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Axial shape asymmetry and high-spin states in nuclei with Z = 100 suggested by the projected
total energy surface approach
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The axial-shape asymmetry of yrast states in 246–256Fm is studied by performing the projected total-energy
surface (PTES) calculations, which consider the beyond-mean-field effects associated with the restoration of
rotational symmetry and shape variation at the same time. The results show a large elongation deformation
but also a considerable large triaxiality for their ground and high spin states, the triaxial deformation γ ≈ 11◦

in average. In comparison, the TRS calculations have also been performed for these nuclei, and the results
show a well-established axial quadrupole shape in their ground states. The presence of the significant triaxial
deformation can be attributed to the beyond-mean-field effects generated by the angular-momentum projection.
The axial asymmetric shape for the yrast states of nuclei with Z = 100, suggested by the present variation after
projection (VAP) calculations, indicates that the triaxial degree of freedom may also play a significant role
in other transfermium and even superheavy nuclei. The present PTES calculations have well reproduced the
available experimental energies of the ground-band states and predict the rest yrast states up to spin 30 in each
nucleus. The calculated yrast bands of 246–256Fm present the back bending phenomenon at about the state 18+,
caused by the alignment excitations of the two quasiparticle neutrons of ν j15/2[743]7/2 or of νh11/2[761]1/2. It
is worth confirming the predicted band structures by the future spectroscopic experiments in the transfermium
nuclei for the study of the single-particle structure in the superheavy mass region.
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I. INTRODUCTION

One of the important predictions in nuclear physics is
the emergence of a region of long-lived superheavy elements
(SHE) beyond the actinides, the so-called “island of stability.”
Exploring the island is the current goal in nuclear science. In
the past few years, researchers have made significant progress
in the synthesis of new elements [1,2], and, just recently, the
new elements 113, 115, 117, and 118 have been named. It is
instructive to realize that the existence of SHE is attributed to
the nuclear shell effect because the macroscopic liquid drop
model would predict nonexistence of such heavy elements
due to large Coulomb repulsion. Consequently, the location
of the island depends sensitively on single-particle structures
in the highest mass region. Therefore, in parallel to the syn-
thesis experiments, spectroscopy study is also very important.
Because the synthetic cross section of the superheavy nucleus
is extremely small, the experimental spectroscopic study of
superheavy nuclei encounters a great challenge.

Recently, a big progress in γ -ray spectroscopy has been
obtained, that is the measurements of low-lying states of
the transfermium nuclei. By studying the single-particle
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structures of the transfermium nuclei one may gain useful
information on the relevant single-particle states of SHE
[3–5]. Both the in-beam spectroscopy and spectroscopy fol-
lowing the decay of isomeric states or α decays have been
used to study nuclei with Z≈100 and N ≈ 150–160 [6–10].
The transfermium nuclei are the gateway to the SHE region,
and they are strongly deformed, the extracted experimental
quadrupole deformation parameter is β = 0.25–0.30. At such
large deformations, the down-slopping single particle orbitals
originating from spherical subshells, which play an important
role in the SHE region, can come down close to the Fermi
surface in the transfermium nuclei. This gives us a great
chance to study the structures of superheavy nuclei through
the investigation of low-lying states of transfermium nuclei.
The spectroscopy experiments also suggest that the exotic
nonaxial-octupole deformation (potato shape), may exist in
transfermium nuclei as the negative-parity bands with the
bandhead of 2−, which were well reproduced by the reflection
asymmetric shell model with the Y32 deformation component
[11], and this was further supported by multidimensional con-
straint covariant density-functional theory [12]. The presence
of nonaxial-octupole deformation implies the large priority
to have the nonaxial-quadruple deformation. Of course, the
more strong experimental signature of the triaxiality may be
the presence of the low-lying γ bands observed in the trans-
fermium region.
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Several theoretical approaches have been used to study
transfermium nuclear structure, such as the nuclear shapes, the
properties of rotational states and the shell structures. Nuclear
shapes are essential for determining various observables, such
as moments of inertia, transitional quadrupole moments, and
transition properties. In most of the analysis, the mean-field
model and cranked shell model (CSM) have been employed.
Although these models have been shown to provide a reason-
able description of the structures of transfermium nuclei, it
is known that they do not conserve a good angular momen-
tum. The nuclear rotation is not fully described in quantum
mechanics, but described semiclassically by introducing the
rotational frequency, instead of angular momentum, in the
CSM. The projected shell model (PSM) and the reflection
asymmetry shell model (RASM) can restore the broken rota-
tional symmetry through the angular-momentum-projection,
and, therefore, describe the rotational states in good quantum
number of angular momentum. The HFB, as the typical mean-
field theory, has been widely used and successfully describes
the bulk properties of nuclei in almost the entire mass region.
However, the more accurate descriptions of the ground and
low-lying states require the inclusion of the beyond mean-field
effects by carrying out the projections of quantum numbers
onto the eigenstates. Our recent calculations of the HFB vac-
uum states for the even-even sd-shell nuclei by performing the
simultaneous projections of the angular momentum I , isospin
T , and mass number A onto the eigenstates, demonstrated that
the impact of the angular-momentum projection, the I states,
is most important on both the energy and the shape change,
and, in contrast, the TA states still have a large discrepancy
in energy and results in no shape change relative to the HFB
states, see Ref. [13] for details. For the present study the con-
tribution of the particle number projection is negligible, but
this effect may be considered for the study that is sensitive to
the particle number conservation, for example, of the transfer
reaction. The current PSM and RASM calculations, however,
have been performed with a fixed deformation, which is not
determined self-consistently but by fitting the data. The inter-
play between nuclear shapes and rotational motion has long
been an interesting topic in nuclear physics. The potential-
energy surface (PES) calculations have been frequently used
in this research direction. The PES approach allows the shape
variation and provides a self-consistent way to determine the
deformation through the energy minimization procedure. One
of PES approaches has been the total Routhian surface (TRS),
which is based on the CSM, and thus provides the energy
surface at a given rotational frequency, not an angular mo-
mentum. To consider the beyond-mean-field effects associated
with the rotational symmetry restoration, the projected total-
energy surface (PTES) theory has been formulated based on
the triaxial projected shell model (TPSM) [11,14] hybridized
with the macroscopic-microscopic (MM) model [15,16]. The
PTES describes the total-energy surface of a deformed nu-
cleus with the good angular-momentum quantum number. The
total energy of an atomic nucleus is decomposed into the
macroscopic, microscopic, and rotational terms.

In the PTES, the macroscopic and microscopic parts are
described with the liquid drop model and the Strutinsky
method of shell effects, respectively, and the rotational energy

is given by the TPSM, as the beyond-mean-field term. The
basic framework of the PTES is similar to the TRS [17], but
the key difference between the two approaches is the fact
that the PTES has the energy surface carrying good angular
momentum and the TRS provides the energy surface having a
rotational frequency, not quantum number. The advantage of
the PTES approach is manifested by the fact that the energy
surfaces correspond to each of the given spins so that the
minima determine the nuclear states with the good quantum
number of angular momentum, and theoretical results can then
be compared directly with the experimental data in the labo-
ratory frame. This theory has been recently used to investigate
the impact of the beyond-mean-field effects on the triaxiality
in the light tungsten system, and it has been demonstrated
to provide an accurate description of the observed properties
[15,16]. In the present study, we have extended the PTES
calculation of the rare-earth nuclei to the transfermium mass
region for the description of the yrast band states of nuclei
with Z = 100, with an emphasis on the triaxiality of the yrast
states, and on the band structure which is associated with the
quasiparticle (q.p.) excitations. A similar construction of the
total energy in the laboratory frame has been successfully
applied to the energy curve calculation, energy as function
of elongation deformation, in the studies of the collectivity
of neutron-rich nuclei [18] and the shape-coexisting rotation
of neutron-deficient nuclei [19]. We note that two similar cal-
culations were previously down for the transfermium nuclei
with the PSM and TPSM theories, respectively, and valuable
results were obtained. The PSM calculation in Ref. [3] inves-
tigates the alignments of the high- j orbits in the rotational
bands of the transfermium nuclei, which considers sufficient
shell-model configurations up to four quasiparticles, but the
γ deformation was not considered. The TPSM method em-
ployed in Ref. [14] includes only the vacuum configuration,
no q.p. configurations, and, therefore, no shell-model config-
uration mixing was considered, and we note that the method
is valid for the description of the γ vibrational states. In
the present TPES as well as TPSM calculations, we have,
however, included both the γ deformation and the shell-model
configuration mixing of the quasiparticle configurations up to
four quasiparticles. The inclusion of the q.p. configurations is
crucial for the studies of very high spin states beyond the band
crossing.

A brief description of the model is presented in Sec. II. The
results of calculations and discussions are given in Sec. III.
Conclusions are in Sec. IV.

II. THE PROJECTED TOTAL-ENERGY SURFACE THEORY

The projected total energy of the nuclear system, as a
function of deformations ε2, γ , and ε4, for a given spin I may
be given as

EI
tot (N, Z, β ) = EMM (N, Z, β ) + EI

rot (N, Z, β ), (1)

where β represents a set of deformation parameters
(ε2, γ , ε4). EMM (N, Z, β ) is the total energy of the nucleus at
rest, which can be calculated by the MM model, including
the macroscopic liquid-drop model energy [20], the micro-
scopic shell correction and the pairing correction energy in
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the standard Strutinsky method [21,22]. For simplicity and
more clear structure of the theory the pairing correction is
not considered in the present calculation, and it was checked
that inclusion of pairing correction does not change the re-
sults of minima, although the energy surface becomes a bit
complex in the region apart from the minimum. The term of
EI

rot (N, Z, β ) is the rotational energy obtained by the TPSM,
which can be further decomposed into the collective rotational
term and the quasiparticle excitation induced by rotation [16].
The basic construction of the total energy is similar to that of
the total Routhian in the total Routhian surface (TRS) method
where the rotational energy is calculated microscopically as
a function of the rotational frequency, namely, the difference
between the expectation values of the Hamiltonian at the rota-
tional frequency nonzero and zero by using the cranking wave
function, 〈�ω|H |�ω〉 − 〈�ω=0|H |�ω=0〉, see, for example,
Refs. [17,23–25]. In addition, the q.p. excitation energy is
calculated as the sum energy of the excited quasiparticles in
the rotating frame at the frequency ω which belong to the
given configuration.

The PTES described with Eq. (1) carries then the good
quantum number of angular momentum through the rotational
term, and the minimization procedure has to be performed
for each given spin. Therefore, the PTES approach may be
classified as the variation-after-projection (VAP).

The Hamiltonian of the TPSM is expressed as follows:

H = H0 − 1

2

4∑

λ=2

χλ

λ∑

μ=−λ

Q†
λμQλμ − G0P†

00P00

−G2

2∑

μ=−2

P†
2μP2μ, (2)

where H0 is the spherical single-particle Hamiltonian, which
contains a proper spin-orbit force [26]. The second term is
the quadrupole-quadrupole (QQ) interaction that includes the
nn, pp, and np components. In normal spectroscopic cal-
culation of TPSM, the interaction strength is determined in
a self-consistent way with the quadrupole deformation, re-
fer to Ref. [27]. In the energy-surface calculation, the QQ
interaction strength χ should be, however, fixed during the
calculation, namely, keep a constant for each deformation
mesh point. The problem for the adoption of the interaction
strength arises then due to hundreds of deformation points.
But, unfortunately, the strength has not yet been given in a
commonly known way. We suggest a rule that this quadrupole
interaction strength may be obtained in the self-consistent way
from the TPSM theory with respect to a proper one of the
deformation mesh points. In the present calculation, the values
of the strength χ are determined in a self-consistent way
with the equilibrium deformation corresponding to the local
minimum of the Strutinsky’s energy surface of ELD + Eshell.
Consequently, our PTES calculation has to include two steps,
namely, first Strutinsky’s energy surface to obtain the inter-
action strength and finally the PTES. Note that two kinds of
energy surface are not required to have exactly same mesh
structure, and this allows us to reduce the computation time.
The third term in the Hamiltonian is the monopole pairing,

whose strength parameter G0 (in MeV) is determined by the
expression G0 = (g1 ∓ g2

N−Z
A )A−1, where the minus (plus)

sign stands for neutrons (protons) and g1 = 21.02 and g2 =
13.23 are fixed for all the nuclei studied in this article. The
last term is the quadrupole pairing, whose strength parameter
G2 may be calculated from G2 = f G0, usually f = 0–0.2,
we set f = 0.13, which is found to be appropriate for this
mass region [28]. In the present calculation, the hexadecapole
deformation is not considered as a variable and taken as of
ε4 = 0.

The TPSM wave function is expressed by means of the
projection operator,

|�IM〉 =
∑

Kκ

F I
κ,K P̂I

MK |�κ〉, (3)

in which the projected multiquasiparticle states span the
shell-model space. In Eq. (3), |�κ〉 represents the set of
multiquasiparticle states labeled by κ , and for the consid-
ered even-even Fm nuclei it includes up to the 4 q.p. states
associated with the triaxially deformed q.p. vacuum |0〉,
α†

ν1
α†

ν2
|0〉, α†

π1
α†

π2
|0〉, and α†

ν1
α†

ν2
α†

π1
α†

π2
|0〉. The triaxially de-

formed single-particle states are generated by the Nilsson
Hamiltonian. In the present TPSM calculation, three ma-
jor shells of N = 5, 6, 7 for neutrons and N = 4, 5, 6 for
protons are considered, and the pairing correlations are in-
cluded by a subsequent BCS calculation for the Nilsson states.
P̂I

MK in Eq. (3) is the three-dimensional angular-momentum-
projection operator [27]. The rotational energies together with
the wave functions, i.e., the coefficients F I

κ,K , are obtained by
solving the eigenvalue equation,

∑

Kκ

F I
κK

(〈�κ ′ |HPI
K ′K |�κ〉 − EI〈�κ ′ |PI

K ′K |�κ〉
) = 0. (4)

In the present approach, EMM (N, Z, β ) in Eq. (1), provides
the energy of the deformed BCS vacuum state, relative to
the spherical liquid drop energy, and the rotational energy
EI

rot (N, Z, β ) is calculated by Eq. (4), relative to the deformed
q.p. vacuum. The total energy of the deformed nuclear system,
EI

tot in Eq. (1), is consequently defined in the laboratory frame,
which is a function of spin and also has a good parity. The
nuclear equilibrium deformation for each of the yrast or low-
excited states can be obtained by minimizing their respective
total energy with respect to the deformation parameters ε2 and
γ . Once the PTES is calculated the minimization procedure
can be performed straight by finding the local minimum in
the total-energy surface at each spin, and by this way the
equilibrium deformations for a given spin are determined self-
consistently.

III. RESULTS AND DISCUSSION

A. Projected total-energy surface for given angular momentum

All calculations of the projected total-energy surfaces in
the present work are carried out for a given angular momenta
as well as a given parity; this allows us to obtain the nuclear
states with good quantum numbers of spin and parity and,
therefore, provides an opportunity to make a direct compar-
ison between the theory and the experiment. The general
features of the projected total-energy surfaces for the ground
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FIG. 1. Contour plot of total energy in units of MeV for the
ground state of 248Fm, the local minimum is marked by “+.” The
γ axis is given in units of degrees.

state (g.s.) Iπ = 0+ are illustrated with the example of the
248Fm in Fig. 1. In the present PTES calculations, the range
of the elongation deformation ε2 is taken from 0.1 to 0.3,
while the range of the triaxial deformation γ from 0◦ to 40◦,
and the mesh points of 20 have been taken for both the ε2

and γ deformations. Figure 1 shows that there exists a local
minimum in the PTES for the g.s. of 248Fm, which represents
the equilibrium deformations of (ε2 = 0.279, γ = 14.6◦). The
results imply that the g.s. of the nucleus is well-deformed,
and it is particularly noteworthy to have a considerable axial
asymmetry with γ ≈ 15◦.

B. Projected total-energy surface for the yrast states in the
246–256Fm isotopes

The PTES calculation for 248Fm in the g.s. Iπ = 0+,
demonstrated in the above section, has been extended to the
yrast states of the 246–256Fm isotopes, up to spin 30. A lo-
cal minimum is found in each of the 96 PTESs for spins

of Iπ = 0+, 2+, 4+, 6+, . . . , 30+ in the yrast bands of these
six nuclei. These local minima allow us to determine the
equilibrium deformations (ε2, γ ) for each spin in the yrast
states of the 246–256Fm isotopes, and the results are listed in
Table I. Both the elongation and triaxial equilibrium deforma-
tions being almost unchanged with increasing spin for each
of the selected Fm isotopes, characterizing well-deformed
rotor, with the exception of 254Fm and 256Fm where some
change of ε2 deformation has been found after spin 18+, for
example, increasing from 0.24 to 0.28 in 254Fm and from
0.25 to 0.28 in 256Fm. The deformation change in the two
nuclei reflects the deformation-driving effects induced by the
two q.p. alignment excitation of the high- j orbital, a detail
discussed below. The very small absolute values of γ obtained
from the TRS calculations indicate the axial symmetry for
the g.s. of 246–256Fm isotopes, while the considerably large γ

deformations obtained from the PTES calculations implies the
axial asymmetry nature of the g.s. for these nuclei. Note that
the present PTES and TRS calculations start with the same
single-particle states and approximately same pairing interac-
tion as well as the same model space truncation, and the major
difference is the fact that the former contains the angular-
momentum projection but the latter does not. Therefore, we
may safely conclude that the beyond-mean-field effect, as-
sociated with the angular-momentum projection, may be the
origin of the triaxiality of 246–256Fm obtained from the PTES
calculation.

It is shown in Table I the ε2 deformation of the ground
states in 246–256Fm presents some decreasing with increasing
neutron number, for example, the ε2 values are about 0.28 for
246,248Fm and about 0.24 for 250,252,254,256Fm. The decreasing-
in-ε2 deformation with increasing neutron number may be
understood as shell effects. Specifically, the neutron shell
effects associated with the pronounced energy gap at neutron
number 150, as shown in Fig. 2, may be responsible for the
decrease of the ε2 deformation in the Fm isotopes with mass
number equal to and larger than 250. The triaxial deformation
of γ ≈ 14◦ is found for 246,248Fm and a smaller value of
γ ≈ 10◦ for 250,252,254,256Fm, as shown in Table I. The slight
γ deformation change may be explained as the neutron shell
effects again. In the neutron single-particle Nilsson diagram,

TABLE I. Deformations of the yrast states of 246–256Fm isotopes determined by the energy minima in PTES for spins 0+ to 30+.

Iπ 0+ 2+ 4+ 6+ 8+ 10+ 12+ 14+ 16+ 18+ 20+ 22+ 24+ 26+ 28+ 30+

246Fm ε2 0.276 0.276 0.277 0.277 0.277 0.277 0.278 0.284 0.284 0.284 0.284 0.284 0.284 0.284 0.278 0.277
γ 13.4◦ 13.4◦ 13.4◦ 13.4◦ 13.4◦ 13.4◦ 13.4◦ 13.2◦ 13.2◦ 13.2◦ 13.2◦ 13.2◦ 13.2◦ 13.2◦ 13.4◦ 13.4◦

248Fm ε2 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279 0.279
γ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦ 14.6◦

250Fm ε2 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.248 0.246 0.246 0.250
γ 8◦ 8◦ 8◦ 7◦ 7◦ 7◦ 6.8◦ 6.4◦ 6.2◦ 5.8◦ 5.6◦ 5.2◦ 5.0◦ 4.2◦ 4.0◦ 5.0◦

252Fm ε2 0.242 0.242 0.242 0.242 0.242 0.243 0.243 0.243 0.244 0.244 0.244 0.231 0.231 0.231 0.231 0.232
γ 10◦ 10◦ 10◦ 10◦ 10◦ 10◦ 10◦ 9.8◦ 9.8◦ 9.6◦ 9.6◦ 10.6◦ 10.6◦ 10.6◦ 10.6◦ 11.4◦

254Fm ε2 0.242 0.242 0.242 0.242 0.244 0.244 0.244 0.244 0.244 0.282 0.282 0.282 0.282 0.282 0.282 0.282
γ 10.2◦ 10.2◦ 10.2◦ 10.2◦ 10.4◦ 10.2◦ 10.2◦ 10◦ 9.8◦ 7◦ 7◦ 7◦ 7◦ 7◦ 7◦ 7◦

256Fm ε2 0.246 0.246 0.246 0.246 0.246 0.246 0.246 0.248 0.248 0.280 0.280 0.280 0.282 0.282 0.270 0.270
γ 11.4◦ 11.4◦ 11.4◦ 11.4◦ 11.4◦ 11.2◦ 11.2◦ 11.2◦ 11.2◦ 9.8◦ 9.4◦ 9.4◦ 9.4◦ 9.4◦ 9◦ 9◦
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FIG. 2. Neutron Nilsson diagram showing single-particle or-
bitals as deformation ε2 varies. Orbitals with positive (negative)
parity are shown by solid (dashed) curves.

the single-particle energy as a function of γ at ε2 = 0.27, there
exist an energy gap of N = 148 and persists in a large range of
the triaxial deformation, from γ = 10◦ to 30◦. The associated
shell effects may be responsible for the γ deformation of
246,248Fm being about four degrees larger than the heavier Fm
isotopes. We note that the employed neutron single-particle
diagram created by using the Nilsson parameter of Bengtsson
and Ragnarsson [26] is very similar to the diagram calculated
with the Wood-Saxon potential [29].

The PTES for each state of spin and parity is first cal-
culated, and then the minimization procedure with respect
to the elongation and triaxial deformations is performed to
obtain the energy of the state together with the equilibrium
deformations. In this way, the yrast band is calculated self-
consistently within the PTES approach, and it is the variation
after projection (VAP) calculation. Figure 3 shows the calcu-
lated yrast bands for the 246–256Fm isotopes, the corresponding
equilibrium deformations are given in Table I, compared with
the experimental data [6,30,31]. It is seen that the calculated
results are in very good agreement with the experimental data.

The calculated yrast bands of 246–256Fm present the back
bending phenomenon at about the state 18+, caused by the
alignment excitation of two q.p. neutrons. One can extract the
moment of inertia and find the corresponding band-crossing
frequency from the calculated yrast band energies E (I ), just
as it has been shown from experimental band energies in many
publications. The calculated moment of inertia in function of
the rotational frequency, J1(ω) shows the upper bending at
the band-crossing frequencies of h̄ωc = 0.32, 0.28, 0.26, and
0.29 MeV in 246Fm, 248Fm, 250Fm, and 252Fm, respectively,
as shown in Fig. 4. These upper bendings are caused by
the angular-momentum alignments of two q.p. neutrons of
ν j15/2[743]7/2, according to the analysis of the components
in the calculated wave functions. The calculated moments of
inertia present a strong back bending at the band-crossing
frequency of h̄ωc = 0.30 MeV for both 254Fm and 256Fm, as
shown in Fig. 4, where the back bending is caused by the
alignments of two q.p. neutrons of νh11/2[761]1/2, which is
a strong down-slopping high- j orbital in the Nilsson diagram,
as shown in Fig. 2, and, thus, it may generate the driving force
that leads to an increase of the elongation deformation in these

FIG. 3. Calculated yrast bands, the energy levels, for 246–256Fm isotopes compared with the experimental data.
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FIG. 4. Moment of inertia as function of rotational frequency for 246–256Fm. The upper panel shows the results of the present calculations,
each symbol point corresponds to an initial state of the E2 transition, whose Iπ value is marked above symbols for few points only as guide.
As a comparison, the bottom panel shows the results of the CRHB calculations, and the data are measured by reading the part of Fm isotopes
of Fig. 12 in Ref. [32].

two nuclei, as discussed above, in addition to being respon-
sible for the back bending. As a check, the upper bending
and back bending together with values of the corresponding
crossing frequencies have been confirmed by the TPSM calcu-
lations with the quadrupole deformations of the ground states
determined by the PTES calculations. The situation is similar
to the back bending phenomenon that occurs in rare-earth
even-even nuclei, where the pair of two q.p. neutrons of i13/2

breaks and align their angular momenta along the rotational
axis. The critical spin at which the two q.p. band crosses the
ground state band is about 12h̄ experimentally in rare-earth
nuclei, while it has been predicted in the present calculation
to be about 18h̄ in transfermium nuclei. Recently, the co-
variant density-functional theory predicts the back bending
phenomenon in the transfermium nuclei, and the cranked rela-
tivistic Hartree-Bogoliubov (CRHB) calculations in Ref. [32]
report the band crossing frequencies of h̄ω = 0.25, 0.26, 0.28,
0.27,0.26, and 0.25 MeV for 246Fm, 248Fm, 250Fm, 252Fm,
254Fm, and 256Fm, respectively, as shown in the bottom panel
of Fig. 4. It is seen that both the present PTES calculations and
the CRHB calculations, which are of typically different meth-
ods, predict the presence of the back bending phenomenon
in 246–256Fm, with not too much difference in band-crossing
frequencies. In Ref. [3], the rotational alignment of high- j
orbitals and the back-crossing phenomenon in the yrast bands
of Cf, Fm, and No isotopes were carefully discussed by an-
alyzing the experimental data and the calculated yrast states

with PSM theory. The major difference between the PSM cal-
culation and the present work is the fact that the latter includes
the γ degree of freedom, and the deformations are determined
self-consistently for each spin to gain the prediction power of
the theory.

We note that the nature of the back bending phenomenon in
246–256Fm implies the detailed structure of the single-particle
states, in particular, the level scheme of the high- j orbits
across the major shell. The present calculations reveal that the
predicted band crossing arises from the alignment of neutron
orbital νh11/2[761]1/2 which locates right at the neutron shell
gap of N = 184, a highly attentive new magic number. The
predicted location of this high- j orbital implies its importance
for the understanding of nuclear structures for the superheavy
nuclei. And, therefore, the experimental yrast spectroscopy
of 246–256Fm becomes very worthy for probing the single-
particle structures in the transfermium and superheavy mass
regions.

C. Comparison between projected total-energy surface
and total Routhian surface calculations

The total Routhian surface (TRS) approach has been exten-
sively used to describe the shape of heavy nuclei, which is one
of typical nuclear model based on the mean-field approxima-
tion but without including of the beyond-mean-field effects.
It is, therefore, instructive to make a comparison between the
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FIG. 5. Contour plot of total Routhian in units of MeV for 248Fm,
calculated at the rotational frequency h̄ω = 0.02h̄ω0, the minimum
is marked by “+.”

PTES and TRS calculations. The rotational frequency, as a
classical term employed in the TRS approach, has been a
useful quantity to describe nuclear rotation. However, because
of the semiclassical nature of the TRS method it is not possible
to strictly describe even the ground state (g.s.), which has
a good angular momentum of I = 0. It should be noticed
that the quantum state with spin of I = 0 is a rotational one
which does not match with the rotational frequency of zero.
Usually, to describe the shape of the ground state of the
nucleus, the TRS calculation may be, empirically, performed
at a small rotational frequency which is larger than zero and
far below the band-crossing frequency. As an example, the
TRS for 248Fm calculated at the rotational frequency of h̄ω =
0.02h̄ω0 is shown in Fig. 5, which reports a local minimum
at the deformations of (ε2 = 0.234, γ = 2◦). Table II shows
the deformations of the ground states of 246–256Fm isotopes
determined by the energy minima in TRS at the rotational
frequency of h̄ω = 0.02h̄ω0. The calculated elongation equi-
librium deformations given by the TRS for all the considered
nuclei are a bit smaller than those determined by the PTES
method. The trend of changing of the resulting equilibrium
elongation deformation, the slightly decreasing with increas-
ing neutron number, is similar between the TRS and PTES
calculations.

TABLE II. Deformations of the g.s. of 246–256Fm isotopes deter-
mined by the energy minima in the TRS at the rotational frequency
of h̄ω = 0.02h̄ω0.

Nuclei

246Fm 248Fm 250Fm 252Fm 254Fm 256Fm

ε2 0.234 0.234 0.224 0.224 0.224 0.224
γ 2◦ 2◦ −3◦ −3◦ −3◦ −3◦

Recently, the global calculation across the nuclear chart
of axial symmetry breaking was carried out by using
the macroscopic-microscopic finite-range liquid-drop model
(FRLDM) [33,34]. Many nuclear ground states have been
predicted to be triaxially shaped or γ soft by the FRLDM
calculations, some of which were previously predicted to
be axially symmetric by the TRS calculations. The differ-
ent results of the FRLDM with respect to the TRS method
come from their different parametrizations, although the two
methods belong to the same type of macroscopic-microscopic
approach. For the 246–256Fm isotopes, both the FRLDM and
TRS calculations report a axial symmetry for the ground states
and the similar elongation deformation.

D. Triaxiality and γ bands

The triaxiality is found for 246–256Fm isotopes, the average
value of the equilibrium triaxial deformation is γ ≈ 11◦. The
origin of the triaxiality is attributed to the beyond-mean-field
effects as having addressed above. In Fig. 6, we have made
a comparison between the unprojected energy curve and the
projected energy curves for the states with angular momentum
Iπ = 0+, 2+, . . . , 10+ in 248Fm. In the left part of Fig. 6
showing the energies in function of ε2 at a fixed value of
γ = 0, the minimum at ε2 = 0.255 is found in the projected
energy curves, and the unprojected energy curve presents a
similar form and minimum. The right part of Fig. 6 shows the
energies as a function of γ at a fixed value of ε2 = 0.255. It
is seen that the unprojected energy curve has a well-defined
minimum at about γ = 3◦ and, however, the projected energy
curves exhibit the very γ softness and a shallow minimum at
about γ = 18◦. This feature of the projected energy curves
suggests that the inclusion of the projected energy could lead
to the possible triaxial shape for the system which is predicted
to have an axial symmetric shape within the mean-field ap-
proximation. Furthermore, the observed low-lying γ bands in
the 254Fm and 256Fm may be regarded as the indirect evidence
for the existence of the triaxiality in these nuclei. In the TPSM
calculations for the γ bands, the elongation deformations
have been taken as the same as the equilibrium elongation
deformations for the ground states Iπ = 0+ (see Table I),
while the values of the γ deformation have been taken to
reproduce the excitation energies of the γ bands, adopted
deformation values are γ = 25.5◦ for 254Fm and γ = 24◦
for 256Fm, respectively. The present TPSM calculations well
reproduce the known experimental γ band data as well as
the ground-state bands, as shown in Fig. 7. The energy of
the γ -bandhead is sensitive to the γ deformation. The small
change of the γ deformation, about few degrees, is crucial to
reproduce the experimental data. Unfortunately, there are no
more experimental data available for γ bands in these trans-
fermium isotopes, and the systematic study of the γ bands in
the 246–256Fm isotopes requires further experimental verifica-
tions. The presence of the γ bands in nuclei has been widely
argued as the γ vibration around the prolate shape. It has been
a long-standing puzzle that, in quite many deformed nuclei
which are predicted by the mean-field models to have the axial
symmetry and no γ softness, yet the low-lying γ bands have
been observed experimentally. The TPSM, as a shell model
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(a) (b)

FIG. 6. Energy surfaces for states with angular momentum Iπ = 0+, 2+, . . . , 10+. The energies are calculated as function of (a) quadrupole
deformation ε2 with γ = 0◦, and (b) γ deformation with ε2 = 0.255. Full (dashed) curves correspond to projected (unprojected) calculations.
The γ axis is given in units of degrees.

by using the deformed basis, can describe the γ -vibrational
bands in heavy deformed nuclei, with the rotational behav-
ior similar to that of ground bands. The γ -vibrational states
can be, as is common knowledge, interpreted as a mainly
harmonic fluctuation about an axially symmetric shape. The
present PTES calculations generally predict a considerable
triaxiality and the pronounced gamma softness, as the results
of the impacts of projecting unto a good angular momentum,
in the ground states of heavy deformed nuclei. These results
seem to offer somewhat useful information for understanding
the wide occurrence of such low-lying γ -vibrational states
whose excitation energies are about 0.6-0.8 MeV above the
ground state, in rotational heavy nuclei.

The PTES-TPSM approach treats the nuclear rotation
quantum mechanically and allows three-dimensional rotation
through the angular-momentum projection. In contrast, the
TRS-CSM method (not tilted cranking) treats the rotation of

quantum states in a semiclassical way by introducing rota-
tional frequency and requiring the system to rotate around a
fixed principle axis. Although the method has been very suc-
cessful in the study of highly rotating nuclei, in particular with
the selective efficiency in systematic analysis of the data, its
disadvantage is, however, clear that it cannot properly account
for the effects of the three-dimensional quantum rotation. The
beyond-mean-field effect incorporated in the PTES-TPSM
approach is the quantal effect that favors the triaxial rotation.
Recently, the first study of the full projected mean field was
performed for the even-even sd-nuclei by using the USDB
Hamiltonian. The calculated results show that the intrinsic
shapes of the VAP (variation after projection) wave functions
with angular-momentum projection are always triaxial while
the usual HFB methods provide axial shapes [13]. In our
earlier work, our VAP energy calculations clearly show that
the angular-momentum projection is very important to achieve

FIG. 7. Calculated g.s. bands (open squares) and their γ bands (open triangles), the energy versus spin for 254Fm and 256Fm and a
comparison with the experimental data (solid symbols).
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FIG. 8. Component energy surfaces of the total energy for the ground state of Iπ = 0+ in 248Fm: (a) ELD + Eshell and (b) Erot . The energy
is in units of MeV. The γ axis is given in units of degrees.

a good approximation to the full shell model [35]. In addition,
early other calculations of triaxial deformation and its effect
on the low-energy nuclear structure phenomena performed by
Bender et al. [36,37] using beyond-mean-field calculations
based on the nonrelativistic Skyrme energy density function-
als, by Rodríguez et al. [38,39] and Delaroche et al. [40]
using beyond-mean-field calculations based on the Gogny
DIS interaction, and by Yao et al. [41], by Nikšić et al. [42,43]
using relativistic energy density functionals, come to a similar
conclusion that beyond-mean-field effects play an important
role in nuclear triaxiality. This conclusion was also supported
by the Skyrme-HFB-QRPA calculation, which incorporates
the fluctuation about the HFB-mean field, where the energies
of the γ -vibration band states calculated for 24Mg are in a
good agreement with the experimental data [44].

E. Decomposition of energy surface

To study the beyond-mean-field effect associated with the
angular-momentum projection in further detail, the compo-
nent energy surfaces have been calculated as a decomposition
of the PTES. The calculated component energy surfaces for
248Fm are shown in Fig. 8(a) for ELD + Eshell and 8(b) for
Erot. The liquid drop model-plus-shell energy surface presents
a local minimum at the axial symmetry with the ε2 ≈ 0.25,
and the flatness of the surface around the minimum indicates
a modest γ softness towards the γ -deformation direction.
The rotational energy surface for the spin I = 0, shown in
Fig. 8(b), presents the striking feature to drive the ε2 defor-
mation towards a larger elongation and the γ deformation
from both 0◦ (prolate) and 60◦ (oblate) axial symmetric shapes
towards a large triaxiality of about 35◦. It is seen that the pro-
jected rotational energy at ε2 = 0.25 can generate a significant
enough driving force in the γ direction to provide a lowering
of the total energy in the laboratory frame by about 900 keV
from the axial symmetry to the triaxiality of γ ≈ 15◦.

The ELD + Eshell surface shown in Fig. 8(a) applies also to
the present TRS calculation so that the TRS shown in Fig. 5

can be regarded as the result by adding the rotational energy
given by CSM to the liquid-drop-plus-shell energy. The ax-
ial symmetric shape described by the local minimum in the
ELD + Eshell surface remains unchange in the TRS, implying
that the γ -deformation driving effect promised from adding
the classical rotational energy defined in the TRS approach
is not sufficient to cause the formation of a local triaxial
minimum in the TRS. In contrast, the quantal rotational en-
ergy surface such as one shown in Fig. 8(b) can provide the
strong γ -deformation driving in the formation of the axial
asymmetry shapes of the yrast states in 248Fm.

Although a direct comparison between the quantal and
classical rotational energies is not possible, it can be seen
that, at ε2 = 0.25, the energy lowering from γ = 0◦ towards
15◦ is about 0.2 MeV for the classical rotation in the TRS
at h̄ω = 0.02h̄ω0, estimated by reading data from Fig. 5 and
Fig. 8(a), and, however, it is about 0.9 MeV for the quantum
rotation in the PTES at Iπ = 0+, estimated from Fig. 8(b).
These results indicate that, in the nuclear energy surface cal-
culations, the inclusion of the angular-momentum projection,
as the beyond-mean-field effects, is crucial in the study of
nuclear symmetry and symmetry break. We would like to em-
phasize that the quantal nuclear state at an angular momentum
I = 0 is a certain rotational state which has the same essential
nature as the one at I > 0, and the rotational energy surfaces
at I = 0 and I > 0 will have a similar structure. However,
the cranking nuclear state at the frequency h̄ω = 0 is not a
rotational state, and the nuclear rotation is described at the
frequency h̄ω > 0 in the CSM picture. Consequently, there is
the fatal problem in the CSM to describe strictly the nuclear
ground state that has a quantum number of I = 0.

IV. CONCLUSIONS

The axial asymmetry shape in even-even nuclei 246–256Fm
has been studied by the projected total-energy surface
(PTES) approach. The projected total-energy surfaces for
the yrast states of 246–256Fm present the local triaxial
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minima corresponding to the elongation equilibrium defor-
mation of ε2 ≈ 0.25 and the triaxial deformation of γ ≈ 11◦.
In contrast, the TRS calculations, as the typical mean-field
approximation, yield the axial symmetric equilibrium shapes
with the quadrupole deformations of (ε2 ≈ 0.23, γ ≈ 0◦) for
the g.s. of the same nuclei. The experimental data of the
yrast states of 246–256Fm have been very well reproduced
by the present PTES calculation. By using the equilibrium
elongation deformation determined by the PTES calculation
and the γ deformation of ≈25◦, the TPSM calculations also
well reproduce the available experimental excited γ bands of
254,256Fm. The beyond-mean-field effects incorporated in the
PTES approach through the angular-momentum projection
are responsible for the presence of the significant triaxiality
for the nuclei with Z = 100, which are previously predicted as
axial symmetry within the mean-field approximation. Accord-
ing to the origin of the triaxiality together with the prediction
power of the PTES full quantum-mechanical calculations one
may expect that nuclei in the whole transfermium region and
even in the superheavy nuclear region should be described by
considering the γ degree of freedom.

The calculated yrast bands of 246–256Fm present the back
bending phenomenon at about spin 18+, caused by the
alignment excitation of two q.p. neutrons of the high- j shell.
According to the analysis of the wave functions, the upper
bendings in 246,248,250.252Fm may be attributed to the align-
ments of two q.p. neutrons of ν j15/2[743]7/2, while the strong
back bendings in 254,256Fm originate from the alignment exci-
tation of two q.p. neutrons of νh11/2[761]1/2. We note that the
nature of the back bending phenomenon in 246–256Fm implies
the specific structure of the single-particle states, in partic-
ular, the level scheme of the high- j orbits across the major
shell. And, therefore, the experimental yrast spectroscopy of
246–256Fm is very worthy for probing the single-particle struc-
ture in the transfermium and superheavy-mass region.
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