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Triaxial rigidity of 166Er and its Bohr-model realization
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The triaxial nature of low-lying rotational bands of 166Er is presented from the viewpoint of the Bohr
Hamiltonian and from that of many-fermion calculations by the Monte Carlo shell model and the constrained
Hartree-Fock method with projections. A recently proposed novel picture of those bands suggests definite triaxial
shapes of those bands, in contrast to the traditional view with the prolate ground-state band and the γ -vibrational
excited band. Excitation level energies and E2 transitions can be described well by the Bohr Hamiltonian and by
the many-fermion approaches, where rather rigid triaxiality plays vital roles, although certain fluctuations occur
in shell-model wave functions. Based on the potential energy surfaces with the projections, we show how the
triaxial rigidity appears and what the softness of the triaxiality implies. The excitation to the so-called double
γ -phonon state is discussed briefly.
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The appearance of the rotational bands is one of the most
prominent and widely seen features of atomic nuclei at low-
excitation energies. It has been discussed in connection to the
deformation of the nuclear shape, since Rainwater [1] and
Bohr and Mottelson [2–4]. As stated already in [5], a well-
accepted picture is that, in this appearance, the ground-state
(rotational) band is built most likely, if not always, on a prolate
deformed ground state, while low-lying rotational bands are
formed on top of vibrational excitations from the ground state
as an equilibrium. An example of this picture was presented
with 166Er in [5], where the second 2+ state was described as
a so-called γ -vibrational state, forming a rotational band on
top of it.

This conventional scenario of the vibrational excitations
has been applied to the description of many nuclei [4], and
has been presented in many textbooks, for instance, [6]. In
the SU(3) limit of the interacting boson model (IBM) [7], the
essentially same underlying picture arises [8–11]. On the other
hand, some arguments have been raised over the relevance of
this scenario to the structure of real nuclei (see also review
papers on the experimental findings [12,13]). Quite recently,
as described below, another picture of the structure of 166Er
was presented by using the result of the Monte Carlo shell
model (MCSM) [14,15] with a reasonable interaction [16].
This new picture suggests a different shape of the ground state
from the prolate one, and the vibrational aspect is not seen in
the lowest excited band. In this Letter, we shall show what
shapes emerge for the example of 166Er, from such quantum
many-body approaches as well as from the Bohr Hamiltonian
(or collective Hamiltonian) [2,3].
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The shape of the atomic nucleus can be deformed from a
sphere, towards an ellipsoid. This phenomenon is referred to
as the quadrupole (shape) deformation, which indeed comes
up with enhanced quadrupole moments in many nuclei. The
quadrupole moment implies, in this work, the quadrupole
moment of mass (= proton + neutron) distribution, unless
the electric quadrupole moment is explicitly specified. The
quadrupole moment is a rank-2 tensor operator. For a given
state, by diagonalizing the matrix of this operator, one ob-
tains three eigensolutions, which correspond to three axes.
The eigenvalues thus obtained are usually translated into the
lengths of an ellipsoid of uniform density, reflecting the den-
sity saturation in nuclei. Thus, the axes and their lengths of
the ellipsoid are fixed. In the case of equal lengths of two
axes, which can be the x and y axes without losing generality,
the deformation is called axially symmetric, with the z axis
called the symmetry axis. If the length of such z axis is
longer (shorter) than the other two equal ones, the shape is
called prolate (oblate). If the lengths of the three axes are
all different from one another, the shape is called triaxial.
In the conventional picture for deformed heavy nuclei, the
shape of the ground state is expected overwhelmingly to be
prolate (see, e.g., [17]), although its origin is an open question.
The triaxial shape is then considered to occur in the ground
state of few nuclei. The nucleus 166Er is not an exception as
stated above [4,5]. The triaxial shape can be soft [18] or rigid
[19,20], which implies, respectively, large or small fluctuation
in the degree of the triaxiality. The appearance and features
of the rigid triaxiality have been studied, e.g., in [21–28], as
discussed in some detail below.

Recently, the configuration interaction (CI) calculation, of-
ten called the shell model (calculation) in nuclear physics,
has been developed significantly for the study of multinucleon
structure of nuclei. The MCSM is a state-of-the-art large-scale
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FIG. 1. Energy levels of 166Er nucleus. Experimental values
(exp.) [29] are compared to calculations by Monte Carlo shell model
(MCSM) [16], constrained Hartree-Fock with angular-momentum
and parity projections after variation (CHF), and Bohr Hamilto-
nian with a square-well potential (γ = 4◦–14◦) or a rigid triaxiality
(γ = 9◦).

nuclear structure calculation, and was applied to the current
topic, the appearance of the rotational bands in 166Er [16]. The
obtained results display good agreements with experiment for
excitation level energies (see Fig. 1) as well as for B(E2)
values (see Fig. 2) with the standard effective charges 1.5e
(0.5e) for protons (neutrons) [4]. The shapes extracted from
these results look different from the conventional ones. We
shall look into this intriguing problem.

The quadrupole(-deformed) shape can be expressed in
terms of so-called deformation parameters, β2 and γ . They

FIG. 2. B(E2) values between low-lying states in the 166Er nu-
cleus. Experimental values (exp.) are included [29]. Theoretical
calculations are labeled similarly to Fig. 1.

imply, respectively, the magnitude of the deformation and the
proportion of the ellipsoid axes [4]. As visualized in Fig. 3(a)
of [16], for instance, γ = 0◦ (60◦) corresponds to a prolate
(oblate) shape, and 0◦ < γ < 60◦ implies a triaxial shape.
The deformation parameters are more suitable for the intrinsic
state, that is the state in the body-fixed frame. In the naïve
modeling, members of a rotational band are obtained by pro-
jecting the intrinsic state onto the assigned quantum numbers,
e.g., the total angular momentum J , its z component M, parity
P, and some additional ones.

The potential energy surface (PES) is drawn by the con-
strained Hartree-Fock (CHF) calculation using the same
Hamiltonian for the MCSM calculations. Here, the intrinsic
state is calculated by this CHF calculation with the constraints
given by the values of β2 and γ . Note that they are related
to the corresponding quadrupole matrix elements as indicated
in [30–32]. Figure 4(b) of [16] shows the PES thus obtained,
exhibiting the minimum around β2 ≈ 0.3 and γ ≈ 9◦. Note
that γ is not zero at the minimum, indicative of a triaxial
shape.

The eigenstate of the MCSM is generally expanded by vari-
ous deformed Slater determinants generated and optimized by
the MCSM procedures. These Slater determinants are called
the MCSM basis vectors. The number of MCSM basis vectors
is usually 50–100, but can be larger if appropriate. As each
MCSM basis vector is a deformed Slater determinant, its
quadrupole moments can be calculated, and the corresponding
values of β2 and γ can be obtained. We can plot individual
MCSM basis vectors on the PES according to the β2 and γ

thus evaluated. Furthermore, the importance of each MCSM
basis vector can be visualized by the area of the plot circle,
while the importance can be gauged by the overlap proba-
bility between the projected normalized state of the MCSM
basis vector and the MCSM eigenstate. This analysis of the
eigenstate properties is called the T plot [33,34], and has been
used in many works, for instance [31,32,35–39].

Figures 4(c) and 4(d) of [16] show the T plot for the 0+
1 and

2+
2 states, as representative examples. It was noticed that the

T-plot circles show quite similar distributions between these
two eigenstates, and appear in the range of γ = 4◦–14◦. Other
states, 2+

1 , 3+
1 and 4+

1,2, exhibit the same feature. The value
of β2 of these T-plot circles is confined narrowly to around
β2 = 0.29.

Once the relevant values of β2 and γ are clarified, it be-
comes of great interest to apply the Bohr Hamiltonian [2,3] to
the present study. The Bohr Hamiltonian has been investigated
over decades, as reviewed recently in [40] and described also
in earlier literature, for instance [41–45]. We first outline the
present approach. The Bohr Hamiltonian is written as

HB = − h̄2

2B

[
1

β4
2

∂

∂β2
β4

2
∂

∂β2
+ 1

β2
2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2
2

∑
κ

Q2
κ

sin2(γ − 2
3πκ )

]
+ V (β2, γ ), (1)

where B is a parameter, Qκ (κ = 1, 2, 3) imply angu-
lar momentum operators in the body-fixed frame, and
V (β2, γ ) denotes the potential. For this Bohr Hamiltonian, the
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Schrödinger equation is set as

HB �(β2, γ , θi ) = E �(β2, γ , θi ), (2)

where θi (i = 1, 2, 3) denote Euler angles for the orientation
of a deformed nucleus, and E is the energy eigenvalue. We
assume that β2 is a constant. With this assumption, the above
Schrödinger equation is reduced to

h̄2

2Bβ2

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

+1

4

∑
κ

Q2
κ

sin2(γ − 2
3πκ )

+ Vγ (γ )

]
	(γ , θi )

= E 	(γ , θi ), (3)

where Vγ (γ ) is an appropriate potential. This equation is
solved by taking the form,

	(γ , θi ) =
∑

K

gI
K (γ )DI

MK (θi ), (4)

where I is the angular momentum of the eigensolution in the
laboratory frame, DI

MK (θi ) means the usual D function, and
gI

K (γ ) is the solution or the K component of the wave function
to be obtained. Here, gI

K (γ ) must obey some symmetry condi-
tions, which ends up with K being even integers with |K| � I
and gI

K (γ ) = (−)IgI
−K (γ ). We note that this K corresponds to

the usual K quantum number, as it means the z projection of
the angular momentum in the body-fixed frame.

We now apply this process to the present problem. Because
the T plot is concentrated in the range of γ = 4◦–14◦ up to
99%, the first choice of the potential Vγ (γ ) is the square well
with a deep attraction for γ = 4◦–14◦. The parameter B is
fitted so as to reproduce the observed excitation energy of the
second 2+ state. The fourth column of Fig. 1 shows the ex-
citation energies thus obtained, which agree surprisingly well
with the experimental values as well as the MCSM values.

The E2 transition operator is given, in the lowest order, by

T (E2) = tβ2

[
D(2)

μ,0 cos γ + 1√
2

(D(2)
μ,2 + D(2)

μ,−2) sin γ

]
, (5)

where t is a parameter. We fit the value of tβ2 so as to re-
produce the observed B(E2; 2+

1 → 0+
1 ) value. Figure 2 shows

various B(E2) values, including the experimental ones. One
finds remarkably good agreements among those values.

The B(E2) values can be put into two groups. One group
depicts large values as shown in Fig. 2(a), whereas the other
group small values in Fig. 2(b). In the conventional picture
[4,5], this was ascribed to the vibrational origin of the excited
side band built on the 2+

2 state: the phonon of the relevant
vibration carries KP = JP = 2+, and this phonon is annihi-
lated in the 2+

2 → 0+
1 transition. Thus, this E2 transition is of

vibrational character, which produces a certain collectivity but
cannot be as strong as in-band transitions.

We now turn to the calculation by the Bohr Hamiltonian.
Figure 3 shows the function gI

K (γ ) for the 0+
1 , 2+

1,2, 3+
1 , and 4+

3
states. Although the K quantum number is mixed generally
for γ �= 0, the mixing is weak with the present square-well
potential. Thus, these states can be rather well assigned by

FIG. 3. gI
K (γ ) functions of various states of 166Er in the Bohr

model for (a) 0+
1 , (b) 2+

1 , (c) 2+
2 , (d) 3+

1 , and (e) 4+
3 states. The KP =

0+, 2+, and 4+ functions are shown by pink solid, green dashed and
blue dotted lines, respectively.

their primary K values. As shown in Fig. 3, the gI
K (γ ) func-

tions with primary K values exhibit large magnitudes and
similar shapes. The overall magnitude is about 1/

√
2 smaller

for K �= 0, because the K = −I component is associated with
the K = I component. The gI

K (γ ) functions with nonprimary
K values are negligibly small.

The gI
K (γ ) functions of primary K values are peaked

around γ = 9◦. We then take a rigid triaxial approximation
with this value of γ : the wave function is a δ function at this
value. This is nothing but the rigid triaxial model by Davydov
and his collaborators [19,20]. We can calculate the excitation
energies and B(E2) values as shown in the fifth column of
Fig. 1 and in Fig. 2 (“γ = 9◦”), respectively. One sees almost
perfect agreement to the corresponding results of the square
well of γ = 4◦–14◦. These quantities are almost linearly de-
pendent on γ for γ = 4◦–14◦ within the rigid triaxial model.
With the almost symmetric wave function on both sides of
γ = 9◦, their mean values are close to the corresponding
central values, which are nothing but the values given by the
Davydov model. The agreement between the two calculations
can thus be understood. The O(6) case of the IBM [46] ex-
hibits a similar feature with a fully flat potential (γ = 0◦–60◦)
[22].

Thus, we conceive the picture that the structure of low-
lying states of 166Er can be described by the simple rigid
triaxial shape, but a softer triaxiality, such as γ = 4◦–14◦,
is equally good, producing almost the same wave functions
for various K values as displayed in Fig. 3. This certainly
differs from the conventional picture composed of a prolate
ground state and a γ vibration on top of this. However, we
encounter the question as to whether or not the present pic-
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FIG. 4. (a,b) Potential energy surfaces (PESs) as a function of
γ with β2 = 0.29. The unprojected result is shown by purple thin
lines. All values are shown relative to the minimum of this unpro-
jected PES. The angular-momentum and parity projected results,
〈φ(γ )|H |φ(γ )〉 in Eq. (7), are shown by red lines (a) for JP = 0+ and
(b) for JP = KP = 2+. The orthogonalized results, 〈η(γ )|H |η(γ )〉 in
Eq. (7), are shown by blue dashed lines. (c) Overlap probability |αγ |2
in Eq. (6).

ture contradicts the shallow PES in the γ direction shown
in Fig. 4 of [16]. In order to look into this question, we go
back to the shell model study in [16], and depict the PES in
Fig. 4 for β2 = 0.29 fixed, relative to the lowest energy of the
unprojected state. This is labeled as “unprojected” in Fig. 4,
because neither angular-momentum nor parity projection is
made. The minimum of this PES is located around γ = 10◦
away from the prolate point γ = 0◦, but the bottom of the PES
appears rather shallow. The structure of 166Er has been studied
by a variety of theoretical works, where the ground state was
described as a prolate state and the KP = 2+ band was treated
as a γ vibrational band (see, for instance, [25,26,28,47–53]).
It has remained, however, a challenge to achieve a precise
microscopic description of both the excitation energies and the
B(E2) values involving the KP = 2+ band. We mention that,
among such works, the PES minimum seems to deviate from
γ = 0◦ to γ ≈ 5◦ in [26] and to γ ≈ 9◦ in [28]. The minima,
however, appeared to be too shallow (by � 0.2 MeV) to drive

the ground state off the prolate shape. The angular-momentum
unprojected and projected calculations were compared in [21]
(prior to [26,28]) for two nuclei 168Er and 188Os, of which
the former is close to 166Er. For 168Er, the unprojected and
projected PESs were rather similar to each other with shallow
minima like the cases mentioned above [26,28], suggest-
ing an axially symmetric (i.e., prolate) nucleus [21]. For
188Os, in contrast, the projected calculation produced a pro-
nounced minimum at β2 ≈ 0.2 and γ ≈ 30◦, contrary to the
unprojected calculation [21]. Because of significant structure
difference between 188Os and 166Er, the findings on 188Os do
not seem to be relevant to the present work.

We now perform the angular-momentum and parity pro-
jection on the CHF states, i.e., a variation before projection
(VBP) calculation. We keep β2 = 0.29, while γ is varied. Fig-
ure 4(a) displays the projected PES thus obtained for JP = 0+:
the curve becomes steeper around the minimum compared to
the unprojected curve. A similar lowering is seen also for a
local minimum near γ = 55◦.

The lowering of the PES by 0.63 MeV occurs at the
minimum point, denoted by γ0 hereafter. Its actual value is
γ0 ≈ 9.5◦. As this lowering is substantially larger than in other
works mentioned above, it makes the minimum more pro-
nounced [see Fig. 4(a)], which is consistent with the distinct
triaxiality in the present work. The lowering is natural as the
unprojected result includes effects of higher lying states in-
cluding K �= 0. This lowering still appears for JP = KP = 2+
as shown in panel (b), but becomes slightly weaker. Note that
for JP = 0+, only KP = 0+ is possible, though not explicitly
mentioned. The lowering due to the angular-momentum pro-
jection was shown, in [21], to be large for strong K mixings, as
in 188Os, but small for weak K mixings, as in 168Er. We point
out that, in the present work, a strong lowering occurs with
K quantum numbers practically conserved, consistent with
smaller γ values. The additional lowering in the present work
is largely due to the monopole-quadrupole interplay [16].

We now discuss the relation between the lowering around
γ0 and the rigid triaxiality. For this purpose, we introduce
the angular-momentum and parity projected state, φ(γ ), for
a given value of γ , and expand it by the state of φ(γ0) and the
remaining orthogonal component η(γ ) as

φ(γ ) = αγ φ(γ0) +
√

1 − α2
γ η(γ ), (6)

where the amplitude is chosen to be a real number with
αγ = 〈φ(γ0) | φ(γ )〉, by choosing the phase of φ(γ ). Note that
φ(γ ) and η(γ ) are normalized. The overlap probability |αγ |2
is depicted in Fig. 4(c) for JP = 0+ and JP = KP = 2+.

We now discuss how the expectation value of the Hamilto-
nian with respect to φ(γ ) varies as a function of γ . It can be
written as

〈φ(γ )|H |φ(γ )〉 = α2
γ 〈φ(γ0)|H |φ(γ0)〉

+ (
1 − α2

γ

)〈η(γ )|H |η(γ )〉

+ 2αγ

√
1 − α2

γ Re〈η(γ )|H |φ(γ0)〉. (7)

Because φ(γ0) is close to an eigenstate and η(γ ) is orthogonal
to it, the last term on the right-hand side can be neglected.
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Figure 4(a) indicates 〈η(γ )|H |η(γ )〉 for JP = 0+. It stays
rather constant as γ increases from 0◦, and starts to ascend
after 20◦. This implies that in the second term on the right-
hand side of Eq. (7), 〈η(γ )|H |η(γ )〉 is approximated by a
constant 〈η(γ0)|H |η(γ0)〉 for 0◦ < γ < 20◦. We thus obtain

〈φ(γ )|H |φ(γ )〉
≈ 〈η(γ0)|H |η(γ0)〉 + α2

γ {〈φ(γ0)|H |φ(γ0)〉
−〈η(γ0)|H |η(γ0)〉}, (8)

where 〈η(γ0)|H |η(γ0)〉 implies the limiting value with γ →
γ0. As Fig. 4(c) shows the values of α2

γ , the expectation
value 〈φ(γ )|H |φ(γ )〉 should exhibit a behavior similar to
the corresponding curve in Fig. 4(c) with the opposite sign.
The quantity on the left-hand side of Eq. (8) is reproduced
remarkably well by the right-hand side, for instance within
0.05 MeV for 4◦ < γ < 14◦. It is now clear that the present
lowering of the JP = 0+ energy seen between γ = 0◦ and
≈20◦ is predominantly due to the varying large mixing of
φ(γ0). Thus, the underlying feature of the projected PES
points to the crucial role of the triaxial intrinsic state at γ0.
Panel (b) shows a similar feature for JP = KP = 2+.

The present analysis indicates that the triaxial intrinsic
state of γ = γ0 is the origin of the additional binding energy
due to the triaxiality in 166Er, and this effect is common to
low-lying states, including the KP = 2+ band members, etc. A
certain softness usually emerges around γ = γ0, once various
correlations are included, for instance in the MCSM calcula-
tion. The intrinsic state of γ = γ0 remains a major component
of such γ -soft wave functions spreading around γ = γ0, as
discussed above. Thus, the triaxial rigidity shows two facets:
a rigid intrinsic state and its characteristic inclusion in γ -soft
wave functions. Because of this, E2 matrix elements can look
like those of the Davydov model [19,20], even if the states are
γ soft to a certain extent. We note that the contributions from
η(γ < γ0)’s and those from η(γ > γ0)’s tend to cancel each
other with γ around γ0, which definitely enhances this feature.

A rigid-triaxial intrinsic state was assumed in the triaxial
projected shell model, although the terminology of the γ vi-
bration was used [24,25]. Thus, one finds an aspect somewhat
in common with the present work. The fitted value γ ≈ 26◦
[24], however, substantially differs from the present values
(see Figs. 1 and 2). The calculation may become closer to the
present ones by including monopole effect, γ softness, etc.

Figure 1 includes the 4+
3 states at higher excitation en-

ergies. The experimentally observed state [29,54,55] was
considered to be a KP = 4+ two-phonon state. The 4+

3 states
are also KP = 4+ states in the present MCSM and CHF calcu-
lations: the one in the CHF is obtained by projecting the same

intrinsic state as the one for the ground and low-lying states,
and the MCSM shows a similar feature through a T plot. They
do not correspond to a double phonon excitation. As shown
in Fig. 3, the present calculations by the Bohr Hamiltonian
predict it as a member of the group of triaxial states. Figure 4
indicates that the projected PES for JP = KP = 2+ is slightly
more γ soft than the PES for JP = 0+. The projected PES for
JP = KP = 4+ is somewhat softer, which may explain why
the excitation energies in the MCSM and CHF are lower than
those by the Bohr Hamiltonian where this property is missing.
A triaxial state analogous to the present KP = 4+ state is
found in the triaxial projected shell model of [24].

In summary, we discussed the underlying structure of
the rotational bands of 166Er. Whereas the conventional pic-
ture assumes the prolate ground state and the γ -vibrational
KP = 2+ band, these low-lying states of 166Er can be un-
derstood as a consequence of the triaxial shape. Although
its rigidity may need further theoretical and experimental
confirmations, the shell model results combined with the pro-
jected CHF calculation suggest that there is a triaxial rigidity
which governs the projected PES and crucially determines E2
observables. However, we note certain softness seen in the
shell-model wave function. The Bohr Hamiltonian does not
distinguish between the square-well and rigid-triaxial models,
as it produces similar results from these two with adequate γ

values. Thus, the lowest two bands in 166Er can be considered
to be consequences of the common triaxiality with rigidity.
The origin of this triaxiality lies in the nucleon-nucleon in-
teraction as emphasized, in [16], as a consequence of the
self-organization due to the monopole-quadrupole interplay,
and is not addressed in this Letter. The present picture is not
limited to 166Er, and certainly remains to be explored further
for more nuclei and/or in more states, particularly higher J’s
and excitation energies.
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