and
p shells and p shells close to the threshold, but an important
difference appears on the prolate side (β2 > 0). In 28F, the
Nilsson orbitals 1/2[310], 3/2[301], and 1/2[301] associated
with the shells 2p3/2 and 2p1/2, as well as 3/2[202] are all
quasidegenerate for a quadrupole deformation around β2 =
0.3, while in 29F (and 31F), the energy of the orbital 1/2[310]
associated with 2p3/2 drops below the threshold and becomes
quasidegenerate with the orbital 3/2[202] coming from 1d3/2

and which is more bound than in 28F.
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FIG. 4. The neutron single-particle levels of 29F as a function of
β2. Every level is labeled with the Nilsson’s asymptotic quantum
numbers �[Nnz�]. The bound and resonant states are marked by
solid and dashed lines, respectively.

Since it has been shown experimentally that the ground
state of 29F presents a halo structure, one can infer from
this model that the quadrupole deformation in this isotope
should be at least β2 = 0.3. One notes that, in heavier iso-
topic chains (Ne, Na, Mg) the island of inversion typically
starts at N = 20 and is characterized by a sudden increase in
quadrupole deformation. For larger deformation, the weight of
f waves increases and for that reason β2 is unlikely to exceed
significantly 0.45, which is the point where the 1/2[211] and
1/2[310] orbitals cross and the 3/2[321] orbital coming from
1 f7/2 becomes bound.

To test whether a quadrupole deformation of β2 = 0.3 is a
reasonable guess in 29,31F, in Figs. 5 and 6 we show the radial
densities associated with the bound Nilsson orbitals near the
threshold in 29F and 31F, respectively. They are defined as

r2|ψ (r)|2 = r2 Re
∑

l j

[ f l j (r) f l j (r) + gl j (r)gl j (r)]. (18)

In both cases, the bound Nilsson orbital for β2 = 0.3 asso-
ciated with the 2p3/2 shell (1/2[310]) shows a characteristic
halo tail at large distances compared with those associated
with the 1d3/2 shell (3/2[202], 1/2[211]). As shown in Fig. 5,
the last two valence nucleons occupy the orbital 3/2[202] at
β2 = 0.3 and there is no halo phenomena. With the increase
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FIG. 5. Radial density distributions for the single-particle states
1/2[310], 1/2[211], and 3/2[202] with β2 = 0.3 in 29F.

of β2, the orbital 1/2[310] will gradually fall down, and the
orbital 3/2[202] will rise. The last two valence nucleons will
occupy the halo orbit 1/2[310], and the halo phenomena will
appear in the larger deformation range. These results are in
agreement with the observed halo in 29F [39] and the predicted
halo in 31F [21].

Moreover, in 29F and for β2 > 0.3, the l = 1 content of
the Nilsson state dominating the tail of the density at large
distances (1/2[310]) is high (≈80%) and varies little with the
quadrupole deformation, as shown in Fig. 7. The situation is
nearly identical in 31F.

The results presented above show that it is possible to qual-
itatively explain the negative parity in 28F and the presence
of halo structures in 29,31F within a single effective model
where both quadrupole deformation and couplings to the con-
tinuum are accounted for. With all its limitations, the present
approach allows us to determine that some degree of prolate
deformation is likely to be found in 28F, and that quadrupole
deformation must be between β2 = 0.3 and 0.45 in both 29F
and 31F.

Concerning neutron-rich fluorine isotopes in general, the
negative-parity ground state in 28F is mostly due to couplings
to the continuum but requires some level of deformation,
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FIG. 6. Radial density distributions for the single-particle states
1/2[310], 1/2[211], and 3/2[202] with β2 = 0.3 in 31F.
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FIG. 7. Occupation probabilities of major configurations as a
function of β2 for the single-particle state 1/2[310] in 29F.

while the structure of heavier isotopes is dominated by an
interplay between large quadrupole deformation starting at
N = 20 in 29F and couplings to the continuum.

IV. SUMMARY

In summary, we have extended the CMR-GF method to the
relativistic framework describing deformed nuclei and applied
it to study the role of quadrupole deformation and continuum
couplings on the single-particle structures of 28,29,31F.

We first extracted mean-field potentials for each considered
isotope using the RMF method and for the same nucleon-
nucleon interaction, and used them to parametrize deformed
WS potentials which served as input in the single-particle
Dirac equation for deformed systems. We then solved this
equation in a typical range of quadrupole deformation and
extracted the energies and widths of the single-particle states
in 28,29,31F from the continuum level density �ρ(E ) and
demonstrated its reliability to study both narrow and broad
resonances.

By building the Nilsson diagram for 28,29,31F, including
couplings to the continuum, we found that, without any
deformation, the p shells already appear near the neutron-
emission threshold, close to the 1d3/2 shell, and any increase
in quadrupole deformation (prolate or oblate) leads to a rapid
reduction of the gap between the p and d shells, suggest-
ing that some deformation is likely to exist in 28F and a
quadrupole deformation of 0.3 � β2 � 0.45 is likely to be
found in 29,31F.

In 28F, we showed that the analysis of the evolution of
the widths of the relevant Nilsson orbitals and of the oc-
cupation probabilities of various single-particle shells with
deformation favors prolate deformation, which is compatible
with a negative-parity ground state. Additionally, in 29,31F,
by looking at radial densities we demonstrated that the range
of quadrupole deformation identified gives typical halo dis-
tributions in p-wave-dominated Nilsson orbitals, as expected
experimentally.

The experimental study of A > 29 fluorine isotopes could
give important cues as to whether quadrupole deformation
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develops with the number of neutrons as in other IOI nuclei,
and, if so, how it affects the single-particle structure with
increasing couplings to the continuum.
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