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Electric dipole moments of nuclei, diamagnetic atoms, and certain molecules are induced by CP-violating
nuclear forces. Naive dimensional analysis predicts these forces to be dominated by long-range one-pion-
exchange processes with short-range forces entering only at next-to-next-to-leading order in the chiral expansion.
Based on renormalization arguments we argue that a consistent picture of CP-violating nuclear forces requires a
leading-order short-distance operator contributing to 1S0 - 3P0 transitions due to the attractive and singular nature
of the strong tensor force in the 3P0 channel. The short-distance operator leads to O(1) corrections to static and
oscillating, relevant for axion searches, electric dipole moments. We discuss strategies how the finite part of
the associated low-energy constant can be determined in the case of CP violation from the QCD θ̄ term by the
connection to charge-symmetry violation in nuclear systems.

DOI: 10.1103/PhysRevC.103.L012501

Introduction. Electric dipole moments (EDMs) of nuclei,
atoms, and molecules are excellent probes of new sources of
CP violation [1,2]. CP violation in the fermion mixing matri-
ces of the standard model (SM) only induce EDMs through
multiple electroweak loops and lead to immeasurably small
values for EDMs [3,4], implying that any nonzero measure-
ment is either due to the so-far undiscovered QCD θ̄ term or
from beyond-the-SM (BSM) sources of CP violation. Current
experimental EDM limits [5–7] set strong constraints on BSM
models with additional CP-violating phases, such as super-
symmetry, leptoquarks, or left-right symmetric models, and
scenarios of electroweak baryogenesis [8]. In the framework
of the SM effective field theory (SMEFT), EDM limits con-
strain a large set of CP-odd dimension-six operators at the
multi-TeV scale, well above limits from collider experiments
[9].

The interpretation of EDM experiments requires care. It is
a nontrivial task to connect EDMs of complex objects, such as
nuclei to the underlying CP-violating source at the quark level.
Recent years have seen significant theoretical improvements
towards model-independent first-principles calculations of
EDMs from a combination of lattice QCD [10–12], chiral EFT
(χEFT) [13–15], and nuclear calculations [16–20]. The chain
of logic is roughly as follows: The SMEFT framework allows
for the derivation of a general set of dimension-four (the
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θ̄ term) and dimension-six CP-violating operators involving
light quarks, gluons, and photons. χEFT, the low-energy EFT
of QCD, is used to construct the corresponding CP-violating
interactions among the relevant low-energy degree of free-
doms: pions, nucleons, and photons. Each chiral interaction
comes with a low-energy constant (LEC) that encodes the
nonperturbative QCD dynamics, ideally calculated from lat-
tice QCD (LQCD). EDMs can be then be calculated in terms
of the LECs in the chiral Lagrangian.

The χEFT framework provides an expansion of hadronic
and nuclear amplitudes in terms of p/�χ where p ≈ kF ≈
mπ ≈ O(100 MeV) and �χ ≈ 4πFπ ≈ O(1 GeV) [21–23],
where Fπ � 92.4 MeV is the pion decay constant. The electric
dipole form factors of nucleons were calculated up to next-
to-next-to-leading order (N 2LO) [24–27]. Nuclear EDMs
require the derivation of CP-violating forces and currents. The
CP-odd nucleon-nucleon (NN) potential was calculated up to
N 2LO [20,28] and used to calculate nuclear and atomic EDMs
[16–20].

The derivation of the CP-odd NN potential of Refs. [20,28]
is based on Weinberg’s power-counting scheme [29]. In this
scheme, the CP-odd potential arises from one-pion-exchange
(OPE) diagrams, whose LECs can be fixed from processes
involving just nucleons and pions (only in principle as πN-
scattering experiments are not sufficiently accurate). Chiral
symmetry does not forbid purely nuclear short-distance in-
teractions with LECs that can only be fixed in nuclear
systems. Indeed, in the CP-conserving potential the LO poten-
tial consists of OPE diagrams and two nonderivative contact
interactions in 1S0 and 3S1 waves. In the CP-violating case, NN
interactions require, at least, one space-time derivative, and
Weinberg’s power-counting scheme predicts short-distance
operators to enter at N 2LO. This is welcome news: It implies
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that nuclear EDMs can be calculated in terms of only a few
LECs and ratios of EDMs can be used to pinpoint the under-
lying CP-violating source [30].

Weinberg’s power-counting scheme is based on naive di-
mensional analysis (NDA) of the NN LECs [31] which is
not always reliable for nuclear physics. NDA does not in all
cases lead to order-by-order renormalized nuclear amplitudes
[32,33]. This is most clear in partial waves where OPE is
attractive and nonperturbative, such as the 3P0 channel where
phase shifts show oscillatory limit-cycle-like cutoff depen-
dence [34] that cannot be renormalized at LO in Weinberg’s
scheme, although there is some debate about this [35–37].
The same problem affects external currents inserted in NN-
scattering states [38,39]. Here we investigate CP-violating
OPE potentials and use cutoff dependence of observables as a
diagnostic tool to demonstrate that a LO short-distance opera-
tor for 1S0 - 3P0 transitions is required. This directly affects the
interpretation of EDM experiments and other time-reversal-
odd observables, such as magnetic quadrupole moments or
neutron-nucleus scattering.

An axion dark matter (DM) field can induce oscillating
EDMs that can be probed in experiments [40]. Such DM
axions would constitute a coherent oscillating classical field
a ≈ (a0/ fa) cos ωt where the angular frequency is given by
ω � ma where ma is the axion mass, a0 is the local amplitude
of the axion DM field, and fa is the axion decay constant
[41,42]. The hadronic and nuclear matrix elements that con-
nect static EDMs to the θ̄ term are identical to those that
connect oscillating EDMs to the axion field. Here we focus
on the former, but all expressions below are applicable to DM
searches for axions by replacing θ̄ by (a0/ fa) cos ωt .

Setup of the calculation. We first consider the QCD θ̄ term.
The relevant Lagrangian is given by [43,44]

L = q̄i/Dq − q̄(M − iγ5m�θ̄ )q, (1)

where q = (ud )T denotes the quark field, Dμ denotes
the color and electromagnetic covariant derivative, and
M = diag(mu, md ) denotes the quark mass matrix m� =
mumd/(mu + md ). The chiral Lagrangian can be constructed
with well-known methods [45], and the leading CP-even and
CP-odd pion-nucleon interactions are

LπN = − gA

2Fπ

∇ �π · N̄ �τσN + ḡ0N̄ �π · �τN + · · · , (2)

in terms of the nonrelativistic nucleon doublet N = (pn)T and
the pion triplet �π, gA � 1.27 is the nucleon axial coupling,
and ḡ0 = O(m�θ̄/Fπ ) is a CP-odd LEC. The dots denote inter-
actions involving more pions. The QCD θ̄ term is related by a
chiral rotation to the isospin-breaking component of the quark
masses [24], giving a precise determination of ḡ0 [46],

ḡ0 = δmstr
N (1 − ε2)

4Fπε
θ̄ = −(14.7 ± 2.3) × 10−3θ̄ , (3)

where δmstr
N is the quark-mass-induced part of the proton-

neutron mass splitting that has been calculated with LQCD
[47] and ε = (mu − md )/(mu + md ). The value of ḡ0 agrees
with a LQCD extraction [12].

From the interactions in Eq. (2) we calculate the OPE NN
potentials,

Vstr,π = − 1

(2π )3

(
gA

2Fπ

)2

�τ 1 · �τ 2
(σ1 · q)(σ2 · q)

q2 + m2
π

,

Vḡ0 = − 1

(2π )3

gAḡ0

2Fπ
�τ 1 · �τ 2

i(σ1 − σ2) · q
q2 + m2

π

, (4)

where q = p − p′ is the momentum transfer between in- and
outgoing nucleon pairs with relative momenta p and p′, re-
spectively (|p| = p and |p′| = p′), and mπ denotes the pion
mass. We include the CP-even NN interactions,

Vstr,sd = 1

(2π )3

(
CsPs + Ct Pt + 1

4
pp′ CPPp

)
, (5)

where Ps,t,p project, respectively, on the 1S0,
3S1, and 3P0

waves. In Weinberg’s power counting the S-wave contact
terms appear at LO whereas the P-wave counterterm enters
at N 2LO. To obtain the strong NN-scattering wave functions
we solve a Lippmann-Schwinger (LS) equation,

Tstr = Vstr + VstrG0Tstr, G0 = (E − p2/mN + iε)−1, (6)

with Vstr = (Vstr,π + Vstr,sd ) f�(p, p′), where f�(p, p′) is a reg-
ulator function,

f�(p, p′) = e−(p/�)4
e−(p′/�)4

, (7)

in terms of a momentum space cutoff �. The LS equation
is solved numerically for a wide range of � to ensure that
observables are cutoff independent.

We briefly discuss results for waves with total angular
momentum j = 0, 1. Solving the LS equation for just the
strong OPE potential leads to 1S0 and 3S1 - 3D1 phase shifts
and mixing angles that are cutoff dependent, see Fig. 1(a). In
Weinberg’s power counting, this is resolved by including the
short-distance counterterms Cs and Ct acting in 1S0 and 3S1

waves. Fitting the LECs to reproduce the strong phases shifts
at ECM = 5 MeV, the phase shifts become cutoff independent
for a wide range of energies as exemplified in Fig. 1(b).

In the 3P1 and 1P1 waves, the strong OPE potential lead
to cutoff independent phase shifts, see Fig. 2(a) that at low
energies agree well with experimental data. In the 3P0 channel,
however, the phase shifts arising from OPE are strongly cutoff
dependent and undergo a dramatic limit-cycle-like behavior,
see Fig. 2. There does not appear to be a counterterm that can
absorb this regulator dependence in Weinberg’s power count-
ing. Following Ref. [34], we promote the 3P0 counterterm with
LEC CP in Eq. (5) to LO and fit CP to the 3P0 phase shift at
ECM = 5 MeV. With this modified power counting the phase
shifts become cutoff independent, see Fig. 2(a). The regulator
dependence of Cs, Ct , and CP are given in Fig. 2(b). The LECs
Cs,t,P show significant � dependence, which is of no concern
as they are not observable. All results agree with Refs. [34,48].

We now insert the CP-odd potential Vḡ0 which causes
1S0 - 3P0 and 3S1 - 1P1 transitions. We treat Vḡ0 to very good
accuracy in perturbation theory and write

Tḡ0 = Vḡ0 + Vḡ0 G0Tstr + TstrG0Vḡ0 + TstrG0Vḡ0 G0Tstr. (8)
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FIG. 1. Phase shifts and mixing angle for the 1S0 and 3S1 - 3D1

channels at ECM = 50 MeV from just the strong OPE potential
(a) and after renormalization (b) as function of the regulator �.

The on-shell scattering matrix T = Tstr + Tḡ0 is related to the
S matrix,

S(ECM) = 1 − iπm3/2
N E1/2

CMT (p = p′ = √
ECMmN ), (9)

where mN is the nucleon mass. For j = 0 we parametrize the
S matrix by

S j=0 =
(

e2iδ1S0 ε0
SPei[δ1S0 +δ3P0 ]

−ε0
SPei[δ1S0 +δ3P0 ] e2iδ3P0

)
, (10)

where ε0
SP ≈ θ̄ denotes the small 1S0 - 3P0 mixing angle. The

j = 1 channel is more complicated because of strong 3S1 - 3D1

mixing, and for simplicity, we expand in the small S-D mixing
angle ε. Up to O(ε3),

S j=1 =
⎛
⎝ e2iδ3S1 cos 2ε iei[δ3S1 +δ3D1 ] sin 2ε xSP

iei[δ3S1 +δ3D1 ] sin 2ε e2iδ3D1 cos 2ε xDP

−xSP −xDP e2iδ1P1

⎞
⎠,

xSP = [
ε1

SP + iεεDP
]
ei[δ3S1 +δ1P1 ],

xDP = [
εDP + iεε1

SP

]
ei[δ3D1 +δ1P1 ] , (11)

in terms of two CP-odd mixing angles ε1
SP and εDP. S is

antisymmetric in the S-P and P-D elements due to time-
reversal violation. The CP-odd mixing angles ε0,1

SP and εDP are
observable in, for example, spin rotation of polarized ultracold
neutrons on a polarized hydrogen target [49], but it is unlikely
that these experiments can reach a sensitivity that is compet-
itive with EDM experiments, although neutron transmission

FIG. 2. (a) 3P0,
3P1, and 1P1 phase shifts at ECM = 50 MeV as

the function of the regulator �. The green (dotted) line denotes the
3P0 phase shifts in Weinberg’s power counting where no counterterm
is available for renormalization. The orange (dashed-dotted) is the
result after promoting CP to LO. (b) Low-energy constants Cs, Ct ,
and CP as function of �.

experiments using heavy target nuclei might be up to the task
[50,51]. Nuclear EDMs can be written as linear combinations
of the mixing angles in addition to contributions from CP-odd
electromagnetic currents, such as constituent nucleon EDMs.

The CP-odd mixing angles are observable and should be
independent of the value of � up to NLO corrections. We find
that this is the case for ε1

SP and εDP which quickly converge
as shown in Fig. 3(a). However, ε0

SP shows an oscillatory
behavior and even changes sign as the function of �. There
is no sign of convergence whatsoever. We have checked that
no regulator dependence appears for any j = 2 transition after
renormalizing the strong j = 2 scattering states. The differ-
ence between the behavior of 1S0 - 3P0 and 3{S, D}1 - 1P1 arises
from the absence of a strong counterterm in the 1P1 channel.
The observed regulator dependence arises from divergences in
diagrams contributing to Tḡ0 with topology of the left diagram
in Fig. 4, where Vḡ0 is dressed on both sides by a strong
short-distance interaction (an infinite number of LO diagrams
are generated by adding additional strong interactions on ei-
ther side). At LO this only occurs for 1S0 - 3P0 transitions.
In χEFT calculations using Weinberg’s power counting, P-
wave counterterms appear at N 2LO but are iterated to all
orders in the solution of the LS equation [52]. Divergent
diagrams with the topology of Fig. 4 reappear, and the CP-odd
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FIG. 3. (a) ε0
SP in units of ḡ0 as function of � before (solid)

and after (dashed) promoting C̄0 to LO for ECM = {25, 50} MeV in,
respectively, black and red. The blue (dotted) and green (dashed-dot)
lines denote, respectively, ε1

SP and εDP for ECM = 50 MeV. (b) C̄0 as
a function of �.

transitions become regulator dependent. This might be hard to
see numerically as regulators are only varied in a tiny window
around � = 500 MeV [18,20].

The need for a counterterm. The observation that ε0
SP is

cutoff dependent implies that CP-odd observables that depend
on 1S0 - 3P0 mixing cannot be directly calculated from ḡ0,
and, thus, θ̄ via Eq. (3). An observable that shows regulator
dependence in an EFT calculation indicates there must be
an associated counterterm that encapsulates missing short-
distance physics and absorbs the divergence. In the present

FIG. 4. Left: Diagram contributing to the regulator dependence
of ε0

SP. Solid (dashed) lines denote nucleons (pions). The square de-
notes ḡ0 whereas the circles denote the gA or Cs vertices. The circled
circle denotes CP. Right: short-distance contribution proportional
to C̄0.

context, such counterterms are provided by short-range CP-
odd NN interactions, see the right diagram of Fig. 4 of the
form [14,15]

LNN = C̄0

[
N̄σN · ∇(N̄ N ) + 1

3
N̄ �τσN · ∇(N̄ �τN )

]
, (12)

which projects on 1S0 - 3P0 . C̄0 is a LEC that depends on �

in such a way to make ε0
SP � independent. NDA suggests

C̄0 = O[m�θ̄/(F 2
π �2

χ )] and a N 2LO contribution, but renor-
malization enhances C̄0 to LO.

We now show that promoting C̄0 to LO indeed renormal-
izes the 1S0 - 3P0 transition. We fit C̄0 at a specific kinematical
point to a fictitious measurement of ε0

SP, picking ε0
SP,fit =

0.01ḡ0 at ECM = 5 MeV for concreteness. The regulator
dependence of C̄0 is shown in Fig. 3(b) and shows a limit-
cycle-like behavior driven by CP. The resulting ε0

SP is regulator
independent for a wide range of energies as depicted by the
dashed lines in Fig. 3(a). Although this method accounts for
the regulator-dependent part of short-distance contributions
and renormalizes the CP-odd amplitude, it cannot account for
possible finite contributions from C̄0. That is, the results in
Fig. 3(a) can shift up or down (they remain flat) if we were to
pick different values for ε0

SP,fit. The best way to obtain the total
short-distance contribution is by fitting to a measurement of
ε0

SP. This is at present not possible, and even if there was data
it would not be satisfactory. We would like to use such data to
extract a value of θ̄ .

Fixing the value of the short-distance LEC. We discuss two
possible methods to obtain a value for C̄0 in the absence of
data. The first one is to perform a LQCD calculation of NN →
NN scattering in the presence of a nonzero θ̄ background.
There have been significant developments in calculations of
nucleon EDMs arising from the θ̄ term by applications of
the gradient flow [12,53]. The same techniques could be
used to study four-point functions in a θ̄ vacuum. A major
challenge will be to control the signal to noise. Already for
CP-conserving NN → NN processes, signal-to-noise consid-
erations demand pion masses well above the physical point
[54]. Going to smaller pion masses is even more daunting
for the θ̄ term as the signal scales as ≈ θ̄m2

π . If such LQCD
calculations are possible, we can obtain C̄0 from a matching
calculation of χEFT to lattice data after taking the appropriate
continuum and infinite-volume limits.

On a shorter timescale a promising approach is to apply
chiral-symmetry relations between the θ̄ term and the quark
masses similar to the relation between ḡ0 and δmstr

N in Eq. (3).
Using SU(2)L × SU(2)R χEFT, the operators in Eq. (12) arise
from

LNN = − iC0

8
Tr[χ−]

[
N̄σN · ∇(N̄N ) + 1

3
N̄ �τσN · ∇(N̄ �τN )

]
,

(13)

where χ− = u†χu† − uχ†u, u = exp[i�τ · �π/(2Fπ )], χ =
2B(M + im�θ̄ ), and B = −〈q̄q〉/F 2

π . Expanding the trace
gives C̄0 = (Bm�θ̄ )C0 and a relation to the CP-conserving,

L012501-4



RENORMALIZATION OF CP-VIOLATING NUCLEAR … PHYSICAL REVIEW C 103, L012501 (2021)

isospin-breaking NNπ operators [28],

LNN,π = C0B(md − mu)

2

π0

Fπ

[
N̄σN · ∇(N̄ N )

+1

3
N̄ �τσN · ∇(N̄ �τN )

]
. (14)

These operators contribute to charge-symmetry-breaking
(CSB) in NN → NNπ processes [55–58]. A LO contribution
to this CSB process arises from the Nππ vertex related to
δmstr

N by chiral symmetry,

LCSB = −δmstr
N

4F 2
π

N̄ �τ · �ππ0N. (15)

The contact operator in Eq. (14) contributes at N 2LO in Wein-
berg’s counting. At the pion threshold, the transition operator
for the process 1S0 - 3P0 +π due to Eq. (15) is of the same
form as Vḡ0 . As such, the regulator dependence seen in Fig. 3
appears, and C0 must be promoted to LO for renormalization.
Unfortunately the simplest process where CSB data are avail-
able pn → dπ0 is not sensitive to C0 due to the isosinglet
nature of the deuteron. This motivates an investigation of
dd → απ0 using renormalized χEFT to fit C0 to CSB data
[59] to directly obtain C̄0 = (Bm�θ̄ )C0.

Other sources of CP or P violation. At the dimension-six
level there appear other CP-odd sources. For the present dis-
cussion the most relevant operators are quark chromo-EDMs
and chiral-breaking four-quark operators, which are induced
in a wide range of BSM models [30,60]. In addition to the
isoscalar ḡ0 term in Eq. (2), the LO CP-odd chiral Lagrangian
contains an isovector term,

LπN = ḡ1N̄π0N, (16)

whereas a potential isotensor term is subleading [14]. In com-
bination with the strong gA vertex, an OPE involving ḡ1 causes
1S0 - 3P0 and 3S1 - 3P1 transitions. Strong 3P1 interactions arise
solely from OPE, and the divergent diagrams in Fig. 4 do not
appear. We expect no regulator dependence for 3S1 - 3P1 transi-
tions, which is confirmed by explicit calculations. The j = 0
transition, up to an isospin factor, shows the same regulator
dependence as the ḡ0 case, and, thus, a LO isospin-breaking

counterterm is needed. The associated operator takes the form

LNN = C̄1[N̄τ 3σN · ∇(N̄ N ) + N̄σN · ∇(N̄τ 3N )], (17)

which projects unto 1S0 - 3P0, but only for the neutron-neutron
and proton-proton cases. The simplest EDM that depends on
ḡ1 is the deuteron EDM [61] targeted in storage-ring exper-
iments [62]. Due to the isosinglet nature of the deuteron,
its EDM only depends on 3S1 - 3P1 transitions which do not
require a counterterm. There is no such selection rule for more
complex EDMs, such as 3He, 199Hg, or 225Ra [17–20,63,64],
and C̄1 must be included at LO.

The finiteness of 3S1 - 3P1 transitions is relevant for the field
of hadronic parity (P) violation [65]. The LO P odd, but CP
even, chiral Lagrangian induced by P-odd four-quark oper-
ators contains a single πN term [66], usually parametrized
as (hπ/

√
2)N̄ ( �π × �τ )3N that in combination with gA leads

to 3S1 - 3P1 transitions [67,68]. We have checked explicitly
that no regulator dependence appears and no counterterms are
needed. The value of hπ recently determined from P-violating
asymmetries in �np → dγ [69] can, thus, be directly applied
in calculations of other P-odd observables.

Conclusion. We have argued the need for a leading-order
short-range CP-violating counterterm in 1S0 - 3P0 transitions
that affects calculations of EDMs and CP violation in nucleon-
nucleon and neutron-nucleus scatterings at the O(1) level.
This directly affects the interpretation of experimental limits,
and hopefully future signals, in terms of the QCD θ̄ term
and other CP-odd sources, and the interpretation of axion
DM searches via oscillating EDMs. For CP violation from
the θ̄ term, we have proposed strategies to obtain the value
of the associated low-energy constant C̄0 from existing data
on charge-symmetry breaking in few-body systems. We hope
our results stimulate determinations of C̄0 using lattice QCD,
analyses of CSB data, and calculations of the impact of the
short-range operator on observables of experimental interest,
such as (oscillating) EDMs, magnetic quadrupole moments,
and time-reversal-odd scattering observables.
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