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Charmonium transition in electromagnetic and rotational fields
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We study charmonia in electromagnetic and rotational fields in the frame of a potential model. Different from
the temperature field which is isotropic and leads to the well-known charmonium dissociation, the electromag-
netic and rotational fields break down the radial symmetry, and the competition between strong interaction and
electromagnetic and rotational interaction in the direction of the Lorentz force makes the charmonia transit
from an isotropic bound state of strong interaction with positive binding energy to an anisotropic bound state
of electromagnetic and rotational interaction with negative binding energy. The transition seems possible to be
realized in high energy nuclear collisions.
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Quarkonia have long been considered as a probe [1] of the
new state of matter, quark-gluon plasma (QGP), which can
be created in the early stage of high energy nuclear collisions.
The cold and hot nuclear matter effects on quarkonium proper-
ties and the consequence in the final state of nuclear collisions
are deeply investigated [2–6]. The study on quarkonia in
medium was recently extended to including electromagnetic
and rotational fields, since the strongest fields in nature can
be generated in nuclear collisions [7–19]. Different from the
electromagnetic fields which rapidly decay in time, the an-
gular momentum conservation during the evolution of the
collisions may make a more visible rotational effect on the
final state.

When the electromagnetic and rotational fields are strong
enough, is it possible for a quarkonium state to transition
from a bound state of strong interaction to a bound state of
electromagnetic and rotational interaction? In this paper, we
focus on the charmonium transition between the two kinds
of bound states. As an effective theory to study bound states
of heavy quarks, the nonrelativistic and relativistic potential
models, based on Schrödinger and Dirac equations, have been
successfully used to describe quarkonium properties in vac-
uum [20,21] and medium [22–28] with the help from the
lattice QCD simulated heavy quark potential [29–31]. We will
take the Schrödinger equation to calculate the cc̄ bound states
in electromagnetic and rotational fields.

The system under a rotational field can be equivalently
regarded as a system at rest in a rotating frame, as has been
discussed in Refs. [32–34]. For a fermion system in a rota-
tional field ω, the Lagrangian density in the rotating frame
can be written as

L = ψ̄ (iγ μ∂μ + γ0ω · j − m)ψ, (1)
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where m is the particle mass, p = −i∇ the momentum, and
l = x × p, s = −γ0γ5γ/2 = diag(σ, σ )/2 and j = l + s are
the orbital, spin, and total angular momenta. With the La-
grangian density the Dirac equation reads

(iγ μ∂μ + γ0ω · j − m)ψ = 0, (2)

which leads to the familiar one-body Hamiltonian density in
the nonrelativistic limit,

Hωi = p2
i

2m
− ω · ji (3)

with i = c, c̄. For the two-body Schrödinger equation to de-
scribe the cc̄ system with charge qc = −qc̄ = q and mass
mc = mc̄ = m, the Hamiltonian density reads

Hω = Hωc + Hωc̄ + Vcc̄ + Vss, (4)

where we have included the confinement potential between
c and c̄ which is usually chosen as the Cornell form
Vcc̄(|xc − xc̄|) = −α/|xc − xc̄| + σ |xc − xc̄| and the spin-spin
interaction Vss(|xc − xc̄|, sc, sc̄) = βe−γ |xc−xc̄|sc · sc̄. Both in-
teractions are supported by the lattice QCD simulations
[29–31,35], and the parameters α, σ, β, and γ can be fixed
by fitting the charmonium properties in vacuum [6].

By introducing the total and relative coordinates and mo-
menta R = (xc + xc̄)/2, r = xc − xc̄, and p = (pc − pc̄)/2,
the total spin s = sc + sc̄ and its projection sz = scz + sc̄z, the
total wave function can be separated into a center-of-mass part
and a relative part 	(R, r, s, sz ) = 
(R)ψ (r, s, sz ). The rela-
tive wave function is governed by the Schrödinger equation

(
p2

m
− ω · (l + s) + Vcc̄ + Vss

)
ψ = εψ (5)

with the relative orbital angular momentum l = r × p and
binding energy ε. The relative equation characterizes the inner
structure of the cc̄ state. While the total wave function can be
factorized as a center-of-mass and a relative part, the total mo-
mentum P is not conserved during the evolution of the system,
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[P, Hω] �= 0, due to the global rotation, and the center-of-mass
motion is not a plane wave.

For fermions in a gauge potential Aμ(x), if one defines the
electromagnetic fields E and B via Aμ = (E · x, (B × x)/2),
the one- and two-body Hamiltonian densities read

HEi =
[
pi − qi

2 (B × xi )
]2

2m
− qiE · xi − qi

m
B · si,

HE = HEc + HEc̄ + Vcc̄ + Vss. (6)

Alford and Strickland [12] studied systematically the char-
monium properties in electromagnetic fields. Different from
the rotational field, the pseudomomentum Pps = P + q(B ×
r)/2 is conserved in electromagnetic fields, [Pps, HE ] =
0. Therefore, the total wave function can be factorized
as 	(R, r, s, sz ) = 
(R, r)ψ (r, s, sz ) with a modified plane
wave 
(R, r) = eiR·[Pps−q(B×r)/2], and the relative part is con-
trolled by the Schrödinger equation(

p2

m
+ q2(B × r)2 − 2qPps · (B × r)

4m
− qE · r

− q

m
B · (sc − sc̄) + Vc + Vss

)
ψ = εψ. (7)

We now consider both the rotational and electromagnetic
fields. In this case we face the problem of which frame
we introduce the electromagnetic fields in. If one defines
the gauge potential Aμ = (E · x, (B × x)/2) in the rotating
frame [36–38], we replace the momentum p in the one-body
Hamiltonian (3) which is defined in the rotating frame too
by p − q(B × x)/2, and the one- and two-body Hamiltonian
densities read

Hi = HEi − ω ·
[

xi ×
(

pi − qi

2
(B × xi )

)
+ si

]
,

H = Hc + Hc̄ + Vcc̄ + Vss

= HE − ω · ( jc + j c̄)

+ q

2
ω · [xc × (B × xc) − xc̄ × (B × xc̄)]. (8)

It is clear that the last term is a mixing between the rotational
field ω and the magnetic field B.

However, in heavy ion collisions people usually measure or
calculate the electromagnetic fields in the laboratory frame.
In this case, one should make a transformation for the elec-
tromagnetic potential between the local rest and laboratory
frames [33,34]. From the Lagrangian density in the rotating
frame,

L = √−gψ̄[iγ̄ μ(∂μ − �μ) − qγ̄ μĀμ − m]ψ, (9)

where �μ is the affine connection, γ̄μ the gamma matrix
satisfying [γ̄μ, γ̄ν] = 2gμν , and Āμ(x) the electromagnetic po-
tential. We transform the vectors γ̄μ and Āμ(x) in the rotating
frame into γα and Aα (x) in the local rest frame with tetrad eα

μ

satisfying gμν = eμ
αηαβeβ

ν . Then we connect the potential
Aα (x) to the measured or calculated A′

a(x′) in the laboratory
frame through the transformation Aα (x) = A′

a(�a
μ(x)eμ

α +
�a

ν,μ(x)eμ
α xν ), where �a

μ(x) is an arbitrary local coordinate
transformation. If we still define the electromagnetic fields

E ′(x′) and B′(x′) via A′
a = (E ′ · x′,−(B′ × x′)/2) and take all

the three external fields (E, B,ω) in the same direction, the
Lagrangian density becomes finally

L = ψ̄[iγ μ∂μ + γ 0(ω · j) − qγ μAμ − m]ψ (10)

in the rotating frame. Considering the non-relativistic limit
of the Dirac equation, the one- and two-body Hamiltonian
densities become

Hi = HEi − ω · ji, H = Hc + Hc̄ + Vcc̄ + Vss

= HE − ω · ( jc + j c̄). (11)

The mixing between the rotational field and magnetic field
disappears in this case. It is necessary to emphasize that the
disappearance of the mixing holds only under the condition
of parallel external fields, which is approximately the case in
heavy ion collisions. For a general case with different direc-
tions of the three external fields, there will be mixing terms
among them in the Hamiltonian density. After the transforma-
tion from individual variables to center-of-mass and relative
variables, the total angular momentum is separated into the
center-of-mass and relative parts jc + j c̄ = L + l + s with the
total orbital angular momentum L = R × P. Different from
the case with only rotational field or only electromagnetic
fields where the total wave function can always be sepa-
rated into a center-of-mass and a relative part, it becomes
impossible to factorize the cc̄ motion in rotational and electro-
magnetic fields. This is true for both the Hamiltonian densities
H and H .

Since there is no longer a relative equation to directly
study the bound state properties, we have to use a perturbative
method to approximately solve the total Schödinger equation
H	 = E	. Considering the fact that, in nuclear collisions at
the Relativisitic Heavy Ion Collider (RHIC) and the Large
Hadron Collider (LHC), the strength of the magnetic field
eB � 70m2

π is much larger than the rotational field mω � m2
π

for charm quarks, we can choose the electromagnetic coupling
as the main part of the total interaction and take the rotational
coupling as a perturbation. Therefore, we separate the Hamil-
tonian (11) into a main and a perturbative part,

H = HE + H ′ (12)

with

H ′ = H ′
c + H ′

r, H ′
c = −ω · Lps,

H ′
r = −ω · (l + s) + q

2
ω · [R × (B × r)], (13)

where H ′
c and H ′

r are the corrections from the rotation to the
center-of-mass motion and relative motion. For the main part
HE , Pps is the conserved momentum; we must keep it in the
perturbation. This is the reason why we use Lps = R × Pps in
the perturbation H ′

c, and this also leads to the mixing between
the rotation and electromagnetic fields in the perturbation
H ′

r . Note that the mixing here is due to the perturbation
used.

The contribution from the perturbation H ′ can systemat-
ically be calculated through the standard method in quantum
mechanics. To the first order, the binding energy ε and relative
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wave function ψ are

εn = ε (0)
n + 〈

ψ (0)
n

∣∣H ′
r

∣∣ψ (0)
n

〉
,

ψn = ψ (0)
n +

∑
m �=n

〈
ψ (0)

m

∣∣H ′
r

∣∣ψ (0)
n

〉
ε

(0)
m − ε

(0)
n

ψ (0)
m , (14)

where ε (0)
n and ψ (0)

n of the cc̄ bound state with quantum
number n are controlled by the Schrödinger equation in elec-
tromagnetic fields. The center-of-mass coordinate R in the
perturbation H ′

r should be considered as the average one,
〈R〉 = ∫ Rmax

0 |
|2R d3R/
∫ Rmax

0 |
|2d3R, where Rmax is the
size of the system. For a constant rotation, to guarantee the law
of causality, the size is under the constraint of |Rmaxω| � 1.
For ω ∼ 0.1mπ at RHIC and LHC, there is Rmax � 15 fm
which is about the maximum size of the QGP created in the
collisions.

We first analyze the possible transition from the bound
state of strong interaction to the bound state of electromag-
netic and rotational interaction. From the Hamiltonian (12)
the effective potential V (r|E, B,ω, Pps, 〈R〉) between c and c̄
is

V = Vcc̄ + Vss + q2(B × r)2 − 2qPps · (B × r)

4m

− qE · r − q

m
B · (sc − sc̄) + H ′

r . (15)

The first two terms Vcc̄ and Vss are strong interactions with
radial symmetry, and the other terms are electromagnetic
and rotational interactions which break down the radial
symmetry and therefore will enhance or reduce the strong
interaction in different directions. To be specific, we con-
sider the electromagnetic and rotational fields created in
heavy ion collisions [9,17]. If we take the y axis as the
beam line of the collisions, the maximum magnetic field B
and rotational field ω are along the direction of ez. In the
central rapidity region of the collisions, the electric field
is much smaller than the magnetic field, and only the z
component is relatively sizable. Under this consideration
the potential becomes V (r|Eez, Bez, ωez, P⊥

ps, 〈R⊥〉), where
〈R⊥〉 and P⊥

ps are the transverse coordinate and momen-
tum. The enhancement or cancellation between the strong
interaction and electromagnetic and rotational interactions
depends strongly on the directions of P⊥

ps and 〈R⊥〉. It is
easy to see that the maximum and minimum potentials are
V±(r|Eez, Bez, ωez, P⊥

psex,±〈R⊥〉ey). The potential with any
other P⊥

ps and 〈R⊥〉 is between the two limits.
The spin independent part of the maximum potential V+

as a function of y at x = z = 0 is demonstrated in Fig. 1.
The upper panel shows the pure magnetic effect (the electric
effect −qEz disappears at z = 0). The parameters α, σ , m, and
P⊥

ps are taken as the usually used values [6] α = 0.312, σ =
0.174 (GeV)2, m = 1.29 GeV, and P⊥

ps = 2.5 GeV. The sin-
gularity at y = 0 comes from the Coulomb potential −α/|y|.
Without magnetic field the potential is a symmetric function
of y, but the symmetry is broken when the magnetic field is
turned on. Around the origin the potential is enhanced at y > 0
but suppressed at y < 0 by the magnetic field. When the field
is strong enough, a new potential well forms, and the cc̄ pair

FIG. 1. The spin independent part of the maximum charmonium
potential V+ as a function of y at x = z = 0 in magnetic field (upper
panel) and both magnetic and rotational fields (lower panel). The
transverse momentum and coordinate are taken as P⊥

ps = 2.5 GeV
and 〈R⊥〉 = 4/3 fm.

transit from the bound state of strong interaction to the bound
state of magnetic interaction. The location of the new well is
controlled by the condition

dV+/dy = 0. (16)

When the rotational field is switched on, the rotation de-
pendence of the potential is shown in the lower panel of Fig. 1
with fixed magnetic field and charmonium transverse coor-
dinate. The enhancement at y > 0 and cancellation at y < 0
become now more visible. It is clear that the rotational field
deepens the new potential well and accelerates the transition
between the two kinds of bound states.

We now perturbatively solve the charmonium binding en-
ergy and wave function. Considering the spin interaction, the
relative wave function ψ (0)(r, sc, sc̄) cannot be factorized as a
spatial part and a spin part in general case. We use the four
independent spin states |s, sz〉: the spin singlet state |S〉 =
|0, 0〉 and triplet states |T0〉 = |1, 0〉 and |T±〉 = |1,±1〉.
They satisfy the relations B · (sc − sc̄)|T±〉 = 0, B · (sc −
sc̄)|T0〉 = B|S〉, B · (sc − sc̄)|S〉 = B|T0〉, ω · s|T±〉 = ±ω|T±〉,
ω · s|T0〉 = 0, ω · s|S〉 = 0, sc · sc̄|T±〉 = 1

4 |T±〉, sc · sc̄|T0〉 =
1
4 |T0〉, and sc · sc̄|S〉 = − 3

4 |S〉. While the coupling between
spin and magnetic field keeps the triplet states |T±〉 as the
eigenstates of the Hamiltonian HE , it leads to a mixing be-
tween |S〉 and |T0〉 [39]. For the coupling between spin and
rotational field, it does not make any mixing among the spin
states, but creates an energy gap ∼2ω between the two triplet
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states |T±〉. The spin-spin interaction splits the singlet and
triplet states.

The relative equation with only strong interaction can be
separated into a radial part and an angular part. The binding
energy is determined by the radial equation, and the solu-
tion of the angular part is the spherical harmonic function
Ylm(θ, φ). Considering the direction dependence of electro-
magnetic and rotational interactions, the potential between the
quark and antiquark is no longer a central one. A usual way to
solve the relative equation with electromagnetic interaction is
to expand the wave function ψ (0) in terms of the complete and
orthogonal spherical harmonic functions,

rψ (0)±
T (r, s, sz ) =

∑
lm

a±
lmu±

lm(r)Ylm(θ, φ)|T±〉,

rψ (0)0
T,S (r, s, sz ) =

∑
lm

[
a0

lmu0
lm(r)Ylm(θ, φ)|T0〉

+ aS
lmuS

lm(r)Ylm(θ, φ)|S〉], (17)

where a±
lm, a0

lm, and aS
lm are the probability amplitudes for spin

triplet and singlet states. By substituting the expansion into the
relative equation, we derive the wave equations controlling the
radial components u±

lm(r), u0
lm(r), and uS

lm(r).
We apply the inverse power method [20] to numerically

solve the radial equations for the charmonium ground states
J/ψ and ηc. The spin triplet states J/ψ± and J/ψ0 cannot be
distinguished in vacuum; they are all called J/ψ . In electro-
magnetic and rotational fields, their spin-spin interaction and
spin-field interaction are different, and J/ψ0 is coupled with
the spin singlet state ηc. By fitting the experimentally observed
charmonium masses in vacuum [40], we fix the parameters
in the spin sector of the potential model: β = 1.982 GeV
and γ = 2.06 GeV. With the known wave function ψ (0) and
binding energy ε (0) in pure electromagnetic fields, we turn
to consider the correction from the rotational effect. We first
check the convergence of the perturbative expansion by calcu-
lating the relative correction

〈H ′〉
EE

= 〈ψ (0)|ω(〈R⊥〉Pps − l − s + 1
2 qB〈R⊥〉y)|ψ (0)〉

ε (0) + P2
ps

4m

. (18)

Taking the above mentioned parameters, the correction for
J/ψ0 is 9.4% at ε (0) = 0. Note that the correction at ε (0) = 0 is
the maximum correction and we have 〈H ′〉/EE � 9.4% in the
general case. This means a fast convergence of the expansion.

The binding energy ε0 and root-mean-squared radii ri (i =
x, y, z) for the ground state of J/ψ0 in electromagnetic and
rotational fields are shown in Fig. 2 in the case with maxi-
mum interaction potential. To focus on the rotational effect,
the electromagnetic fields E and B are fixed. In the begin-
ning, at ω = 0, the binding energy ε0 is already reduced to
only 4.5% of its vacuum value ε̄0 by the electromagnetic
effect. With increasing rotation, the potential in the direc-
tion of Lorentz force is continuously suppressed, and the
binding energy drops down monotonically. At the transition
point mω = 1.15m2

π , the binding energy approaches zero, and
the bound state of strong interaction vanishes. Beyond the
transition point, the potential in the direction of the Lorentz
force becomes negative, and the cc̄ pair is in the bound

FIG. 2. The rotation dependence of the binding energy ε0 and
root-mean-squared radii rx , ry, and rz for J/ψ0 with maximum po-
tential V+. The parameters are fixed to be eE = 12m2

π , eB = 28m2
π ,

P⊥
ps = 2.5 GeV, and 〈R⊥〉 = 2/3 fm, and the scaled parameters ε̄0 and

r0 are the J/ψ binding energy and averaged radius in vacuum.

state of electromagnetic and rotational interaction with neg-
ative binding energy. For the charmonium shape, we consider
two quantities: the fluctuation 〈r〉 = ∫

d3r r|ψ (r)|2 and the
three radii ri = [

∫
d3r r2

i |ψ (r)|2]1/2, i = x, y, z. The former
indicates the degree of the radial symmetry breaking by the
electromagnetic and rotational fields, and the latter describes
the charmonium size in different directions. For a central po-
tential, the wave function is radially symmetric with 〈r〉 = 0.
In electromagnetic and rotational fields, the wave function be-
comes anisotropic. From the interaction potential, the electric
force stretches the c and c̄ in the z direction, the Lorentz force
broadens the wave function along the y direction and leads to a
fluctuation 〈y〉 < 0, and the force coming from the oscillation
potential reduces the size in the x and y directions. Since the
wave function cannot be factorized, the sizes shown in Fig. 2
are controlled by the competition among all the strong, elec-
tromagnetic, and rotational interactions. As we pointed out
above, the electromagnetic field is stronger than the rotational
field in high-energy nuclear collisions, eB > mω, the change
in charmonium structure is mainly due to the electromagnetic
field, and the rotation is only a perturbation. This can clearly
be seen in Fig. 2: The rotation dependence of both the binding
energy and root-mean-squared radii is weak.

At this point we want to emphasize the difference from the
charmonia and even bottomonia dissociation in hot medium.
One difference is the anisotropy of electromagnetic and ro-
tational interaction. The dissociation at high temperature is
isotropic, but the transition in strong electromagnetic and rota-
tional fields happens only in the direction around the Lorentz
force. The other difference is the broadening of the relative
wave function. The thermal motion suppresses the long-
distance part but keeps the short-distance part of the strong
interaction [29–31], which leads to a tremendously broad-
ening of the charmonium wave function, while the Lorentz
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FIG. 3. The J/ψ0 structure in rotation–magnetic field plane
mω-eB at fixed electric field eE = 12m2

π . The transverse momen-
tum and coordinate of J/ψ0 are taken as P⊥

ps = 2.5 GeV and
〈R⊥〉 = 2/3 fm.

force and Coriolis force change both the long- and short-range
interactions, which will not sizeably modify the charmonium
distribution. This is the reason why the averaged charmonium
radius approaches infinity at the dissociation point in hot
medium but the averaged radii do not change tremendously
around the transition point.

We now turn to calculating the J/ψ0 transition line defined
by ε0 = 0 in mω-eB plane at fixed electric field eE = 12m2

π .
The result is shown in Fig. 3. When the magnetic field is too
weak, the rotation under the constraint of the law of causality
cannot trigger the charmonium transition; the cc̄ pair is in the
bound state of strong interaction. With increasing magnetic
field, the transition from strongly to electromagnetically and
rotationally interacting bound state happens with the maxi-
mum potential V+. The transition rotation drops fast; see the
solid line. At the magnetic field eB � 29.5m2

π , the transition
takes place without help from the rotation. The left side of
the solid line is the region of the cc̄ bound state of strong

interaction with binding energy ε0 > 0, and the right side of
the line is the region of the bound state of electromagnetic
and rotational interaction with ε0 < 0. In the other limit with
the minimum potential V−, since the rotation reduces the
electromagnetic effect, the transition rotation increases with
magnetic field; see the dashed line. Again, the left side and
right side of the line are respectively a strong interaction
induced bound state and an electromagnetic and rotational
interaction induced bound state. The transition line with any
other potential V is in between the two lines. Therefore, the
region between the two lines is a mixed phase with both
strong and electromagnetic and rotational bound states. Note
that the condition to form an electromagnetic and rotational
interaction controlled charmonium state, eB � 29.5m2

π and
mω � 8m2

π , seems possible to be realized in high energy nu-
clear collisions.

We investigated in a potential model the charmonium tran-
sition from the bound state of strong interaction to the bound
state of electromagnetic and rotational interaction. When both
the electromagnetic and rotational fields are turned on, the
Hamiltonian of the cc̄ pair depends on the frame where the
gauge fields are introduced via minimum coupling principle.
Taking the fields created in high-energy nuclear collisions,
we calculated the interaction potential between the c and c̄.
With increasing fields, the strong interaction which confines
the two heavy quarks in vacuum is gradually canceled by the
electromagnetic and rotational interaction, and the transition
from strongly to electromagnetically and rotationally interact-
ing bound state happens along the direction of the Lorentz
force. Very different from the charmonium dissociation in hot
medium, the transition is anisotropic and the charmonium size
does not change significantly during the transition process.
The condition of the transition can be realized in high-energy
nuclear collisions.
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