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In this paper we study the neutron-number dependence of δR (difference of nuclear charge radii R for two
nuclei of one isotope chain), based on which we suggest an empirical formula of δR, called the δR relations.
The δR relations of a number of theoretical models are also investigated in this work. We demonstrate that the
δR relations of this work are more competitive than the previously called δRin− j p relations, with the virtue of
simplicity and flexibility. By using this approach we tabulate our predicted results of 1647 nuclear charge radii
which are experimentally unaccessible, within theoretical uncertainty below 0.03 fm.
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I. INTRODUCTION

The charge radius is one of the most fundamental prop-
erties of nuclei. This quantity also provides an important
fingerprint for exotic nuclear structures like nuclear halos and
shape coexistence [1–6].

Experimentally, root-mean-squared (rms) charge radii (de-
noted by R and R ≡ 〈r2〉1/2) of many nuclei have been
measured by using radioactive ion beams and ultrahigh-
sensitivity laser spectroscopy techniques [6–9]. In a recent
experimental database (denoted as CR2013 here) [10,11],
the charge radii of 957 nuclei have been self-consistently
determined by evaluating experimental data with multiple
techniques. Although the results for Re, Po, Rn, Fr, Ra, and
Cm isotopes compiled in this database were actually extrap-
olated from a global fit, as shown by Eq. (8) in Ref. [10],
a more reliable evaluation for these isotopes is expected to
be accessible in the near future, because muonic x-ray data
have recently been collected on Re isotopes [12] and an ex-
perimental program is ongoing to measure the muonic x rays
in Ra and Cm as well. Furthermore, benefiting from progress
recently achieved by laser spectroscopy, many mean-squared
charge-radius changes (denoted by δR(2), and δR(2) ≡ δ〈r2〉),
which were not included in the CR2013 database, have also
been precisely determined [13–21].

Theoretically, the charge radii R have been calculated
by using either microscopical models [22–28], macroscopic-
microscopic approaches [29–33], or phenomenological for-
mulas [34–40]. We note that the charge radii of 884 nuclei
are reproduced with the root-mean-squared deviation (RMSD
hereafter) of 0.027 fm by using the Skyrme-Hartree-Fock-
Bogoliubov (HFB31) model in Ref. [24]; the RMSD is
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0.035 fm with proper consideration of the diffuseness param-
eter in the framework of the finite-range liquid-drop model
(FRLDM) [31]; more recently, a four-parameter charge-radius
formula present the RMSD of 0.022 fm by considering the
shell corrections and deformations in the Weizsäcker-Skyrme
(WS*) mass model [40].

In addition to these sophisticated theoretical efforts, lo-
cal relations of charge radii have been studied in recent
years [41–45]. These relations are demonstrated to be very
accurate. The RMSD of the Garvey-Kelson (GK) relations for
nuclear charge radii is 0.01 fm [41]; the so-called δRin− j p rela-
tions yield a RMSD of 0.003 fm [45], if very light nuclei and
a few regions which exhibit either sharp phase transitions or
shape coexistence (to be explained in Sec. II of this paper) are
excluded. If one predicts nuclear charge radii by successive
extrapolations of these local relations, however, one would
see that the accuracy of predicted results decreases quickly
with the number of times for successive extrapolations, be-
cause both experimental uncertainties of employed data and
theoretical uncertainties of local relations contribute to the un-
certainties of predicted results [46,47]. An avenue to improve
the local-relation-based predictions is to reduce the number of
experimental data involved in each step of extrapolation while
retaining high accuracies of local relations.

It is therefore the purpose of this paper to investigate local
relations of nuclear charge radii R which involve only two
charge radii in the same isotopic chain, and to study both
the descriptive and predictive powers of these local relations
of R by numerical experiments. We demonstrate that these
relations work remarkably well for nuclei in medium and
heavy mass regions.

This paper is organized as follows. In Sec. II, we inves-
tigate the differences between charge radii of two nuclei in
the same isotope chain but with k-neutron difference, de-
noted as δRk , and study these quantities extracted from an
empirical formula or more sophisticated models. In Sec. III,
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we construct formulas of nuclear charge radii in terms of
our predicted δRk , and study the predictive power of these
formulas by numerical experiments of extrapolations. Finally,
we summarize this paper in Sec. IV.

II. SYSTEMATICS OF RMS CHARGE RADII DIFFERENCE
BETWEEN TWO ISOTOPES

A. Empirical description of δRk

Let us denote the charge-radius difference of two nuclei
with the same proton number Z but different neutron numbers,
N and N − k, by δRk (N, Z ):

δRk (N, Z ) ≡ R(N, Z ) − R(N − k, Z ), (1)

where R(N, Z ) is the root-mean-squared charge radius of
nucleus with N neutrons and Z protons. As protons are electri-
cally charged while neutrons are electrically neutral, nuclear
charge radius is expected to be highly relevant to the proton
number of the nucleus and to be insensitive to its neutron
number. Assuming a spherical shape and a uniform proton
distribution, the charge radius of a nucleus was conjectured to
be essentially proportional to Z1/3 [34,35]; if this is the case,
one has a very naive relation

δRk (N, Z ) = 0. (2)

We first investigate this relation for k = 1. By using the latest
version of nuclear charge-radius database, CR2013 [10], we
plot the values of δR1 with N > 8 in the upper panel of Fig. 1.
To guide the eyes, we also plot the average values of δR1

with given neutron number by using solid curves in red, from
which one easily discerns a very subtle odd-even feature for
δR1. The average of overall δR1 extracted from the CR2013
database (with N > 8) is +0.0072 fm, plotted by using dashed
lines in green in Fig. 1(a). We note that most δR1 values are
positive; and this is easily understandable, as the volume of
atomic nuclei is expected to increase on average with neutron
number. From Fig. 1(a), one sees that the magnitudes of δR1

are below 0.02 fm in most cases; the RMSD of the δR1 = 0
relation is 0.014 fm, which is considerably smaller than those
of many sophisticated global models.

Although the simple relation δRk = 0, i.e., Eq. (2), works
reasonably well for k = 1 case, it is less useful when in the
cases with larger values of k. For example, we plot the val-
ues of δR2 extracted from CR2013 database [11], versus the
neutron number N , in Fig. 1(b). One sees that the deviations
of δR2 from 0 are much larger than those in the case of
k = 1, and the RMSD value of Eq. (2) with k = 2 is 0.023
fm. Such large deviations of the δRk = 0 relation are found to
originate mainly from three mechanisms. The first is attributed
to the average deviation of δRk from 0, as shown in Fig. 1.
Apparently,

δRk (N, Z ) =
k−1∑
i=0

δR1(N − i, Z ), (3)

and one expects that the average value of Rk is approximately
proportional to k. This is supported by the average deviation
of the δR2 = 0 relation, δR2 = 0.0146 fm ≈2δR1 fm (δR1 =
0.0072 fm, as discussed above). The second mechanism is

FIG. 1. Nuclear charge-radii changes, (a) δR1 and (b) δR2, ex-
tracted from the CR2013 database [10]. The curves in red correspond
to the average values of δRk (k = 1, 2) with neutron number N , and
dashed lines in green represent the overall average of δRk . δRk of
Eqs. (3) and (4) are plotted by using curves in blue.

the shell effect of neutrons. According to Fig. 1, the average
deviation of δRk increases vary sharply at the beginning of
new neutron shells, and then decrease slowly throughout the
shell; and this regular pattern leads to visible deviations of
δR1 from δRk (dashed line in green). The third mechanism is
related to the sudden onset of deformation or shape coexis-
tence [6], which leads to anomalies of δRk . In the CR2013
database [11], there are four such regions in terms of δR1: (1)
N � 20; (2) N = 60 and 37 � Z � 41; (3) 88 � N � 90 and
62 � Z � 67; (4) N � 108 and 78 � Z � 79, N � 106 and
Z = 80. Such regions were also highlighted by the δRin− j p re-
lations. According to Eq. (3), these anomalous regions expand
gradually with k.

In order to improve these δRk relations, we introduce em-
pirical corrections to describe the N dependence of δR1 in
average. Our empirical formula for δR1 is

δR(emp)
1 (N, Z ) = a(N − N0) + b, a =

{
a1, N < N0,

a2, N � N0,
,

(4)

where N0 is generally set as neutron number at the half-filled
neutron shell, except that N0 = 109 for the N = 82–126 shell
(rather than N0 = 104); namely, we take N0 = 24, 39, 66,
109, and 155. a1, a2, and b are parameters optimized by using
the experimental values of δR1 for each major shell, and are
presented in Table I. δR(emp)

k with k > 1 are calculated by
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TABLE I. Optimized parameters a1, a2, and b [see Eq. (4), in units of 10−3 fm] obtained by a χ 2 fitting to the δR1 values extracted from
the CR2013 database [10,11].

Parameter 21 � N � 28 29 � N � 50 51 � N � 82 83 � N � 126 N � 127

a1 (×10−3 fm) −1.417 −1.520 −0.881 −0.449 −0.121
a2 (×10−3 fm) −2.577 −0.899 −0.317 0.158
b (×10−3 fm) −0.150 5.226 5.548 2.696 6.744

using Eq. (4) and the definition in Eq. (3). We note that,
although these parameters are not optimized for k > 1 cases,
we find they are close to those optimized individually for each
k; and in this paper we assume unified values of a1, a2, and b
for different k.

The δR1 and δR2 calculated by using Eq. (4) with param-
eters of Table I are plotted in Fig. 1 (solid curves in blue).
One sees that the evolution of δR1 and δR2 is very well
represented by Eq. (4). On the other hand, the shape transition
or coexistence is not considered in Eq. (4), therefore in the
discussions below we exclude those four regions involving
anomalous δR1. The deviations of calculated δR1 and δR2 (de-
noted by δR(emp)

1 and δR(emp)
2 ) from those extracted based on

the CR2013 database (denoted by δR(exp)
1 and δR(exp)

2 ) are plot-
ted in Fig. 2, where most of deviations are smaller than 0.02
fm. While the odd-even feature is discernible for δR1, it is not

seen for δR2. The average deviations, δR(emp)
k (N ) − δR(exp)

k (N )

FIG. 2. Deviations of (a) δR1 and (b) δR2 based on Eqs. (3)
and (4) from those extracted from the CR2013 database. The average
deviations with given neutron number N is plotted by using curves
in red, and the overall averages of δR1 and δR2 are plotted by using
dashed lines in green. The vertical dashed lines correspond to neutron
magic numbers.

with k = 1 and 2, are very close to 0, as shown by solid curves
in red.

With Eq. (4), the resultant RMSD of δR(emp)
1 is 0.0050 fm,

which is much smaller than the δR1 = 0 relation for the same
set of experimental data. Such improvement is even more
striking for k > 1. By using Eqs. (3) and (4), the RMSD for
δR2 is 0.0063 fm, which is about one-third of that for the
δR2 = 0 relation. Yet, from the lower panel of Fig. 2 there is
one result for which the deviation of δR2 is very large at N =
42 corresponding to the 76

34Se42 nucleus, whose experimental
uncertainty of δR(exp)

2 is ∼ 0.02 fm. However, the uncertainty
of δR(exp)

2 is sizably smaller than |δR(emp)
2 − δR(exp)

2 |. We note
that 74

34Se40 is located at the region of phase transition. If we
exclude this anomaly from evaluation, the resultant RMSD
would be reduced from 0.0063 fm to 0.0058 fm.

B. δRk based on theoretical models

As an alternative approach of Eqs. (3) and (4), in this
subsection we study the nuclear charge radii based on a
number of theoretical databases [24,26,28,40], which are
described very briefly as follows. In Ref. [24], the self-
energy effects are considered in the Hartree-Fork-Bogoliubov
(HFB) model by adding a purely phenomenological density-
gradient-dependent term in the pairing force; and by setting
the symmetry coefficient as 31 MeV, one obtains the HFB-
31 results. In Ref. [28], a comprehensive calculation is
performed by using the spherical relativistic continuum
Hartree-Bogoliubovc (RCHB) theory, with the relativistic
density functional PC-PK1 [27] and consideration of the
continuum effects. In Ref. [26], the relativistic mean field
model plus a state-dependent BCS method (RMF + BCS) are
employed to study the ground-state properties of all bound
nuclei. In Ref. [40], a four-parameter formula is proposed
to describe R by combining the shell corrections and defor-
mations of nuclei given from the Weizsäcker-Skyrme (WS*)
model. For convenience, we denote all results of these models
by using a superscript “(th)”.

In Fig. 3, δR(th)
1 which are experimentally accessible in the

CR2013 database are extracted from calculated R values of the
above four theoretical models (denoted by HFB-31, RCHB,
RMF + BCS, and WS*), and are plotted in panels (a)–(d). The
average values of δR(th)

1 with given N are plotted by solid lines
in red, and the overall average values are plotted by dashed
lines in green (∼0.007 fm for all panels, close to that in Fig. 1).
From this figure, one sees that the neutron shell effect on δR1

is well reproduced by these models, except the RCHB model,
whose δR(th)

1 are less sensitive to neutron shells than that of
δR(exp)

1 . As discussed in the last subsection, the experimental
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FIG. 3. δR1 (in unit of fm, for those accessible in the CR2013 database) extracted from a few theoretical calculations: (a) HFB-31 [24],
(b) RCHB [28], (c) RMF + BCS [26] and (4) WS* [40]. The curves in red correspond to the average values with given neutron number N , and
dashed lines in green correspond to the overall average values of nuclei with N > 8. The average values of δR1 based on the CR2013 database
are plotted by using orange curves, for the sake of comparison and convenience, and the vertical dashed lines in grey correspond to neutron
magic numbers.

δR1 exhibits an odd-even feature. Unfortunately, the average
of HFB-31- and RMF + BCS-based δR(th)

1 does not exhibit
such odd-even staggering in the right behavior; on the con-
trary, the “staggering” is sometimes opposite to that of δR(exp)

1 .
Furthermore, for these two models, there are many large δR(th)

1
that originate from shape transition and coexistence in the
models; these will be discussed later. Therefore, the RMSD
values of δR(th)

1 − δR(exp)
1 from zero (0.0149 and 0.0161 fm,

respectively) are considerably larger than those for the RCHB
and WS* models (0.0107 and 0.0119 fm, respectively), as
listed in the first row of Table II. For the sake of convenience,
in the third row of Table II we list the RMSD values of the
charge radii R for these four models, from their experimental

values in the CR2013 database [10,11]. One sees that the
RMSD of δR(th)

1 is much smaller than that of R(th) for each
of four models.

In the second rows of Table II, we present the RMSD
values of δR(th)

1 extracted by using these formulas and models,
with exclusion of the four anomalous regions pointed out in
Sec. II A, from corresponding δR1 extracted from the CR2013
database. The RMSD of the δR1 with this requirement is
reduced from over 0.01 fm to 0.0057 and 0.0066 fm for the
RCHB and WS* models, respectively. These RMSD values
are also substantially smaller than the RMSD values of R(th)

(see the fourth row of Table II), obtained by excluding the
same set of anomalous regions.

TABLE II. Root-mean-square deviations (RMSD) of δR1 and R extracted from databases of a few theoretical models (HFB-31 [24],
RCHB [28], RMF+BCS [26], and WS* [40]), with respect to those of the CR2013 database [10,11]. The first and third rows correspond to the
RMSD values of all nuclei accessible in the CR2013 database with N > 8, while those in the second and fourth rows are results with exclusion
of the four anomalous regions pointed out in Sec. II A. N is the number of total data sets. For convenience of discussion, we also present here
the results of Eq. (4) in the last column.

N HFB-31 RCHB RMF+BCS WS* Eq. (4)

730 0.0149 0.0107 0.0161 0.0119
δR1 651 0.0105 0.0057 0.0130 0.0066 0.0050

929 0.0272 0.0358 0.0350 0.0218
R 828 0.0247 0.0332 0.0331 0.0199
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FIG. 4. Nuclear charge radii R for Au (Z = 79) and Hg (Z = 80)
isotopes. Experimental R in the CR2013 database [10,11] are denoted
by solid balls in black, and theoretical R calculated by the HFB-
31 [24], RCHB [28], RMF + BCS [26], and WS* [40] models are
shown in other colors.

Before we go to the cases of δR(th)
k with k > 1, to be

complete, it is informative to take a look at the agreement
of our approach with experimental data for regions which
were called “anomalous” in the above discussions. Here we
exemplify these anomalies by using the Au and Hg isotopes.
In Fig. 4, we plot the nuclear charge radii of these two isotope
chains obtained by the HFB-31, RCHB, RMF + BCS, and
WS* calculations as well as those compiled in the CR2013
databases. For Au isotopes, one sees an abrupt decrease of
experimental charge radii at N = 107 and 108, indicating
strongly prolate deformation in the ground states of these
isotopes with N � 107 [6]. As for the Hg isotopes, a large
odd-even staggering is clearly seen in experimental values of
R when N � 105. None of these patterns are satisfactorily re-
produced by these theoretical models, unfortunately, because
the complex competition between prolate and oblate quaside-
generate states near the energy minima is highly sensitive to
details of the effective interaction [21,48]. We also note that
the RCHB and WS* calculated charge radii do not exhibit any
anomalies here: in the RCHB calculation, deformation is not
considered; and in the WS* model, the reason of this failure
is warranted for further investigation, as the deformation pa-
rameters have been integrated in the formulations (see Eq. (1)
in Ref. [40]).

Now let us discuss the δR(th)
k with k > 1. We extract δR(th)

k
based on the HFB-31, RCHB, RMF + BCS, and WS* models,
as well as those based on the Eqs. (3) and (4), and then investi-
gate these δR(th)

k with exclusion of the four anomalous regions
mentioned in Sec. II A. For given value of k, the RMSD values
with respect to δR(exp)

k extracted from the CR2013 database are
plotted in Fig. 5 for each set of models, with k = 1 to k = 15.

It is, first of all, interesting to discuss the k dependence
of the RMSD values. If all δR(th)

1 − δR(exp)
1 are statistically

independent and Gaussian distributed with a width σ1, the

FIG. 5. RMSD values of theoretical δRk from those of the
CR2013 database [10,11]. Solid lines (in blue, green, orange, cyan,
purple) correspond to δRk based on our formula [denoted by “EMP”;
see Eq. (4)], the HFB-31, RCHB, RMF + BCS, and WS* calcula-
tions, respectively. The histograms in red correspond to the number
of δRk versus k in the calculations. The dashed lines correspond
to simple functions 0.005k1/2, 0.007k1/2, 0.009k1/2, 0.011k1/2, and
0.013k1/2 (in fm), which are used to guide eyes.

distribution width σk of δRk will be given by σk
2 = kσ1

2,
namely, the RMSD values of δRk relations are expected to
be proportional to k1/2. However, most σk results here do not
agree with this pattern, as shown in Fig. 5. To guide the eyes,
we plot in Fig. 5 simple functions σ1k1/2, where σ1 ranges
from 0.005 to 0.013 fm with an interval of 0.002 fm, using
dashed lines in grey. For k = 1, the RMSD of theoretical mod-
els discussed in this paper could be divided into two groups,
one of which includes Eq. (4), RCHB and WS* models with
the RMSD around 0.005 fm, and the other includes the HFB-
31 and RMF + BCS models with the RMSD beyond 0.010
fm. One sees here that the results of Eq. (4) and WS* models
approximately follow the k1/2 pattern, while the RMSD of
the RCHB model increases more rapidly than the k1/2 pattern
for k > 4. In the second group with σ1 ∼ 0.01 fm, however,
the RMSD values based on the HFB-31 and RMF + BCS
models increase more slowly than the k1/2 pattern (although
the RMSD values based on the RMF + BCS model follow
this pattern for k � 7). The RMSD based on the HFB-31
model is even smaller than that based on the RCHB model
for k � 6. One of main reasons that the RMSD values of
δRk based on the RCHB model increase most rapidly with
k is the inappropriate description of evaluation of δR(th)

1 with
N : One sees from Fig. 3(b) that δR(th)

1 decrease more slowly
with k than δR(exp)

1 does and the δR(th)
1 for nuclei near the

neutron shells are closer to the overall average value. This
makes the δR(th)

1 − δR(exp)
1 of nuclei in the first half neutron

shell essentially negative and those in the second half shell
essentially positive, i.e., they are statistically random but not
with respect to zero.

From Fig. 5, one sees that the results of δRk relations
based on Eq. (4) and WS* models work best for k � 2. The
RMSD of these two Rk relations are considerably smaller than
those of the HFB-31 and RMF + BCS models for k = 1 and
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increase more slowly than that of the RCHB model. It is also
worthwhile to note that an odd-even feature is discernible in
Fig. 5 for these two relations, with larger RMSD for odd k.
This is actually expected, if one realizes that neither Eq. (4)
nor the WS* model reproduce the odd-even staggering ex-
hibited in the δRk with odd k. unfortunately, this odd-even
staggering of the RMSD versus k is too weak to be useful
in applications.

III. PREDICTIVE POWER OF δRk RELATIONS

In this section, we study predictive power of our δRk re-
lations by two numerical experiments, one of which is an
extrapolation from earlier databases, the CR1999 [49] and
CR2004 [50] databases, to the CR2013 database [10], and the
other of which is to predict latest experimental results from
the CR2013 database, for both nuclear charge radius R and
the mean-squared charge-radius difference that is defined as

δR2(N, Z ) = R(N, Z )2 − R(N∗, Z )2, (5)

where N∗ is our so-called “reference” neutron number in this
paper.

The procedure of our extrapolation is as follows. First,
we extract values δR(th)

1 for N � 21 based on various models
including HFB-31, RCHB, RMF + BCS, and WS4* models,
and δR(emp)

1 based on Eq. (4) with parameters a1, a2, and b in
Table I. Second, δR(th)

k are calculated by using its definition
[see Eq. (3)] for k = 2–15. In doing so, we exclude the δR(th)

k
of nuclei in the anomalous regions discussed in Sec. II A.
Finally we make use of these δR(th)

k , and obtain the prediction
of nuclear charge radius by using the simple relations

R(pred)
k (N, Z ) = R(exp)(N − k, Z ) + δR(th)

k (N, Z ), (6)

R(pred)
k (N, Z ) = R(exp)(N + k, Z ) − δR(th)

k (N + k, Z ), (7)

where R(pred)
k (N, Z ) is the predicted charge radius of a nucleus

with N neutrons and Z protons, and R(exp) is the experimental
charge radius. Equations (6) and (7) are the key relations in
our extrapolations in this paper.

The theoretical uncertainty of δR(th)
k , denoted by σk , is

obtained by assuming that δR(th)
1 are centered at zero and

Gaussian distributed (although this assumption is not very
good and thus yields relatively larger theoretical uncertainties
of the δRk relations). Therefore, our theoretical uncertainties
of Eqs. (6)–(7), denoted by using σ

(pred)
k (N, Z ), are

σ
(pred)
k (N, Z ) =

√
σ (exp)2(N − k, Z ) + kσ1

2, (8)

σ
(pred)
k (N, Z ) =

√
σ (exp)2(N + k, Z ) + kσ1

2, (9)

where σ (exp)(N, Z ) corresponds to the experimental uncer-
tainty of R(exp)(N, Z ), and σ1 represents the theoretical
uncertainty of δR(th)

1 , which is assumed to be 0.011, 0.005,
0.011, 0.006, and 0.005 fm for the HFB-31, RCHB, RMF +
BCS, WS* models and the Eq. (4) formula. There are
at most 2×15 = 30 predictions for a given nucleus, and
the R(pred)

k (N, Z ) with the smallest theoretical uncertainty is
adopted as our predicted value.

FIG. 6. RMSD (in units of fm) of our extrapolated charge radii,
from the CR1999 database [49] to the CR2013 database [10,11], for
k = 1–2, 3–4, 5–7, and 8–15.

Our first numerical experiment is to predict the results
in the CR2013 databases [10,11] starting from the CR1999
database [49] in which there are in total 244 charge radii
accessible for N � 20 (with exclusion of the four anomalous
regions discussed above). By using Eqs. (6)–(7) and (8)–(9),
we totally predict 464 nuclear charge radii which are not
accessible in Ref. [49] but are compiled in Ref. [11]. For
convenience of our discussion, these extrapolated results are
classified into four groups, k = 1–2, 3–4, 5–7, and 8–15,
each of which include more than 99 nuclei. For each group
and each approach in consideration, we calculate the RMSD
of extrapolated charge radii from the experimental data in
the CR2013 database and plot them in Fig. 6. One sees, as
expected, that the RMSD values of Eq. (4) and WS* models
are smaller than those of other three models in all groups. We
note that although the accuracies of the RCHB model are close
to those of our empirical formula [Eq. (4)] and WS* models
at k = 1–2, their RMSD values increase quickly for cases far
from known borders. The RMSD values for overall predicted
nuclei are summarized in Table III, from which one sees that
the WS* models and Eq. (4) (RMSD values in bold font)
present extrapolated charge radii with the smallest deviations
in this numerical experiment.

TABLE III. RMSD (in unit of fm) of our extrapolated charge
radii from the CR1999 database [49] or the CR2004 database [50]
to the CR2013 database [10,11], by using the δRk relations discussed
in this paper. The results based on Eq. (4) and WS* model (which
yield the smallest RMSD values) are presented in bold font.

Model CR1999 CR2004

EMP [Eq. (4)] 0.0124 0.0149
HFB-31 [24] 0.0163 0.0175
RCHB [28] 0.0193 0.0149
RMF + BCS [26] 0.0263 0.0266
WS* [40] 0.0133 0.0115
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Similarly, we perform the numerical experiment of extrap-
olation from the CR2004 database to the CR2013 database,
and again the WS* model and Eq. (4) yield the smallest
RMSD values for 133 nuclei, as seen in the third column
of Table III. In this numerical experiment, major differences
between predictions of the WS* model and those of Eq. (4)
arise from the N = 40 subshell effect in Ga (Z = 31) iso-
topes [6], which lead to a sudden change (about 0.03 fm) of
charge radius from 71Ga to 73Ga, and this sudden change is
not included in Eq. (4). After we exclude the results of Ga
isotopes, the RMSD values for the WS* model and Eq. (4)
would be changed to 0.0121 and 0.0129 fm, respectively.
Similarly, Eq. (4) should not be used for isotope chains from
Ni (Z = 28) to Br (Z = 35), because the relevant δRk suf-
fer from the N = 40 subshell effect. We note that, without
details, by using δRin− j p relations, the RMSD values of ex-
trapolations from the CR1999 and CR2004 database to the
CR2013 database are 0.0151 and 0.0091 fm (for 353 and 85
nuclei) [45], respectively, excluding the regions discussed in
Sec. II A.

In addition to the remarkable accuracy for extrapolation,
as demonstrated above, another important advantage of the
present approach is that the δRk relations involve charge
radii of only two nuclei, thus one is able to evaluate nuclear
charge radius of a nucleus provided that the charge radius
of one nucleus along the same isotope chain is accessible in
principle. This is in contrast to extrapolations by using the
δRin− j p relations, which require additionally charge radii of
two neighboring nuclei with proton number Z + j or Z − j,
and therefore the present approach is much more flexible in
applications.

The remarkable predictive power of δRk with the WS*
model and Eq. (4) is encouraging, therefore we apply these
two approaches, with k from 1 to 15, to predict charge radii
starting from the CR2013 database. Our prediction of charge
radii is restricted to nuclei with positive one- and two-neutron
(proton) separation energies in the WS* database, and ex-
cludes anomalous regions pointed in Sec. II A. Two sets of
predicted charge radii, denoted as RWS∗ and Remp, are ob-
tained by using δR relations of the WS* model and Eq. (4),
respectively. We also obtain the average values of the two
results for each nucleus, denoted by Rth(N, Z ). We denote the
uncertainties of these two predictions by σWS∗ and σemp, and
our theoretical uncertainty σth for Rth(N, Z ) is defined by

σth = max

⎡
⎣

√
σ 2

emp + σ 2
WS∗

2
,
|Remp − RWS∗|

2

⎤
⎦. (10)

The first, square-root term on the right-hand side corresponds
to statistic uncertainties, and the latter represents difference
between these two evaluations, just like the value of uncer-
tainty in Ref. [10].

In total we are able to predict charge radii of 1647 nuclei
unaccessible in the CR2013 database, with theoretical un-
certainty below 0.03 fm. We tabulate these predicted results,
together with the CR2013 results, in the Supplemental Mate-
rial [51] (note that we have replaced the decimal points with
# for Re (Z = 75), Po (Z = 84), Rn (Z = 86), Fr (Z = 87),

FIG. 7. Theoretical uncertainties (in units of fm) of our predicted
charge radii. Panel (a) corresponds to predictions by using the δRk re-
lations and Eq. (10), and panel (b) corresponds to those predicted by
the δRin− j p relations [45]. Solid squares in black correspond to nuclei
which are experimentally accessible in the CR2013 database [10,11].
One sees that the approach in this paper predicts many more charge
radii than the δRin− j p relations within given accuracy, 0.03 fm.

Ra (Z = 88), and Cm (Z = 96) isotopes, because the “ex-
perimental” data compiled in the CR2013 are actually based
on a simple formula; see Eq. (8) in Ref. [10]). The nuclei
whose charge radii are predicted by our extrapolations in this
paper are shown in Fig. 7(a), where squares in black corre-
spond to nuclei which are accessible in the CR2013 database,
and squares in other colors correspond to nuclei whose radii
uncertainties are predicted in this work based on Eq. (10).
We also plot the nuclei whose charge radii are predicted in
the Supplemental Material of Ref. [45], based on the δRin− j p

relations, in Fig. 7(b). One sees theoretical uncertainties of the
δRin− j p relations increase much more rapidly, as they extend
from known borders of isotope chains, than the δRk relations
in this paper.

Recently, mean-squared charge-radii changes δR2 [see its
definition in Eq. (5)] of some nuclei in the K, Cu, Zn, Sn,
and Hg isotope chains with respect to 39

19K20, 65
29Cu36, 68

30Zn38,
124
50 Sn74, and 198

80 Hg118, respectively, have been experimentally
measured or reevaluated by using laser spectroscopy tech-
niques [13–20]. Here we use these results as the touchstone of
our predicted results. For K isotopes a set of nuclear charge
radii R were presented in Ref. [14], and for the other four
isotope chains experimental values of δR2 [see Eq. (5)] were
presented with respect to 65Cu, 68Zn, 124Sn, and 198Hg, re-
spectively [15–20]. In Fig. 8 we plot R and δR2 by using
solid and hollow up-triangles, down-triangles, left-triangles,
right-triangles, diamonds, and stars, where the corresponding
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FIG. 8. Nuclear charge radii R and δR2 extrapolated based on the CR2013 database, and selected experimental results published in 2016–
2021. The results of the CR2013 database and our predicted results are plotted in black and red, respectively; and latest experimental results
(unaccessible in the CR2013 database) taken from Refs. [14,16–20] are plotted in other colors. Panels (a)–(e) correspond to K (Z = 19), Cu
(Z = 29), Zn (Z = 30), Sn (Z = 30), and Hg (Z = 80) isotopes, respectively.

predictions by using δRk relations and Eq. (5) are denoted by
solid and open squares in red, respectively. For convenience
and completeness, we also plot the experimental data of these
isotope chains of the CR2013 database by using circles in
black. One sees that the evolution of our extrapolated results
agrees very well with new experimental data, except for R
and δR2 of 181Hg, 183Hg, and 185Hg, which belong to the
“anomalous” region.

In Table IV we list the RMSD of our extrapolated R and
δR(2) from these new experimental data. The RMSD values
for R are 0.0121, 0.0042, and 0.0036 fm for K, Zn, and Sn,

TABLE IV. RMSD of our predicted R (in units of fm) and δR2 (in
units of fm2) from selected experimental results published in 2016–
2021, for K, Cu, Zn, Sn and Hg isotopic chains. For convenience we
also present RMSD values of the same set of data obtained by using
the δRin− j p relations of Ref. [45]. The results of 181Hg, 183Hg, and
185Hg are excluded in calculating the RMSD values here.

This work δRin− j p [45]

Element R δR(2) R δR(2)

K [14] 0.0121 0.0769
Cu [16] 0.0056 0.0385 0.0064 0.0509
Cu [17] 0.0049 0.0469 0.0068 0.0564
Zn [18] 0.0042 0.0538 0.0063 0.0539
Sn [19] 0.0036 0.0415 0.0023 0.0232
Hg [20] 0.0024 0.0244

respectively. We should note that the RMSD for K isotope
chain is relatively large, as the proton number of K is small.
For Cu isotopes, the RMSD is 0.0056 fm with respect to
results in Ref. [16] and it is 0.0049 fm with respect to results
in [17]. This remarkable accuracy of prediction is very encour-
aging, because there are only two nuclear charge radii for 63Cu
and 65Cu in the original CR2013 database, and with respect to
these two results we are able to predict the charge radius of
78Cu by using δR(th)

k for which k = 13. For Hg isotopes, the
total RMSD for nine nuclei is 0.0298 fm, but with exclusion
of 181Hg, 183Hg, and 185Hg the RMSD is reduced dramatically
to 0.0024 fm.

According to Table IV, the RMSD values of δR(2) are
0.0769 fm2 for K; 0.0385 fm2 for Cu with respect to results of
Ref. [16] and 0.0469 fm2 with respect to results fo Ref. [17];
0.0538 fm2 for Zn; 0.0415 fm2 for Sn; and 0.0244 fm2 for
Hg isotopes (excluding 181Hg, 183Hg, and 185Hg). The δRin− j p

relations are also evaluated with respect to the new experi-
mental data of Cu, Zn, and Sn, as shown in the fourth and
fifth columns of Table IV. Except for Sn isotopes, the δRin− j p

relations are less accurate than the δRk relations presented in
this paper.

IV. DISCUSSION AND CONCLUSIONS

To summarize, in this paper we study systematics of dif-
ferences between nuclear charge radii of two nuclei with the
same proton number, δRk , and based on an empirical formula
and a number of theoretical databases we predict charge radii
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which are not yet experimentally accessible by simple extrap-
olations.

First, we have investigated the systematics of δR1 (dif-
ferences between charge radii of two neighboring isotopes)
extracted from the CR2013 database, and suggest an empirical
formula which describes the N dependence of δR1, the resul-
tant RMSD of which is 0.0050 fm, with exclusion of the light
nuclei region (N < 20) and three regions relevant to phase
transition and shape coexistence. We have also extracted δR1

based on charge radii calculated by a number of theoretical
models, including the HFB-31, RCHB, RMF + BCS, and
WS* models. The δR1 relations based on the RCHB and
WS* models are found to be remarkably consistent with ex-
perimental data, with RMSD values of these two approaches
being 0.0057 and 0.0066 fm, respectively, for the same set of
databases as the empirical formula of δR1 in this paper. As
for simple relations of δRk , the deviations of results extracted
based on the RCHB calculations with respect to experimental
data become large, while the empirical formula and results
based on the WS* calculations remain very accurate.

Second, we study the predictive power of the δRk relations
by performing two numerical experiments, one of which is to
extrapolate the results of the CR1999 and CR2004 database
to those of the CR2013 database, and the other of which is

to extrapolate the CR2013 database to the new experimental
results of R and δR2 measured in the last few years. The
accuracies of our predictions based on the empirical formula
and the WS* models are in general more accurate than results
given by the δRin− j p relations [45], with the virtue of simplic-
ity and flexibility; and furthermore, the extrapolation of the
δRk approach is carried out without iteration and thus it avoids
rapid accumulation of theoretical uncertainties in predictions.

Finally, our predicted nuclear charge radii by using δRk

based on our empirical formula and the WS* model, for those
with theoretical uncertainty below 0.03 fm, are tabulated in
the Supplemental Material of this paper [51]. These predic-
tions are relevant to ongoing research programs at radioactive
ion beam facilities, e.g., experimental measurements planned
on both Zn [52] and Ag [53].
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