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Roton instabilities in the superfluid outer core of neutron stars

J. A. Gil Granados ,1 A. Muñoz Mateo ,2 and X. Viñas 1,3

1Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E–08028 Barcelona, Spain
2Departamento de Física, Universidad de La Laguna, E–38200, La Laguna, Spain

3Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, 08028-Barcelona, Spain

(Received 25 November 2020; revised 18 February 2021; accepted 24 May 2021; published 14 June 2021)

We study the superfluid dynamics of the outer core of neutron stars by means of a generalized hydrodynamic
model made of a neutronic superfluid and a protonic superconductor, coupled by both the dynamic entrainment
and the Skyrme SLy4 nucleon-nucleon interactions. The resulting nonlinear equations of motion are probed in
the search for dynamical instabilities triggered by the relative motion of the superfluids that could be of potential
relevance to observational features of neutron stars. Through linear analysis, the origin and expected growth of
the instabilities is explored for varying nuclear-matter density. Differently from previous findings, the dispersion
of linear excitations in our model shows rotonic structures below the pair-breaking energy threshold, which lies
at the origin of the dynamical instabilities and could eventually lead to emergent vorticity along with modulations
of the superfluid density.
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I. INTRODUCTION

The study of neutron stars is becoming an interdisci-
plinary subject due to more available data obtained from
precise astronomical observations as well as from more re-
alistic computational simulations. The neutron-star interior
is theoretically described as a layered structure determined
by increasing density and temperature with depth. Its mat-
ter constituents, a mixture of neutron, proton, leptons, and
eventually other exotic particles, arrange in different man-
ners in concentric shells that are electrically neutral and in
β equilibrium. Inside the outermost region, called outer crust,
matter is organized as a solid lattice of atomic nuclei embed-
ded in a free-electron gas. This region spans densities from
ρ ≈ 104 g/cm3, where the atomic nuclei are fully ionized, up
to ρ ≈ 4 × 1011 g/cm3, where nuclei, which are more and
more neutron rich, cannot retain the neutrons anymore. At
this point, the neutrons start to drip out of the nuclei. In this
latter region, called the inner crust, matter is still arranged as
a Coulomb lattice of nuclear clusters but is now permeated by
free-neutron and free-electron gases. In the bottom layers of
the inner crust the nuclear clusters may change their shape to
minimize the Coulomb repulsion from spheres to cylinders,
slabs, tubes and spherical or cylindrical bubbles. These exotic
geometries at the crust-core transition are known as “nu-
clear pasta.” When the density reaches ρ ≈ 1.4 × 1014 g/cm3,
about half the nuclear matter density, the solid lattice becomes
energetically unfavorable and disappears; as a consequence,
at the core, matter transforms into a liquid phase of neutron,
protons, and leptons. Deeper in the core, hence at higher
densities, strange baryons and even deconfined quarks may
appear.

At different layers of the neutron-star interior, the quantum
degeneracy of nuclear matter supports the Bose condensation

of fermion pairs, which leads to the emergence of superfluid-
ity. In this way, neutron pairs are assumed to condense at the
inner crust, whereas both neutron and proton pairs can form
condensates at the outer core. However, the precise equations
of state relating the pressure and density of nuclear matter
under such extreme conditions, including pairing correlations,
are not completely well determined, and different proposals
compete to provide a plausible picture compatible with the
observational constraints.

The observed dynamics of a neutron star is consistent with
the assumed superfluid interior. The superfluid dynamics can
account for the observed low moment of inertia [1–5] or the
cooling down of the neutron star [6,7]. It can also play a role
in star oscillations and collective modes of nuclear matter
[8–10]. Additionally, it allows us to understand the extraor-
dinarily regular rotation of pulsars, based on the existence of
a superfluid reservoir. The sudden speed-ups (or glitches) in
this rotation, first detected in the Vela and Crab pulsars in
1969 (see Refs. [11,12] and references therein), are one of
the most solid arguments in favor of the superfluid interior.
The theory by Anderson and Itoh [13] explains the glitches
as the result of unpinning quantized vortices in the crust. The
neutron-superfluid vortices, pinned to the underlying lattice of
nuclei within the inner crust, can “creep” out of the superfluid,
transferring angular momentum to the nonsuperfluid part of
the star [14]. In spite of a general good agreement of this the-
ory with observed glitches of different magnitudes, there still
exist open questions about how different superfluid layers are
involved in this phenomenon [4,5]. Recent observations (see,
e.g., Refs. [12,15]) seem to favor that the neutron superfluid in
the inner crust is not enough to provide the observed increase
in the angular momentum and suggest that the core super-
fluids have also to be considered. Since many-body analysis
of these macroscopic, large-scale properties are unreachable,
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most of the studies try to model the coupling between different
layers of the star interior from a hydrodynamical perspective
[16–19]. This approach provides the scope for advancing in
the understanding of the basic mechanisms responsible for
dynamical instabilities of the superfluid interior. In turn, such
instabilities may shed light on the thermal evolution of neu-
tron stars [20] or the rotation anomalies of pulsars detected in
astronomical observations [21–24].

In this context, the present work considers two superflu-
ids coupled by nucleon-nucleon interactions that model the
structure of the outer core. With typical densities around the
symmetric nuclear matter saturation density ρ ≈ 0.16 fm−3

(2.8 × 1014 g/cm3), and temperatures of the order of 108 K,
below plausible estimates for the superfluid transition [25], we
assume that the outer core temperature is effectively zero, and
therefore that the superfluid density matches the total density
of the outer core (see, e.g., Ref. [26] for the relation between
superfluid density and total fermionic density in a Fermi gas).
This assumption implies that all the nucleons belong to the
condensates and therefore are collisionless. In such a regime,
the mean-field interaction between particles is the origin of
the collective excitations, and damping effects are absent. Ad-
ditionally, the effects of charge perturbations derived from the
underlying electron gas are equally treated in a collisionless
regime relevant on subcentimeter length scales [20].

We have chosen an equation of state (EOS) provided
by Douchin and Haensel [27] and which is based on the
Skyrme SLy4 interaction [28]. This EOS is particularly well
adapted to the neutron-star scenario and is compatible with
a maximum neutron-star mass of about 2M�, in agreement
with well-established observational data [29,30]. The Galilean
invariance of the whole system imposes an additional dy-
namical coupling between the two overlapped condensates
of fermionic pairs due to the entrainment of neutrons and
protons, whose characteristic quantities are calculated follow-
ing Ref. [31] (see also Ref. [32]). The resulting model aims
at the generalization of previous studies on hydrodynamical
instabilities in the coupled superfluids with relative motion
[18,33]. To this end, the nonlinear Hamilton’s equations of
the system are linearized, and the dispersion relations and
the spectrum of excitation modes are analytically derived as
a function of the nuclear matter density. Differently from
previous works that have focused on the longest wavelength
excitations, essentially phonons, we show the plausible rele-
vance of rotonic modes developed at shorter wavelengths in
the dispersion relations. They emerge by virtue of the relative
superfluid motion and are associated with instabilities that
can give rise to the decay of the dynamical equilibrium. Such
decay involves density modulations and could eventually lead
to emergent quantized vortices.

To neatly show the origin of these unstable excitations, we
are considering neither the mutual friction between superflu-
ids, due to the superfluid vorticity inherent in the rotating
neutron stars [14,34], nor the presence of viscosity caused
by the underlying normal fluid [35], nor the star magnetic
field, which could have a significant effect on the damping
and suppression of linear instabilities [23]. Our study applies
at mesoscopic scales, dominated by a collisionless particle dy-
namics, and hence it is not directly comparable to collisional,

classical hydrodynamics (see, for instance, Ref. [36] for dis-
cussions on the differences between collision and collisionless
dynamics).

II. MODEL OF THE SUPERFLUID OUTER CORE

Neutron (denoted hereafter by the subindex n) and proton
(denoted by the subindex p) superfluids will be described
by two real fields, the superfluid densities ρ j and phases θ j ,
with j = n, p, where the latter fields provide the irrotational
superfluid velocities through the relationship v j = h̄∇θ j/m,
with m being the nucleon mass. Both fields could also be
thought of as real components of effective, bosonic complex
order parameters � j = √

ρ j/2 exp (i2θ j ). As commonly done
in the literature [20,34], we have assumed a zero-temperature
model where the total density is superfluid, so that ρ j and μ j

will stand for the fermionic densities and chemical potentials
of neutrons ( j = n) and protons ( j = p), respectively.

The energy density H(ρn, ρp,∇ρn,∇ρp,∇θn,∇θp), which
includes nuclear and Coulomb interactions along with charac-
teristic terms of the superfluid motion, can be recast as

H = Hρ (ρn, ρp) + Hρ ′
(∇ρn,∇ρp) + Hθ ′

(∇θn,∇θp) + He.

(1)

Here, Hρ is a homogeneous-density energy term (depending
only on the densities) provided by the underlaying effective
nuclear interaction. The macroscopic energy density Hθ ′

is a
dynamical, Galilean-invariant term that depends on the phase
gradients and densities. The term Hρ ′

accounts for density
inhomogeneities and is a functional of both densities and den-
sity gradients. It contains, on the one hand, the contributions
due to the inhomogeneities of the effective order parame-
ter, and, on the other hand, the contributions of the gradient
terms in the nuclear energy-density functional that simulates
the finite-range of the nucleon-nucleon interaction. Finally,
the term He = eρp�/2 accounts for the local charge imbal-
ance through the Coulomb potential �, which follows the
Poisson equation ∇2� = 4πe(ρe − ρp). The electron density
ρe is assumed to adjust instantaneously into a local density,
homogeneous configuration of the ultrarelativistic Fermi gas
as ρe = (μe/h̄c)3/3π2. Additionally, local β equilibrium is
assumed, so that the chemical potentials fulfills the condition
μn = μp + μe. Since at the high nuclear density of the outer
core the typical Fermi levels are at least one order of magni-
tude greater than the expected superfluid gaps (of the order
of one MeV, see below), the pairing contribution to the total
energy of the system will be neglected.

The particular functional forms of Hρ , Hρ ′
, and Hθ ′

are
based on the choice of the phenomenological model for the in-
ternucleon interactions (see details below). In a generic form,
Hρ ′

and Hθ ′
are given by

Hθ ′ = h̄2

2m

∑
i j

�i j∇θi∇θ j, (2)

Hρ ′ = h̄2

2m

∑
i j

ϑi j∇ρi∇ρ j . (3)
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In Eq. (2), which corresponds to the dynamical energy density,
the response functions �i j fulfill �nn + �np = ρn, and �pp +
�pn = ρp, as independent functions of the velocities, so that
the entrainment parameter �np is constrained by the relation
�2

np < �nn�pp [31,37].
The inclusion of density gradients, Eq. (3), in the energy

density deserves further attention, since it is not the case
in collisional hydrodynamic models that rely on a strictly
density-dependent equation of state (see, e.g., Ref. [33]). Our
generalized hydrodynamical model studies the collisionless
regime of the two-coupled condensates in the presence of an
underlying, equally collisionless, electron gas. The particular
choice of Skyrme force provides inherent density gradient
terms [see Eqs. (2.1) and (2.2) in Ref. [28] ] that simulate
the short-range of the nuclear forces. Of course, these terms
do not have any effect on the homogeneous stationary states
that we later consider, but they do on the dynamics of linear
excitations on the top of such states. Additionally, our energy
density (3) also includes a so-called von Weizsäcker term
[38]. It is a corrective term to the kinetic-energy density in
Fermi gases, proceeding directly from the curvature of the
fermion wave functions. It translates into the so-called quan-
tum pressure term that appears in a generalized superfluid
hydrodynamic approach [see e.g., Eq. (52) in Ref. [26] ].
Again, the influence of this term cannot be seen in the ho-
mogeneous stationary states, but it plays a role in the linear
perturbation analysis.

The nonhomogeneous contributions to the energy density,
namely, the density gradients of the nuclear forces and the
Weizsäcker terms, are gathered in Eq. (3), where ϑi j = ϑ0

i j +
δi j/18ρ j , and the constant terms ϑ0

i j (reported below) are the
coefficients of the gradients in the Skyrme force [28]. Notice
that these density gradients and the Weizsäcker terms have
been previously included in the energy density to estimate
the core-crust transition density in neutron stars with the
so-called dynamical method (see, e.g., Ref. [39], and refer-
ences therein). If only the homogeneous terms are considered
(thermodynamical method), the transition density is found
at higher density. Therefore, the nonhomogeneous terms are
crucial to shift the transition density to smaller values, which
are in better agreement with the estimates made from the crust
side.

A. Equations of motion

In the absence of a normal fluid (hence without dissipa-
tion), the hydrodynamic equations of motion can be written
following a Hamiltonian approach, based on the energy den-
sity (1), with canonically conjugate variables {ρ j, θ j}. The
variation of the Hamiltonian H = ∫

drH with respect to the
densities gives

∂ρn

∂t
+ ∇ · jn = 0, (4a)

∂ρp

∂t
+ ∇ · jp = 0, (4b)

which corresponds to the conservation of particles in each su-
perfluid component. Following the seminal paper by Andreev

and Bashkin [37], the current densities are approximated as
linear functions of the two superfluid velocities vn and vp as

jn = �nnvn + �npvp, (5a)

jp = �ppvp + �npvn. (5b)

It is worth noticing that ji/ρi = vi + (v j − vi )�np/ρi only
matches the corresponding velocity vi if there is no relative
motion between the two superfluids.

Additional equations for the potential flow of each su-
perfluid follow from the variation of the energy density
H with respect to the superfluid phases (see, for instance,
Refs. [34,40] for the general procedure of obtaining the equa-
tions of motion):

∂vn

∂t
+ ∇

(
μn

m
+ Qn + |vn|2

2
− ∂�np

∂ρn

|vpn|2
2

)
= 0,

(6a)

∂vp

∂t
+ ∇

(
μp

m
+ e

m
� + Qp + |vp|2

2
− ∂�np

∂ρp

|vpn|2
2

)
= 0,

(6b)

where Qn is given by

Qn = −h̄2

m2

[∇2√ρn

9
√

ρn
+ ϑ0

nn∇2ρn + ϑ0
np∇2ρp

]
,

and equivalently Qp by exchanging the subindexes n and p,
which originate from the specific variation of Eq. (3). The
Coulomb term e�/m in the proton Eq. (6) will allow us
to account for electric charge perturbations at a mesoscopic
scale, while ignoring the equation of motion for the electrons.
To this end, as we specify later, we will make use of the linear
response of the underlying electron plasma in the absence of
collisions, which is accurately provided by the random-phase
approximation for ultrarelativistic electrons [41].

The bulk chemical potentials μi are defined as usual from

μn(ρn, ρp) = ∂Hρ

∂ρn
, μp(ρn, ρp) = ∂Hρ

∂ρp
. (7)

Equations (4) and (6) are the coupled equations of motion
for the superfluid velocities {vn, vp} and densities {ρn, ρp}. It
is worth pointing out that superfluid momenta, instead of ve-
locities, can be chosen alternatively as the dynamical variables
of the two fluids [42]. The system of equations is determined
once the nuclear interaction energy density is known.

B. Skyrme interaction

In this work we have chosen the phenomenological Skyrme
interaction as the underlying nuclear interaction that describes
the nonsuperfluid EOS [43,44]. For this type of effective
forces the energy density reads

HSkyrme = Hρ + H∇, (8)

Hρ = T + H0 + H3 + Heff , (9)

where T gathers the kinetic-energy densities τi =
3 (3π2)2/3ρ

5/3
i /5 of both nucleonic Fermi gases, H0 is a

zero-range two-body term, H3 is a three-body term, which

065803-3



GRANADOS, MATEO, AND VIÑAS PHYSICAL REVIEW C 103, 065803 (2021)

is recast as a density-dependent, zero-range two-body
contribution, and Heff is an effective-mass term. As a whole,
Eq. (9) defines the bulk energy density Hρ (ρn, ρp) of Eq. (1).
Additionally, the term H∇ , which depends on the gradients
of the neutron and proton densities, simulates finite-range
effects of the interaction, and vanishes for uniform density
distributions. Apart from the factor 2m/h̄2, it provides the
constant ϑ0

i j coefficients that enter the non-homogeneous

energy density Hρ ′
(∇ρn,∇ρp) in Eq. (1).

The interaction terms are explicitly given by

T = h̄2

2m
(τn + τp), (10)

H0 = t0
4

[
(2 + x0)ρ2 − (2x0 + 1)

(
ρ2

p + ρ2
n

)]
, (11)

H3 = t3ρ1/6

24

[
(2 + x3)ρ2 − (2x3 + 1)

(
ρ2

p + ρ2
n

)]
, (12)

Heff = [t1(2 + x1) + t2(2 + x2)]
ρ(τn + τp)

8

+ [t2(2x2 + 1) − t1(2x1 + 1)]
τpρp + τnρn

8
, (13)

H∇ = 3

32
[t1(1 − x1) − t2(1 + x2)][(∇ρn)2 + (∇ρp)2]

+ 1

16
[3t1(2 + x1) − t2(2 + x2)]∇ρn · ∇ρp, (14)

with parameters [27,28] t0 = −2488.91 MeV fm3,
t1 = 486.82 MeV fm5, t2 = −546.39 MeV fm5, t3 =
13777.0 MeV fm4, x0 = 0.834, x1 = −0.344, x2 = −1.0, and
x3 = 1.354.

By means of Eq. (8), the β equilibrium in the bulk can
be locally determined in terms of the asymmetric density δ =
(ρn − ρp)ρ by the condition μn = μp + μe as(

h̄2

2m
+ C1

8
ρ

)(
3π2 ρ

2

)2/3
[(1 + δ)2/3 − (1 − δ)2/3]

− t0
2

ρ δ(1 + 2x0) − t3
12

(2x3 + 1)δρ7/6

+ 3π2

5
C2

(ρ

2

)5/3
[(1 + δ)5/3 − (1 − δ)5/3]

− h̄c
(
3π2ρe

)1/3 = 0, (15)

where the coefficients C1 = t1(2 + x1) + t2(2 + x2) and C2 =
t2(2x2 + 1) − t1(2x1 + 1), which enter the Skyrme energy
density through Heff , are related to the neutron and proton
effective masses by(

m

m∗

)
n

= 1 + 2m

h̄2 [C1ρ + C2ρn],

(
m

m∗

)
p

= 1 + 2m

h̄2 [C1ρ + C2ρp]. (16)

The numerical solution to Eq. (15) is represented in the
top panel of Fig. 1 for static conditions and assuming local
electric charge balance ρe = ρp. As can be seen, in the case of
the SLy4 interaction the asymmetry decreases for increasing
nuclear density. The corresponding chemical potentials are

FIG. 1. (a) Asymmetric density, (b) bulk chemical potential, and
(c) particle current density as a function of the total density of nuclear
matter in β and electric-charge equilibrium, as given by the effective
nuclear interaction SLy4. The chemical potentials are represented for
static and dynamical equilibrium with relative velocity 2|V| = 0.2c
between proton and neutron superfluids.

depicted in the middle panel of Fig. 1. For large asymme-
tries, well above its neutron drip value, the neutron chemical
potential is positive, owing to the repulsive character of the
neutron-neutron interactions, whereas the proton chemical po-
tential is strongly negative due to the attractive neutron-proton
interaction (see Ref. [45] for more details).

The response function �np, which determines the entrain-
ment, is also obtained consistently with the help of the same
SLy4 effective force used to describe the nucleon-nucleon
interaction. Following Ref. [31] one gets

�np = αρnρp, (17)

where the constant α depends on the parameters of the Skyrme
force as

α = −m

2

[
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)]
, (18)

which in the case of the SLy4 interaction takes the value
α ≈ −1.566 fm3.
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III. STATIONARY STATES

The superfluid equations (4) and (6) admit constant density
{ρ0

n , ρ0
p} stationary solutions with constant relative velocity

v0
pn = v0

p − v0
n. For the sake of simplification, we choose su-

perfluid velocities with equal modulus and opposite direction
v0

p = −v0
n = |V|, which implies v0

pn = 2|V|. For these states,
the total chemical potentials at equilibrium {μ0

n, μ
0
p} are

μ0
n = μn

(
ρ0

n , ρ0
p

) + m|V|2
2

(
1 − 4αρ0

p

)
,

μ0
p = μp

(
ρ0

n , ρ0
p

) + m|V|2
2

(
1 − 4αρ0

n

)
, (19)

and the corresponding particle current densities

j0
n = −(

ρ0
n − 2αρ0

p

)|V|, j0
p = (

ρ0
p − 2αρ0

n

)|V|, (20)

so that the total current density is j0 = −(1 + 2α) δ0ρ0|V|.
To give a more concrete idea of the influence of the rela-
tive superfluid velocity, we have represented the equilibrium
quantities for |V| = 0.1c (where c is the speed of light) in
the middle and lower panels of Fig. 1. The increase in the
chemical potential with respect to the static case (|V| = 0) is
around 10% for protons and 17% for neutrons at saturation
density. The chemical potential of electrons follows from the
local charge and β equilibrium.

A comment about the relative velocity |V| = 0.1c and its
potential relevance with respect to observational phenomena
is in order. Such a value, typical of the stationary states con-
sidered, is of the order of the speed-of-sound modes in the
condensates (see below), and therefore it is relevant at the
mesoscopic level of our model, and then potentially relevant
for the thermal evolution of the neutron stars [20]. However, it
is considerably higher than the estimates for the relative super-
fluid velocity derived from plausible rotational lags associated
with glitches [46], so a direct causal connection between the
generation of glitches and the sustainability of such superfluid
flows cannot be established. In this respect, the scalability of
our results up to the macroscopic length scales of the neutron
star is an open question that will be addressed elsewhere.

A. Linear excitations

The dynamical stability of the stationary states can be stud-
ied by analyzing the spectrum of linear excitations. To do so,
we introduce a generic perturbation on the equilibrium state,
as {ρ j, v j} → {ρ0

j + δρ j, v0
j + δv j}, substitute the perturbed

quantities into the equations of motion (4) and (6), and keep
terms up to linear order in the perturbations. In matrix form,
the resulting linearized equations read

∂U

∂t
= −∇(BU ) (21)

where U is the vector of perturbations [δρn, δρp, δvn, δvp]T ,
and the linear operator B is given in terms of the equilibrium

quantities by

B =

⎛
⎜⎜⎜⎜⎝

jn

ρn

�np

ρp
vpn �nn �np

− �np

ρn
vpn

jp

ρp
�np �pp

gnn

m
gnp

m − α
2 v2

pn
jn

ρn
− �np

ρn
vpn

gpn

m − α
2 v2

pn
gpp+e�

m
�np

ρp
vpn

jp

ρp

⎞
⎟⎟⎟⎟⎠,

(22)

where the stationary (0) superscripts have been omitted in the
matrix elements for the sake of uncluttered expressions. We
have introduced the operators

gi j = ∂μi

∂ρ j
− h̄2

2m
ϑi j∇2, (23)

which gather interaction and dispersion contributions. The
former contribution plays the role of an interaction strength,
either intracomponent gnn and gpp, or intercomponent gnp =
gpn, reflecting the density coupling between neutrons and
protons.

Although the stationary state (19) presents both β equilib-
rium and electric charge equilibrium, one can consider linear
perturbations in Eq. (21) that break locally these equilibria.
However, for the sake of simplicity, our approach does not
consider the breaking of the β equilibrium as a source of per-
turbations (see, for instance, Ref. [47] on the nonequilibrium
β processes).

To account for electric charge perturbations, we make use
of the linear response of collisionless electrons to estimate the
corresponding perturbed electric potential. This response is
accurately provided by the random-phase approximation for
ultrarelativistic electrons as 4πeδρe = k2(εe − 1)δ�, with di-
electric constant εe(k) ∼ 1 + 4πe2(3ρe/π )2/3/(h̄ck2) at zero
frequency [20,41]. This estimate applies for small wave num-
bers and energies against the corresponding electronic Fermi
values; for instance, at ρ = 0.16 fm−3 and a proton fraction of
ρp/ρ = 0.05, this means k < 0.61 fm−1 and h̄ω < 120 MeV.
The zero-frequency assumption is justified whenever ω 
 kc,
which lies within the error margins of the present model for
the typical modes that we find in our calculations (up to
ω ∼ 0.3kc). According to this prescription, in Eq. (22) we
have made the approximation e� ≈ 4πe2/(εek2). For later
use in the long-wavelength limit k → 0, we also define the
quantity gee = ∂μe/∂ρe = (3ρe/π )2/3/(h̄c), which is related
to the compressibility κ of the ultrarelativistic Fermi gas by
the relation κ−1 = geeρe. Overall, we neglect the electronic
damping associated with the imaginary part of the dielectric
constant (Im[εe] ∝ ωk−3) [41] since it is expected to have
significant effects at much smaller wave numbers (e.g., k <

0.1 fm−1 at ρ = 0.16 fm−3) than the relevant wave numbers
for instabilities considered here.

The translational invariance of the matrix (22) allows for
the expansion of the perturbation in plane waves U (r, t ) =∑

k Uk exp[i(ωt − k · r)], and so the dispersion relations ω(k)
can be readily obtained as the algebraic solution of the lin-
ear system (21). Notice that this system consists of two
scalar equations for the density perturbations and two vector
equations for the velocity perturbations; therefore, for gen-
eral vector perturbations, the excitation frequencies ω are
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FIG. 2. Linear excitation energies in a uniform state with to-
tal density ρ = 0.16 fm−3 and several relative superfluid velocities
vpn = 2|V|. The dispersion contains only stable, real frequencies for
|V| = 0 and 0.075c (top panel), whereas it includes complex fre-
quencies (unstable excitations) for |V| = 0.125c (middle and bottom
panels). The dashed lines in the top panel trace the speed of sound
of superfluid neutrons (higher slope) and superfluid protons (lower
slope) when considered alone (see text). The insets show enlarge-
ments of the rotonic regions, below (top-panel inset) and beyond
(middle-panel inset) the relative velocity threshold for the onset of
instabilities.

the solutions of an eigenvalue problem with a characteristic
eighth-order polynomial. Since we are interested in the dy-
namical effects of the relative velocity, from now on we focus
on density and velocity perturbations along the direction of
the relative velocity; that is, with wave number k = k · V/|V|,
and neglect the perturbations in the perpendicular direction.
In this case, the dispersion relations derived from Eq. (21) are
obtained as the roots of a fourth-order characteristic polyno-
mial in the variable ω/k (see the Appendix for details). The
dispersion shows two qualitatively different regions, a phonon
part at low k where ω ∝ k, and a particle part at high k where
ω ∝ k2 (see top panel of Fig. 2).

Although these features are typical of the spectrum of
linear excitations in a gas of condensed bosons [36], the

underlying Fermi gases pose additional constraints on the
excitation of collective modes. It is well known that, in the
presence of fermionic pairing, there exist bosonic excitations
at low wave number (phonons), the so-called Bogoliubov-
Anderson modes [48], which lay (in a system of electrically
neutral particles) within the superfluid gap. But the Fermi
gases also present fermionic (quasiparticle) excitations that
lead to fermion-pair breaking, found typically at twice the
gap energy. Therefore, the pair-breaking excitations represent
an energy threshold beyond which the collective modes are
damped [49] (see also Ref. [50] for a discussion in ultracold
gases). It is then crucial to account for the typical values of
the superfluid energy gaps in order to determine the undamped
collective modes below the mentioned threshold.

We estimate the available energy range for collective exci-
tations from the calculated nucleonic 1S0 and 3P F2 pairing
gaps of Ref. [51], for protons and neutrons, respectively,
which are calculated at the BCS level with single-particle
energies obtained with the Brückner-Hartree-Fock approach
including two-body (Argonne v18) and three-body (Urbana
UIX) forces. In the range of nuclear densities of the outer
core, the neutron 3P F2 pairing increases approximately with a
linear slope 0.23 MeV fm3 up to ≈0.8 MeV at ρ = 0.24 fm−3.
The proton 1S0 pairing shows a nonmonotonic behavior (ap-
proximately as an inverted parabola) that reaches a maximum
of ≈0.8 MeV close to nuclear saturation density (see also
Refs. [52,53]). According to these values, the relevant collec-
tive modes of Fig. 2, for ρ = 0.16 fm−1 and neutron energy
gap ≈0.4 MeV [see Fig. 2(c) in Ref. [51] ], are those below
the pair-breaking energy limit |h̄ω| � 0.8 MeV. Notice that
these thresholds apply to static systems (|V| = 0), whereas in
moving systems they have to be measured [as the chemical po-
tentials in Eq. (19)] with respect to the kinetic-energy-shifted
Fermi levels; for instance, for |V| = 0.125c, the kinetic-
energy shift amounts to 4.9 MeV in neutrons and 9.2 MeV
in protons. Although the particle-like region of the spectrum
of collective excitations is effectively suppressed above this
threshold by the pair-breaking excitations, the lowest energy
modes remain undamped. Within this energy window, along
with phonons, as we show below, rotonlike modes can be
found at intermediate wavelengths.

1. Simplified linear models

Before discussing the general dispersion, it is instructive
to look first at simple cases of phonon modes. For the static
equilibrium (v j = 0) in the absence of entrainment (�np = 0),
the continuity equations (4) are decoupled, whereas the mo-
mentum equations (6) are coupled by density terms [gnp(k =
0) < 0 for ρ < 0.21 fm−3]; then, within the long-wavelength
limit k → 0, the dispersion can be approximated by

ω(�np=0) = ±k

⎡
⎣c2

n + c∗
p

2

2
±

√(
c2

n − c∗
p

2

2

)2

+ c4
np

⎤
⎦

1
2

, (24)

where cn = √
gnnρn/m and cp = √

gppρp/m are, respec-
tively, the speed of sound in the neutron and proton
superfluids (when considered alone), and cnp =√|gnp|√ρnρp/m is an analogous speed term associated with
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the density coupling. The effective speed of sound for protons
c∗

p = (c2
p + geeρp/m)1/2, assuming charge equilibrium,

includes an electronic contribution accounted for by means
of gee. For example, at ρ = 0.16 fm−3, one gets cn = 0.22c,
cp = 0.1c, and c∗

p = 0.23c; the resulting speed of sound of
the excitations is c(�np=0) = ω(�np=0)/k = ±0.24c for the top
and bottom branches of the dispersion, and ±0.21c for the
intermediate branches. These values reflect a high influence
of the electron gas at very low wave number, typically at
k < 0.1 fm−1; beyond this region, the dispersion branches
show a tendency that is better captured by slopes given by cn,
and cp (represented by dashed lines in the top panel of Fig. 2).

In the excitation spectrum associated with the asymptotic
dispersion (24), the velocity components follow the den-
sity component of the modes as δvp/δvn = (ρn/ρp)δρp/δρn,
which can show a (proton to neutron) in-phase character
δρp/δρn > 0, corresponding to the lower (in absolute value)
energy branches, or an out-of-phase character δρp/δρn < 0,
corresponding to the higher-energy branches in the top panel
of Fig. 2. Notice that all the stable modes (having pure real
frequencies in the dispersion) can be chosen to have only
real components, so Uk ∈ R (see Fig. 4 for the complete
spectrum without approximation and varying wave number).
Conversely, the unstable modes can be complex Uk ∈ C, al-
though the real constraint on the perturbed quantities implies
Uk = ±U ∗

−k.
On the other hand, when the density coupling in the

energy-density functional is neglected (gnp = 0), so that the
momentum equations (6) become decoupled whereas the en-
trainment keeps the continuity equations (4) coupled, the
static equilibrium leads to the following dispersion of linear
excitations in the phononic limit k → 0:

ω(gnp=0) = ±k

⎡
⎣c2

nn + c∗
pp

2

2
±

√(
c2

nn − c∗
pp

2

2

)2

+ c4
α

⎤
⎦

1
2

,

(25)

where now cnn = √
gnn�nn/m, and c∗

pp = √
cpp + gee�pp/m,

with cpp = √
gpp�pp/m, are the speeds of sound modified by

the entrainment, and

cα =
√√

gnn(gpp + gee)�np/m

is a specific speed term associated with the entrainment
coupling. From examination of Eqs. (24) and (25), one
can see that both types of coupling, either density or en-
trainment coupling, produce a qualitatively similar type of
phonon excitations. Again, the velocity components follow
the density components of the modes as per δvp/δvn =
(cpp/cnn)2(ρn/ρp)δρp/δρn, with the in-phase (out-of-phase)
modes corresponding to the lower (higher) energy branches.
For concreteness, at ρ = 0.16 fm−3, the speeds of sound
are c(gnp=0) = ω(gnp=0)/k = ±0.26c and ±0.22c for the four
branches. At low wave number k < 1, but beyond the zone
of influence of the electron gas, the dispersion in the absence
of density coupling is well approximated by linear branches

of slope cnn = 0.22c and cpp = 0.11c. Note that the pres-
ence of entrainment changes neither quantitatively the phonon
velocities, since cnn ≈ cn and cpp ≈ cp, nor qualitatively the
dispersion branches, which are monotonically growing in en-
ergy for increasing wave number.

Finally, if both entrainment and density coupling are
neglected, but relative superfluid velocity 2|V| is consid-
ered, the dispersion at k → 0 shows shifted sound speeds
ω(�np=0,gnp=0) = k(±cn − |V|) and ω(�np=0,gnp=0) = k(±c∗

p +
|V|), as corresponds to decoupled superfluids. For comparison
with the previous cases, at ρ = 0.16 fm−3 and |V| = 0.1c one
gets c(�np=0,gnp=0) = −0.32c and 0.12c for neutrons, and 0.33c
and −0.13c for protons. The effect of the relative velocity on
the whole dispersion tends to separate the higher (in absolute
value) energy branches, and to get closer the lower energy
branches (see top panel of Fig. 2); the latter ones can even-
tually collide and, as a result, produce instabilities.

2. Full linear model

In the general case, by combining density and entrainment
coupling with a relative superfluid velocity, the plane-wave
solutions to the linear system (21) gives rise to a generic
fourth-order polynomial for the excitation frequencies. Its
cumbersome analytical solution is, however, easily obtained
numerically. Figure 2 shows the linear-excitation frequencies
for total nuclear matter density ρ = 0.16 fm−3 and several
relative velocities. The top panel compares the excitations of
the static equilibrium |V| = 0 and the dynamical equilibrium
at |V| = 0.075c. The symmetric branches (with respect to
the zero frequency) at |V| = 0 contrast with the asymmetric
dispersion in the presence of relative velocity. The disper-
sion of the static equilibrium is characterized by a phonon
region at low wave number k → 0, which can be reasonably
approximated by Eq. (24). In the dynamical equilibrium, as
can be better seen in the inset, the lower-energy (in absolute
value) branches bend towards each other and develop a rotonic
structure with a minimum phase velocity ω/k at nonzero mo-
mentum, as can be seen for |V| = 0.075c. Further increase in
the relative velocity of the system, as shown in the lower pan-
els of Fig. 2 for |V| = 0.125c, leads to a dynamical instability
associated with complex excitation energies. The unstable
region covers a limited range of intermediate wave numbers
k ∈ [0.16, 0.49] fm−1 (see the bottom panel of Fig. 2) be-
tween mode bifurcations. The growth rate of these instabilities
is expected to be exponential at small times (roughly until
the moment when the perturbation amplitudes reach values of
the same order as the equilibrium quantities), and the typical
time τ for their development is inversely proportional to the
maximum value of the imaginary frequencies τ ∝ Im[ω]−1.
For the unstable case depicted in the middle and bottom panels
of Fig. 2, this linear time estimate is 2πω−1

max = 4.1 × 10−21 s.
Notice that this value (calculated in the linear regime) is not
the time it takes for the superfluids to decay from their equi-
librium state, which is a subsequent nonlinear process. For
comparison, it is worth pointing out that the linear estimate
is 2.4 times longer than the period of the proton plasmon,
τp = 1.7 × 10−21 s (as calculated for decoupled protons).
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B. Rotonic structures and instabilities

Roton excitations were introduced by Landau in order to
explain the varying dynamics of superfluid helium with tem-
perature [54]. While long-wavelength modes (phonons) were
the main contribution to the superfluid excitations near zero
temperature, short-wavelength modes around a minimum in
the dispersion curve (rotons) were the dominant type of exci-
tations at slightly higher temperatures (see, e.g., Ref. [55] for
a microscopic characterization of roton excitations in liquid
helium). Differently from phonons and due to the minimum in
the dispersion diagram, the group velocity of rotons vanishes,
and the roton modes are localized in a region of the order
of the inverse wave number k−1

r corresponding to the local
energy minimum. On the other hand, rotons present the lowest
phase velocity of the collective superfluid excitations, and so,
following the Landau’s criterion, they are expected to mark a
threshold for the critical velocity of an external probe capable
to excite the superfluid. Still, this collective excitation thresh-
old competes with the fermionic critical velocity associated
with the pair-breaking excitations [50].

As can be seen in Fig. 3(a), which zooms in the bot-
tom inset of Fig. 2 to represent the lowest positive-energy
branch (solid line) of the dispersion at ρ = 0.16 fm−3, the
two-superfluid system of the inner core develops rotonic
structures in the presence of relative superfluid velocity. For
|V| = 0.075c, the minimum phase velocity ω/k ≈ 0.0085c is
reached at k ≈ 0.4 fm−1, nearby the roton minimum at kr ,
and it is given by the tangent to the dispersion curve passing
through the origin (dashed line). The tangent decreases for in-
creasing relative superfluid velocity. Notice that, although the
negative branches of the dispersion [not shown in Fig. 3(a)]
are not the mirror reflection of the positive branches with
respect to the zero-energy axis (due to the effect of combined
population imbalance and relative motion), they follow a sym-
metric trend by decreasing their negative phase velocities.
For high enough relative superfluid velocity, the two men-
tioned dispersion branches intersect at their respective rotonic
regions, marking the threshold for dynamical instabilities.
Beyond this threshold, the growth of the unstable (rotonic)
modes from small perturbations during the time evolution of
the system can eventually produce the decay of the stationary
state.

The whole instability region predicted by the present model
is depicted in the density-velocity map of Fig. 3(b). The
system shows a relative velocity threshold for the onset of
instabilities that increases (approximately) linearly with the
total density. Most of the unstable region is dominated by
rotonic instabilities, and only the region encircled by the con-
tinuous line contains unstable modes at zero quasimomentum,
which is the only unstable region found if only homogeneous
terms are considered in the energy density. Therefore, the
results reported in this paper generalize previous work on dy-
namical instabilities in the two-superfluid outer core [20,33],
where only phonon instabilities were identified.

C. Spectrum of linear excitations

A common feature of the spectrum that appears at both
zero and nonzero relative velocity is the crossing of in-

(a)

(b)

FIG. 3. (a) Rotonic structure in the dispersion of linear exci-
tations of a uniform state with relative superfluid velocity vpn =
2|V| = 0.15c. The roton minimum belongs to the lowest positive-
energy branch and takes place at kr = 0.31 fm−1. Simultaneously
there exists a rotonic structure in the highest negative-energy branch
that presents a maximum. (b) Range of unstable uniform states
(yellow) in the presence of relative superfluid velocity vpn = 2|V|.
The region encircled by the continuous line indicates the presence
of unstable modes with wave number k = 0. The staircase boundary
lines are due to numerical resolution.

and out-of-phase modes; see e.g., Fig. 4, where the cross-
ing takes place in the range of k ∈ [1, 1.2] fm−1 at ρ =
0.16 fm−3. As predicted by the simplified phononic models
represented by Eqs. (24) and (25), in the limit k → 0, the
spectrum is made of proton to neutron in-phase modes at
low energy, and out-of-phase modes at high energy. This
fact reflects the phase locking character of both density
and entrainment couplings, which take negative values in
the mentioned limit, gnp(k = 0) = (∂μn/∂ρp) < 0 [although
gnp(k = 0) > 0 for ρ > 0.21 fm−3] and �np < 0. However,
the coupling terms in Eq. (22) are modified for varying
wave number and nonzero relative velocity. In particular, the
density coupling becomes [see Eq. (23)] gnp − αm|V|2/2 =
(∂μn/∂ρp) + ϑnp(h̄k)2/2m − αm|V|2/2, and even at zero ve-
locity |V| = 0 the positive k-dependent term competes with
the negative chemical-potential derivative to give a definite
sign to the coupling. For high enough wave number k2 >

2m|∂μn/∂ρp|/(h̄2ϑnp), the density coupling changes sign and
the spectrum modes reverse their phase character (either in
phase or out of phase). Due to the entrainment coupling, this
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FIG. 4. Excitation modes of constant density states with nuclear
density ρ = 0.16 fm−3, and relative velocity (a) |V| = 0, top panels,
and (b) |V| = 0.075c, bottom panels, corresponding to the dispersion
relations depicted in the top panel of Fig. 2. The label ωl (ωh) indi-
cates the correspondence of the mode branch with the lowest-energy
(highest-energy) branches of the dispersion; analogously, the label
ωr refers to the rotonic branch of the dispersion. The continuation of
this latter branch in the velocity component panels at high k > 1.2,
at high positive values δvp/δvn > 0, is not captured by the graph
scale. Since the systems are dynamically stable, all modes are chosen
to have only real components. The insets zoom in to the low wave
number range in order to see the in- and out-of-phase character
between neutron and proton modes.

mode crossing is not simultaneous for velocity and density
components, and there exists a transition region for a small
range of wave numbers where the velocity perturbations do
not follow the phase character of the density perturbations;
that is, one can observe modes having in-phase velocity com-
ponents and out-of-phase density components. However, in
general, in the range of wave numbers where the crossing

takes place, the collective excitation energies are much higher
than the pair-breaking limit and the corresponding modes are
expected to be damped.

More relevantly, the presence of relative velocity breaks the
degeneracy between excitation branches of the spectrum, re-
flecting the underlying asymmetric dispersion. When |V| = 0
(see top panels of Fig. 4), the spectrum shows only two curves,
each of them corresponding to two overlapped branches of
linear excitations with opposite phase velocities. The modes
labeled by ωl (ωh) correspond to the lowest-energy (highest-
energy) branches of the dispersion. This correspondence is
reversed after the previously mentioned mode crossing. When
|V| = 0, as can be seen in the bottom panels of Fig. 4, the
mode branches split and two new (with respect to the static
case) curves can be seen to emerge. Two of the mode branches
are close to pure neutronic excitations, since δvp/δvn ∼
δρp/δρn ≈ 0 (see insets). The key difference introduced by
the relative velocity is the fact that one of the branches con-
tains modes (labeled ωr) belonging to the rotonic region of
the dispersion (cf. Fig. 3), which combine in-phase density
perturbations and out-of-phase velocity perturbations, in spite
of the underlying density plus entrainment coupling in this
wave-number range, which tends to lock in phase all mode
components. This feature is relevant for triggering the dynam-
ical instabilities since the associated rotonic modes occupy the
lowest-energy region of the spectrum, and therefore they are
not expected to be damped by pair-breaking mechanisms.

The onset of instability at high relative velocity can be
understood as a resonant process that occurs at the matching
of two excitation frequencies. As can be seen in the bot-
tom panels of Fig. 2, for |V| = 0.125c, the instability region
is delimited by the collisions of the two lowest-energy (in
absolute value) branches of the dispersion. The associated
unstable modes, whose Fourier components Uk are charac-
terized in Fig. 5, show clearly the merging process and the
appearance of complex components. Notice that, with in-
creasing relative velocity, the rotonic mode branch in the
velocity panel of Fig. 4 (at |V| = 0.075c) has shifted its
position closer to the horizontal axis to meet the other low-
energy branch. These modes involve perturbations that satisfy
δvp/δvn × δρp/δρn < 0. Such an opposite relation between
the density and the velocity components of the excitation
modes, on the top of the dynamical equilibrium of coupled
superfluids, is unstable (once the relative velocity is beyond a
density-dependent threshold), and it is the expected cause of
decay of the stationary configuration.

For each of these modes with wave number k, there exist
another degenerate unstable mode with opposite wave number
−k, such that their linear combinations give rise to standing
waves of typical wavelength ≈2πk−1

r , since the instability
appears in the rotonic region of wave numbers. The standing-
wave pattern involves in-phase density modulations in the
proton and neutron superfluids that are opposite (over-density
versus under-density) at both sides of each of the standing-
wave nodes. But, simultaneously, the velocity excitations are
out of phase for protons and neutrons, so that one superfluid
“accelerates” while the other “decelerates” in between the
standing-wave nodes, which become separated by regions of
either increasing or decreasing relative velocities; the growth
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FIG. 5. Same as Fig. 4 for an unstable stationary state at total
density ρ = 0.16 fm−3 and relative superfluid motion with |V| =
0.125c. The represented modes correspond to the dispersion relations
shown in the middle and bottom panels of Fig. 2. Inside the region
of unstable wave numbers k ∈ [0.16, 0.49] fm−1, the modes are
described by complex components. The main panels depict the real
part of the mode components versus wave number, whereas the two
insets within each main panel represent their real (top inset) and
imaginary (bottom inset) parts.

of these excitations can eventually evolve into quantized su-
perfluid vortices. However, the linear analysis cannot predict
the outcome of the nonlinear time evolution of the system.
Therefore, whether these density modulations can grow and
the associated vortices can emerge, eventually giving rise to
a new, stable stationary configuration is beyond the present
analysis and will be studied elsewhere.

IV. CONCLUSIONS

In the search for physical phenomena that could be re-
sponsible for observational features of neutron stars, such as
thermal evolution or timing anomalies, previous works have
explored instabilities originated by unstable phonon excita-
tions in the superfluid interior of neutron stars [18,20,33].
The present work contributes to this exploration in the outer
core of neutron stars and generalizes the previous findings by
showing that rotonic excitations may also lie at the origin of
dynamical instabilities and could eventually lead to emergent
vorticity along with modulations of the superfluid density.
Since these collective modes are among the lowest-energy ex-
citations, they can remain undamped by pair-breaking effects.

By means of an effective nuclear interaction Skyrme SLy4,
and in the presence of dynamical entrainment (computed
with the same Skyrme force), we have shown from the lin-
ear analysis of the two-superfluid hydrodynamics that the
rotonic structures originate at intermediate wave numbers

(≈0.4 fm−1) in the presence of relative motion between neu-
tron and proton superfluids. Either rotational lag between the
two superfluids or star precession could be at the origin of
such relative motion, and hence of the associated instabili-
ties [21,33,46,56]. We have found rotonic instabilities above
relative superfluid velocities of ≈0.1c at ρ = 0.16 fm−3, a
velocity threshold that increases monotonically with the nu-
clear density. The associated unstable modes present in-phase
superfluid densities and out-of-phase superfluid velocities and
have a fast exponential growth in the linear regime (typical
times of above twice the proton plasmon period have been
found at saturation density). The final fate of these modes in
the nonlinear regime is beyond the scope of this work.

The effect of alternative nuclear-interaction forces or the
specific role of entrainment on roton instabilities present in-
teresting prospects for further study. As far as the entrainment
can be expressed in terms of the isovector effective mass [32],
it would be instructive to test the impact of energy functionals
with different effective masses on the appearance of rotons.

Our simplified nonrelativistic model (see Ref. [57] for a
relativistic approach) does not include the Landau damping
associated with the electron gas [20,41], the mutual friction
between superfluids from underlying vorticity [14,34], the
viscosity from a normal fluid [35], nor magnetic-field effects
[23,58]. These features will be considered in future works.
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APPENDIX: DISPERSION OF LINEAR EXCITATIONS

It is useful to rewrite the linear matrix (22) as a block
matrix:

B =
(
V P
G VT

)
, (A1)

where the 2 × 2 blocks are

V =
(

u w
−w v

)
=

( jn

ρn

�np

ρp
vpn

− �np

ρn
vpn

jp

ρp

)
,

P =
(

�nn �np

�np �pp

)
, G =

(
Gnn Gnp

Gnp Gpp

)
. (A2)

After the Fourier expansion of the perturbations in Eq. (21),
only the symmetric block G depends on the wave number
k, with elements given by mGnn = ∂nμn + ϑnnh̄2k2/2m,
mGnp = ∂pμn − α|vpn|2/2 + ϑnph̄2k2/2m, and mGpp =
∂pμp + ϑpph̄2k2/2m + [μ2

e/(π2h̄3c3) + k2/(4πe2)]−1, where
∂ j denotes the partial derivative with respect to the density ρ j .
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The dispersion follows from the characteristic polynomial
|B − λI| = 0, with λ ≡ ωk/k; explicitly,

λ4 − 2λ3(u + v) + λ2[(u + v)2 + 2|V| − Tr(GP)]

− 2λ[(u + v)(|V| − �npGnp) + w�np(Gnn − Gpp)

− wGnp(�nn − �pp) − u�ppGpp − v�nnGnn]

+ |GP| + u2v2 − u2�ppGpp − v2�nnGnn

− 2uv�npGnp + w2(2uv − w2

+ 2�npGnp − �ppGnn − �nnGpp)

+ 2w[u(�ppGnp − �npGpp) + v(�npGnn − �nnGnp)]. (A3)

Although there exist analytical solutions for a quartic equa-
tion (see, for instance, Ref. [59]), they involve cumbersome
expressions and we do not write them here, since they do
not help with any physical insight. Instead, the numerical
solutions are easily found with standard computer algebra
software, and the simpler analytical cases, as those com-

mented in the main text [see Eqs. (24) and (25)], provide a
good insight into the trends followed by the solutions as a
function of the relevant quantities.

The simplest example corresponds to the static system,
jn = jp = vpn = 0, where the characteristic polynomial (A3)
reduces to

λ4 − λ2Tr(GP) + |GP|, (A4)

and the solutions are

λ2
0± = Tr(GP)

2
±

√
Tr(GP)2

4
− |GP|. (A5)

This case, without the explicit k dependency of the matrix G,
can be found in the literature (see, e.g., Refs. [18,20]) and
can be compared with our results in the limit k → 0; similar
sound speeds to those found here (our ω/k for k → 0) have
been reported. Notice that the particular values depends on
the equation of state selected.
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