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Energy-independent complex 1S0 NN potential from the Marchenko equation
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We present a new algebraic method for solving the inverse problem of quantum scattering theory based on
the Marchenko theory (fixed-l inversion). We applied a triangular wave set for the Marchenko equation kernel
expansion in a separable form. The separable form allows a reduction of the Marchenko equation to a system of
linear equations. For the zero orbital angular momentum l , a linear expression of the kernel expansion coefficients
is obtained in terms of the Fourier series coefficients of q(1 − S(q)) function [S(q) is the scattering matrix]
depending on the momentum q and determined by the scattering data in the finite range 0 � q � π/h. It is
shown that this Fourier series defines the potential function of the corresponding radial Schrödinger equation
with h-step accuracy. Based on the developed method, a numerical algorithm is obtained for reconstructing
complex partial potentials from scattering data on a finite range of q. The reconstructed potentials describe
with a required accuracy a partial S matrix that is unitary below the threshold of inelasticity and nonunitary
(absorptive) above the threshold. The developed procedure is applied to analyze the 1S0 NN data up to 3 GeV.
We show that these data are described by energy-independent complex partial potential.
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I. INTRODUCTION

The inverse problem of quantum scattering is essential for
various physical applications such as the interparticle poten-
tial extraction from scattering data and similar problems. The
main approaches to solving the fixed-l inversion problem are
Marchenko, Krein, and Gelfand-Levitan theories [1–7]. The
ill-posedness of the inverse problem complicates its numerical
solution. The development of robust methods for solving the
problem remains a fundamental challenge for applications
[8–12]. Previously, Marchenko theory was successfully ap-
plied to reconstruct nucleon-nucleon partial potentials from
partial-wave analysis (PWA) data up to the inelastic threshold
(Elab ≈ 280 MeV) [13,14] using rational fraction expansions
of partial S matrices. In this case, the kernel of the Marchenko
equation is represented as finite separable series of the Riccati-
Hankel functions products, and the Marchenko equation is
solved analytically. The partial potentials are also expressed
through these functions (Bargman-type potentials). A similar
approach was used later to reconstruct optical model nucleon-
nucleon partial potentials from PWA data up to 3 GeV [15,16].
However, the convergence of such a procedure with an in-
crease in the S-matrix approximation accuracy is not apparent.

This paper considers a new algebraic method for solving
the fixed-l inverse problem of quantum scattering theory. We
derive the method from the Marchenko theory. To this end, we
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propose a novel numerical solution of the Marchenko equation
based on the integral kernel approximation as a separable
series in the triangular and rectangular wave sets. Thus, we
solve the Marchenko equation with a separable kernel, which
can be performed analytically as in Refs. [13–16]. For the
kernel expansion in the series we propose, we show that the
expansion coefficients can be obtained from the Fourier series
coefficients of the function q(1 − S(q)) on a finite range (0 �
q � π/h) of the momentum q. The convergence of the pro-
cedure is demonstrated numerically by decreasing the value
of h. Thus we show that the kernel approximation may be
calculated directly from the scattering data on the finite range
of q. The developed method is based on the Fourier series
expansion of a continuous function, and the theory of the
Fourier series substantiates its convergence with decreasing
step h.

The concept of optical potential (OP) is a useful tool in
many branches of nuclear physics. NN potentials are used
as an input for (semi)microscopic construction of OPs for
description of nuclei and nuclear reactions [17–21]. The com-
monly used NN potentials in such approaches are real and
only describe the NN PWA data below the inelastic threshold.
The use of complex partial NN potentials describing the PWA
data at energies above the threshold is necessary (in the ab-
sence of a microscopic theory) to describe nuclear reactions
with energies of the NN relative motion above the threshold
[16]. There are different models of such optical partial NN
potentials. In Ref. [15], an algorithm was presented for con-
structing a partial potential, with an energy-independent real
potential r-space function modified by an energy-dependent
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complex r-independent multiplier. In Ref. [22], an algorithm
for constructing a separable partial potential was presented.
In this algorithm, the separable part of the potential modifies
the r-space real part of the potential. In both algorithms, the
modifying part is absent below the threshold, and the potential
is real. The real partial potential gives the real wave function to
within an r-independent factor. Such a limitation for a realistic
OP is excessive. Thus, the problem arises of constructing opti-
cal model partial potential that is complex at all energies, even
below the inelasticity threshold. Such a possibility exists. For
example, the phase-equivalent Krein transformations make it
possible to obtain an energy-independent complex potential
giving a unitary matrix [2].

The direct application of the fixed-l inversion theories to
the reconstruction of a potential which is phase equivalent
to the effective potential describing reactions of composite
particles seems impossible. The reconstructed potential must
reproduce the unitary S matrix below the inelastic threshold.
In addition, it must reproduce an absorptive, nonunitary S
matrix above the threshold. These requirements seem to be in-
compatible with energy-independent potentials derived from
fixed-l inversion theories. However, for the shallow threshold
(elastic nD scattering, the binding energy of the deuteron
Ec.m. ≈ 2.226 MeV), it was shown that Marchenko theory is
applicable and produces energy-independent complex partial
nD potentials [23,24]. To approximate the S-matrix unitary
below the threshold and nonunitary (absorptive) above the
point, they used a rational parametrization similar to that used
for the case of a unitary matrix in Refs. [13–16]. Verification
of the Marchenko theory in this particular case in a numerical
experiment is not convincing. We analyzed the Marchenko
theory [2,3] and found that most of the theory applies not
only to S(q)-matrices unitary for 0 � q < −∞ but also to
nonunitary S matrices. The Marchenko equation and our alge-
braic form of the Marchenko equation allow us to reconstruct
energy-independent complex local partial potential from a
partly unitary and partly nonunitary S matrix. We applied
the developed formalism to analyze the 1S0 NN data (up to
Elab ≈ 3 GeV) and showed that these data are described by
energy-independent complex partial potential. In the consid-
ered case, the inelasticity threshold is high (Elab ≈ 280 MeV),
and it is not easy to achieve the required accuracy of the
S-matrix rational parametrization used in Refs. [23,24]. The
Fourier series theory ensures the convergence of our numeri-
cal procedure with an increase of the S-matrix approximation
accuracy. Our results contradict conclusions of [25] for the
NN interaction where they state that “... the optical potential
with a repulsive core exhibits a strong energy dependence
whereas the optical potential with the structural core is char-
acterized by a rather adiabatic energy dependence...” On the
contrary, we reconstructed from the scattering data local and
energy-independent NN soft core OP.

II. MARCHENKO EQUATION IN AN ALGEBRAIC FORM

We write the radial Schrödinger equation in the form(
d2

dr2
− l (l + 1)

r2
− V (r) + q2

)
ψ (r, q) = 0. (1)

Initial data for the Marchenko method [1] are

{S(q), (0 < q < ∞), q̃ j, Mj, j = 1, . . . , n}, (2)

where S(q) = e2ıδ(q) is a scattering matrix dependent on the
momentum q. The S matrix defines asymptotic behavior at
r → +∞ of regular at r = 0 solutions of Eq. (1) for q �
0; q̃2

j = Ej � 0, Ej is jth bound state energy (−ıq̃ j � 0);
Mj is jth bound state asymptotic constant. The Marchenko
equation is a Fredholm integral equation of the second kind:

F (x, y) + L(x, y) +
∫ +∞

x
L(x, t )F (t, y)dt = 0. (3)

We write the kernel function as

F (x, y) = 1

2π

∫ +∞

−∞
h+

l (qx)[1 − S(q)]h+
l (qy)dq

+
nb∑

j=1

h+
l (q̃ jx)M2

j h+
l (q̃ jy)

= 1

2π

∫ +∞

−∞
h+

l (qx)Y (q)h+
l (qy)dq, (4)

where

Y (q) =
[

1 − S(q) − i
nb∑

j=1

M2
j (q − q̃ j )

−1

]
. (5)

Solution of Eq. (3) gives the potential of Eq. (1):

V (r) = −2
dL(r, r)

dr
. (6)

There are many computational approaches for the solution of
Fredholm integral equations of the second kind. Many of the
methods use an equation kernel’s series expansion [26–32].
We also use this technique. Assuming the finite range R of
the bounded potential function, we approximate the kernel
function as

F (x, y) ≈
N∑

k, j=0

�k (x)Fk, j� j (y), (7)

where Fk, j ≡ F (kh, jh), and the basis functions are

�0(x) =
⎧⎨
⎩

0 for |x| > h,

1 + x/h for −h � x � 0,

1 − x/h for 0 < x � h;

⎫⎬
⎭

�n(x) = �0(x − hn), (8)

where h is some step, and R = Nh. Decreasing the step h, one
can approach the kernel arbitrarily close at all points. As a
result, the kernel is presented in a separable form. We solve
Eq. (3) substituting

L(x, y) ≈
N∑

j=0

Pj (x)� j (y). (9)
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Substitution of Eqs. (7) and (9) into Eq. (3), and taking into
account the linear independence of the basis functions, gives

N∑
m=0

(
δ j m +

N∑
n=0

[∫ ∞

x
�m(t )�n(t )dt

]
Fn, j

)
Pm(x)

= −
N∑

k=0

�k (x)Fk, j . (10)

We need values of Pk (hp) ≡ Pp,k (p, k = 0, . . . , N ). In this
case integrals in Eq. (10) may be calculated

ζn m p =
∫ ∞

ph
�m(t )�n(t )dt = h

6
(2δn n(δn p + 2ηn�p+1)

+ δn (m−1)ηn�p + δn (m+1)ηm�p). (11)

Here, along with the Kronecker symbols δk p, symbols ηa are
introduced, which are equal to one if the logical expression a
is true, and are equal to zero otherwise. Considering also that
�k (hp) ≡ δk p, we finally get a system of equations

N∑
m=0

(
δ j m +

N∑
n=0

ζn m pFn, j

)
Ppm = −Fp, j (12)

for each j, p = 0, . . . , N . Solution of Eq. (12) gives Pk (hp) ≡
Pp,k . Potential values at points r = hp (p = 0, . . . , N ) are
determined from Eq. (6) by some finite difference formula.

Next, we consider the case l = 0, for which h+
l (qx) = eıqx

and

F (x, y) = F (x + y) = 1

2π

∫ +∞

−∞
eıq(x+y)Y (q)dq. (13)

We approximate the kernel as follows:

F (x, y) = F (x + y) ≈
2N∑

k=−2N

F0,kHk (x + y), (14)

where F0,k ≡ F (kh) as in Eq. (7) for l = 0, and the used basis
set is

H0(x) =
⎧⎨
⎩

0 for x < 0,

1 for 0 � x � h,

0 for x > h,

⎫⎬
⎭

Hn(x) = H0(x − hn). (15)

The Fourier transform of the basis set Eq. (15) is

H̃k (q) =
∫ ∞

−∞
Hk (x)e−ıqxdx = ı(e−iqh − 1)

q
e−ıqhk . (16)

The function Y (q) may be presented as

Y (q) =
2N∑

k=−2N

F0,kH̃k (q) =
2N∑

k=−2N

F0,k
ı(e−ıqh − 1)

q
e−ıqhk .

(17)
The last relationship may be rearranged as

qY (q) = ı

2N∑
k=−2N

F0,k (e−ıqh − 1)e−ıqhk = i
2N∑

k=−2N+1

(F0,k−1 − F0,k )e−ıqhk + ı(−F0,−2N )eıqh2N + ı(F0,2N )e−ıqh(2N+1). (18)

Thus, the left side of the expression is represented as a Fourier series on the interval −π/h � q � π/h. Taking into account that
Y (−q) = Y ∗(q), we get

−F0,−2N = h
π

∫ π/h
0 Im(Y (q)e−ıqh2N )qdq;

F0,k−1 − F0,k = h
π

∫ π/h
0 Im(Y (q)eıqhk )qdq for k = −2N + 1, . . . , 2N − 1;

F0,2N = h
π

∫ π/h
0 Im(Y (q)eıqh(2N+1))qdq.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19)

The system (19) is solved recursively from F0,2N . Thus, the
range of known scattering data defines the step value h and,
therefore, the inversion accuracy. Calculation results for the
potential function V (r) = −3 exp(−3r/2) are presented in
Figs. 1 and 2, where h = 0.04, R = 4. S matrix was calculated
at points shown in Fig. 1 up to q = 8. The S matrix was
interpolated by a quadratic spline in the range 0 < q < 8. For
q > 8 the S matrix was approximated as asymptotic S(q) ≈
exp(−2iA/q) for q > 8, where A was calculated at q = 8.

III. ENERGY-INDEPENDENT COMPLEX 1S0 NN
POTENTIAL

Realistic potentials derived unambiguously from inverse
theories should describe scattering data from zero to infinite

energy. It seems that it is only possible if the available scatter-
ing data approach the asymptotic region below the relativistic
region. It is unnecessary because relativistic two-particle po-
tential models may be presented in the nonrelativistic form
[33]. Another problem is the presence of closed channels
whose characteristics are not known. It is usually assumed
(for example, for an NN system) that below the inelasticity
threshold, effects of closed channels can be neglected, and a
real NN potential may describe the interaction of nucleons.
This assumption is a consequence of the ingrained miscon-
ception that a complex potential corresponds to a nonunitary
matrix. One can only assert that the S matrix is unitary for a
real potential.

We have carefully analyzed the Marchenko theory [2,3]
and found that it applies not only to unitary S matrices but
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FIG. 1. Data used to reconstruct V (r) = V0 exp(−ar), where
V0 = −3 fm−2 = −124.5 MeV, a = 1.5 fm−1. Units correspond to
the NN system.

also to nonunitary S matrices describing absorption. That is,
the Marchenko theory Eqs. (1)–(6) and our algebraic form
of the Marchenko Eqs. (7)–(18) allow to reconstruct local,

FIG. 2. Initial and reconstructed potentials: V (r) = V0 exp(−ar),
where V0 = −3 fm−2 = −124.5 MeV, a = 1.5 fm−1. Units corre-
spond to the NN system.

and energy-independent OP from an absorptive S matrix and
corresponding bound states’ characteristics. We present an
absorptive single partial channel S matrix on the q axis as

S(q) =
{

Su(q) + Sn(q) for q > 0,

S+
u (−q) − S+

n (−q) for q < 0,
(20)

where superscript + means hermitian conjugation. For q > 0 we define

Su(q) = e2ıδ(q),

Sn(q) = − sin2(ρ(q))e2ıδ(q), (21)

where δ(q) and ρ(q) are phase shift and inelasticity parameter correspondingly. In this case we have instead of Eqs. (19) the
following system:

−F0,−2N = h
π

∫ π/h
0 q[Im(Yu(q)e−ıqh2N ) − ıRe(Sn(q)e−ıqh2N )]dq;

F0,k−1 − F0,k = h
π

∫ π/h
0 q[Im(Yu(q)eıqhk ) − ıRe(Sn(q)eıqhk )]dq for k = −2N + 1, . . . , 2N − 1;

F0,2N = h
π

∫ π/h
0 q[Im(Yu(q)eıqh(2N+1)) − ıRe(Sn(q)eıqh(2N+1))]dq,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(22)

where

Yu(q) =
[

1 − Su(q) − i
nb∑

j=1

M2
j (q − q̃ j )

−1

]
. (23)

IV. RESULTS AND CONCLUSIONS

We applied the developed formalism to analyze the
1S0 NN data. As input data for the reconstruction, we used
modern phase shift analysis data (SW16, single-energy so-
lutions) up to 3 GeV [34,35]. We smoothed phase shift and
inelasticity parameter data for q > 3 fm−1 by the following

functions:

δ(q) ∼ −54.56822/q3 + 57.55296/q2 − 15.36687/q,

ρ(q) ∼ 101.89881/q3 − 80.13493/q2 + 15.88984/q,
(24)

where we fitted the coefficients by the least-squares method.
Asymptotics (24) were used to calculate coefficients of
Eqs. (19) with h = 0.0125 fm corresponding to qmax ≈
251.3 fm−1.

Results of our calculations show that these data are
described by energy-independent complex partial potential
(Figs. 3 and 4).

Thus, we presented a solution of the quantum scattering
inverse problem for the zero orbital angular momentum, the
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FIG. 3. Data used to reconstruct 1S0 NN potential.

algorithm of which is as follows. We set the step value h,
which determines a required accuracy of the potential. From
the scattering data, we determine F0,k from Eqs. (19) for
unitary S matrix or from Eqs. (22) for nonunitary S matrix.
Solution of Eqs. (12) gives values of Pk (hp) (p = 0, . . . , N).
Further, the values of the potential function (6) are determined
by some finite difference formula. Expressions (7)–(14) give
a method for the Marchenko equation’s numerical solution
for an arbitrary orbital angular momentum l , and may be
generalized for a case of coupled channels.

FIG. 4. Real and imaginary parts of the reconstructed 1S0 NN
potential.

Our results contradict conclusions of [25] claiming that the
optical model 1S0 NN potential with a repulsive core exhibits
a strong energy dependence up to 3 GeV. On the contrary, we
analyzed the 1S0 NN data up to 3 GeV, and we showed that
these data are described by optical model energy-independent
partial potential with Re(V(0)) ≈ 14 GeV and Im(V (0)) ≈
19 GeV.

The reconstructed 1S0 NN complex potential may be re-
quested from the author in the FORTRAN code.
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