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Bayesian analysis of a future β decay experiment’s sensitivity to neutrino mass scale and ordering
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Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding
future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by
calibrating (or measuring) the consequences incurred when certain results are reported. We present procedures
for calibrating predictions of an experiment’s sensitivity to both continuous and discrete parameters. Using these
procedures and a new Bayesian model of the β-decay spectrum, we assess a high-precision β-decay experiment’s
sensitivity to the neutrino mass scale and ordering for one assumed design scenario. We find that such an
experiment could measure the electron-weighted neutrino mass within ∼40 meV after 1 year (90% credibility).
Neutrino masses >500 meV could be measured within ≈5 meV. Using only β decay and external reactor neutrino
data, we find that next-generation β-decay experiments could potentially constrain the mass ordering using a
two-neutrino spectral model analysis. By calibrating mass ordering results, we identify reporting criteria that
can be tuned to suppress false ordering claims. In some cases, a two-neutrino analysis can reveal that the mass
ordering is inverted, an unobtainable result for the traditional one-neutrino analysis approach.
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I. INTRODUCTION

Model-based simulation is a standard tool for inform-
ing the design of physics experiments and predicting their
outcomes [1]. Such model-based approaches allow one to
incorporate detailed expectations regarding future data by
performing pseudoexperiments that reflect the span of possi-
ble experimental and physical parameter values. In Bayesian
sensitivity studies, specifically, those parameter values are
weighted by prior probabilities. By contrast, computing and
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reporting predicted outcomes for “best guess” values ignores
information by excluding regions of parameter space.

Moreover, inferential models lend themselves to proce-
dures for investigating the consequences of assumptions made
during analysis. Bayesian methods, in particular, illuminate
the effects of assumptions underlying inference (i.e., extract-
ing information from data) and decision making (i.e., claiming
results based on inferences) by decoupling the two processes.
Thus, when assessing an experiment’s sensitivity, one can
quantify, or calibrate, the expected success or accuracy of
procedures that one plans to use to both analyze data and
report results in a certain format. It is also possible to per-
form conditional Bayesian calibration by fixing one or more
parameters before simulating data [2–5].

Here we employ Bayesian modeling to perform a sen-
sitivity study for a physics experiment. Among physicists,
sensitivity typically denotes the level of precision with which
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TABLE I. Definitions are consistent with Particle Data Group descriptions [1] with the exception of the two definitions of “sensitivity,”
which capture a common but less standard usage. The last row describes how “sensitivity” is used in this paper.

Term Definition Notes

Credibility Fraction of Bayesian posterior probability mass that falls Result of a single real or
within a reported interval simulated experiment

Coverage Fraction of likely experiments for which the reported interval Result of multiple
contains the true parameter value, within model assumptions simulated experiments

Confidence interval Interval constructed to have a coverage that equals or exceeds Frequentist term; not used
a chosen probability (or “confidence level”) in this analysis

Sensitivity analysis Study of how result precision and accuracy change under Requires simulated
reasonable variation of all parameters, within model assumptions experiments (pseudodata)

Sensitivity (to very Upper limit on a parameter, to some confidence level Usage by the KATRIN
small parameter) experiment [8]

Sensitivity (to parameter Width of a posterior interval with a chosen credibility Definition in this paper
of any magnitude)

experimenters can expect to resolve a parameter of interest,
assuming a reasonably accurate measurement. (We adopt that
usage here, though among statisticians, sensitivity can refer
to how a decision-making process’s accuracy depends on
model parameters [2,3].) For physics experiments, in par-
ticular, Bayesian sensitivity methods allow researchers to
capitalize on their often extensive knowledge of experimental
configurations, physical processes, and expected uncertainties
to construct priors. More broadly, model-based analyses offer
potential tools for physicists to collectively interpret results
and judge whether discovery claims are warranted [2,6] (see
Sec. II). These tools thus provide possible alternatives to a 5σ

confidence requirement.
To assess sensitivity, we develop a model of an experi-

ment’s measurement process, then employ that model to re-
peatedly generate and analyze pseudodata—where “analyze”
means “infer posterior distributions.” Parameters assumed for
data generation are sampled from priors. Next, expectations
and intervals are computed from the posteriors, yielding sen-
sitivity results. Finally, we calculate how often these results
reflect “true” values underlying the generated data (a cali-
bration). In doing so, we quantify the consequences of our
modeling and reporting assumptions. For relevant statistical
term definitions, see Table I.

The above procedure is applied here to assess sensitivity to
the neutrino mass scale and ordering. Neutrinos are produced
in one of three flavor states, each of which interacts with
electrons, muons or tau leptons. The discovery of neutrino
oscillations demonstrated that each flavor state can be rep-
resented as a superposition of mass states with eigenvalues
m1, m2, and m3, at least two of which are nonzero [7,9,10].
While nuclear and particle physics experiments as well as
cosmological models have placed upper bounds on the masses
and measured the squared mass differences [1], the absolute
neutrino mass scale is unknown. In addition, two orderings of
the mass spectrum are possible: If m1 < m2 < m3, then the
masses are said to obey a normal ordering, while if m3 <

m1 < m2, then they follow an inverted ordering. Although re-
cent data are beginning to shed light on the ordering question,
it remains unanswered to date. Sensitivity to the ordering in
oscillation experiments is discussed in Qian et al. [11].

A promising approach to resolving the mass scale in-
volves analyzing the shape of the electron spectrum produced
when nuclei β decay. This “direct mass measurement”
method is so named because it depends chiefly on decay
kinematics imposed by energy conservation. Direct mass ex-
periments probe the electron-weighted neutrino mass mβ =√∑3

i=1 |Uei|2m2
i (hereafter “neutrino mass”), where Uei are

Pontecorvo-Maki-Nakagawa-Sakata matrix elements.1 The
size of mβ corresponds to a shift in the electron’s maximal
kinetic energy and causes a distortion in the β spectrum
shape. A precise mβ measurement would determine the mass
scale, and as a by-product, it could constrain the ordering
at masses �48 meV—the 95% lower limit on the inverted
ordering mass [1]. Furthermore, the β-decay shape depends
distinctly on each mi [12]. Thus, we propose that, if a β-
decay experiment is sensitive to the fractional contributions
of individual neutrino masses to the full spectral shape, then
such information might enable a clearer mass ordering de-
termination. By modeling the shape of a β spectrum, one
can thus assess a direct mass experiment’s sensitivity to the
ordering—accounting for both the magnitude of mβ and finer
spectral features (see Fig. 1).

In this paper, we develop a β-decay spectral model suited
to Bayesian inference. The model uses a two-neutrino ap-
proximation (motivated by the fact that �m2

21 � |�m2
13|) and

formulates the mass ordering question in terms of a param-
eter η, the fractional contribution of the lighter mass to the
spectrum. Constraints on η are most directly accessible via
reactor neutrino experiments. Thus, for a β-decay experiment
to potentially resolve the mass ordering, the only external
data needed for the analysis are reactor data. Current as well
as future direct mass experiments could employ this spectral
model to examine their sensitivity to the neutrino mass scale
and ordering. As a case study, we use the model to assess
sensitivity to these neutrino mass parameters for one possible

1For either neutrino mass ordering, mβ = m1 to 1% accuracy for
m1 � 0.05 eV. Hence, with knowledge of the ordering and splittings,
an mβ measurement determines all three masses.
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FIG. 1. A comparison of atomic tritium β-decay spectra for the
two allowed neutrino mass orderings shows how a spectral shape
analysis could be sensitive to the mass ordering. A background of
10−6/eV is assumed.

design scenario of the Project 8 experiment, a high-precision
β-decay experiment [13,14].

II. A MODEL-BASED APPROACH TO CALIBRATING
SENSITIVITY RESULTS

Predictive analyses project whether, given some expected
data, one will be able to report a particular result—for exam-
ple, “mβ falls between 0.05 and 0.09 eV with 90% credibility”
or “the mass ordering is normal.” In Bayesian analysis, the
decision of whether to claim a particular result occurs after
the process of inference. Bayesian inference produces poste-
rior distributions π (θ |y) for parameters θ given data y. Such
inference exploits Bayes’s rule π (θ |y) ∝ π (y|θ )π (θ ), where
π (y|θ ) is the likelihood of y given θ , and π (θ ) are prior prob-
ability distributions on θ . Experimenters make claims about
physics underlying their data by computing expectations (e.g.,
means and intervals) from posteriors.

In practice, there is no guarantee that the process by which
one decides to claim a scientific result will perform well
when faced with real data. To provide some assurance of the
decision-making process’ good performance, it is necessary to
calibrate the process by evaluating it with respect to possible
“model configurations,” i.e., combinations of true parameter
values.

Decision-making procedures are, in this context, cost-
benefit analyses. A calibration requires an inferential loss (or
utility) function that expresses the relative loss L incurred
when an experimenter makes different reporting choices. In
this work, L lies between 0 and 1. A common choice for L
(used in Sec. II A) is a function that equals 0 if a credible
or confidence interval obtained by analyzing a pseudodataset
contains the true parameter value, or 1 if it does not. The
expected loss is then estimated by finding the average loss
L̄ for a group of pseudodatasets. In the case just described, L̄
would be the fraction of datasets for which the interval does
not contain the true value. Given multiple reporting options,
the experimenter should select the option with the smallest
average loss over a group of pseudoexperiments [2,6]. (For

example, this enables a decision of whether to report quantile
or highest density intervals, as discussed further in Sec. II A.)

There is no one correct loss function for a given model, but
the function should quantify the agreement or discrepancy be-
tween inputted and reported values. Given some loss function,
model-based calibration then serves to compute how often one
reports accurate results, across many pseudoexperiments with
likely model configurations [2,6,15].

Frequentist calibration entails finding the worst-case loss
over all model configurations. Such calibration requires
tools like the Feldman-Cousins method, which addresses the
fact that typical, Gaussian confidence intervals are inaccu-
rate for bounded parameters, such as the positive neutrino
mass [16,17]. This approach is too time-consuming to imple-
ment fully, as it requires that likelihood functions be computed
and integrated for all reasonable parameter values (or a fine
grid). While asymptotic approximations can make frequentist
calibration computationally viable, they do not fully hold
for the complex statistical models used in modern analy-
ses [18,19].

Bayesian calibration, on the other hand, does not require
that one determine the worst-case loss; instead, it entails find-
ing the expected loss with respect to the prior distribution.
This is a probabilistic calculation that can be readily imple-
mented with sampling methods. In a Bayesian analysis, it is
not necessary to consider all possible truths—only enough
to accurately estimate expected losses [19]. Here we lay out
Bayesian calibration procedures for sensitivity to the electron-
weighted neutrino mass and mass ordering.

A. Calibrating neutrino mass sensitivity claims

The Bayesian result of a physics experiment will often
be a posterior credible window—that is, the window within
which some fraction of a parameter’s posterior probability
mass falls. This reporting scheme is sensible for continuous-
domain parameters. If a posterior on mβ is inferred from a
β spectrum, then experimenters can present their result as
a credible window of neutrino masses (in eV). We call the
width of this window “sensitivity to the neutrino mass.” The
reported mass window may consist of either an upper limit
with a lower bound at zero, or a credible interval with upper
and lower bounds. If posteriors are inferred for a large number
of pseudodatasets, then one may predict an experiment’s sen-
sitivity by computing an expectation value (e.g., mean width
or median width) from these credible windows. For a discus-
sion of the frequentist and Bayesian perspectives underlying
the use of confidence and credible intervals, respectively, see
Ref. [2].

In the continuous-domain case, the loss function provides
a method for computing the proportion of likely datasets
for which a posterior interval contains the true parameter
value. For an analysis of sensitivity to mβ , a calibration in-
volves computing the fraction of pseudodatasets C ≡ 1 − L̄
for which the credible window includes the true neutrino mass
m̃β , where L̄ is the average loss for an ensemble of pseu-
doexperiments. (L̄ serves to estimate the expected loss with
respect to the prior distribution.) The fraction C is known as
the Bayesian “model coverage,” and it estimates the expected
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accuracy of a sensitivity prediction.2 We find C by repeatedly
generating and analyzing data given an appropriate distribu-
tion of inputted m̃β values [2].

The calibration procedure is as follows:

(1) Develop a generation model of the data, and if nec-
essary, a second analysis model. The latter may be
approximate but is believed to adequately describe the
data. Both models depend on a set of parameters θ

(which includes mβ).
(2) Select “true” values θ̃ by sampling from priors π (θ ),

which incorporate as much external knowledge as is
reasonable.

(3) Generate spectral data ỹ using the generation model,
with θ̃ as inputs.

(4) Use the analysis model from #1 to infer a posterior
π (mβ |ỹ).

(5) Determine the posterior values ϑ that contain some
fraction (credibility) α of the posterior probability
mass on mβ . For a credible interval, calculate the loss
function

Lmβ
≡

{
0, m̃β ∈ [ϑ(1−α)/2, ϑ(1+α)/2]
1, otherwise , (1)

where upper and lower posterior bounds ϑ(1±α)/2 are
computed so that∫ ϑ(1±α)/2

0
dmβ π (mβ |ỹ) = 1 ± α

2
. (2)

That is, a fraction (1 ± α)/2 of the posterior probabil-
ity mass on mβ lies below the mass value ϑ(1±α)/2. For
a limit, the credible window is [0, ϑα].

(6) Repeat steps 2–5 Ntrial times. Each repetition consti-
tutes a “pseudoexperiment.”

(7) Compute C by subtracting the mean over resulting
Lmβ

values from 1. Potentially, adjust α to obtain a
satisfying coverage—that is, to achieve an acceptable
number of true- and false-positive results.

C may not equal α for all α; the relationship between
these two values depends on the model and priors. The un-
certainty on C is

√
C(1 − C)/Ntrial, assuming the number of

true-positive results is binomially distributed.
A calibrated sensitivity result then consists of a projected

(e.g., mean or median) credible window and its coverage. It
is necessary to sample all input values from priors before
generation (step 2). This creates an ensemble of many realistic
datasets, where the probabilities of possible model configura-
tions are weighted appropriately. If a model-based sensitivity
analysis uses fixed generation inputs (or a grid of inputs,
unweighted by prior probabilities), then it risks biasing results
and under- or overestimating coverages. It is also crucial to

2Note that credible intervals do not guarantee any frequentist cov-
erage. Constructing confidence intervals and computing frequentist
coverages would require analyzing an ensemble of pseudoexperi-
ments for a multidimensional grid of input parameter configurations.
This becomes impractical in many dimensions, where the number
of configurations on any reasonably sized grid grows exponentially
fast [18].

generate pseudodata that is as realistic as possible, so that
the coverage will reflect the potential consequences of all
known assumptions made when devising the analysis model
or choosing how to report results [2].

Note that expected fluctuations in the data itself (i.e.,
statistical uncertainties) are incorporated into priors used
for both data generation and analysis—steps 3 and 4. By
contrast, uncertainties representing a lack of clarity in one’s
knowledge of fixed parameters (i.e., systematic uncertainties)
are incorporated into pregeneration sampling and analysis
priors—steps 2 and 4.

In the above procedure, a choice of credibility α does not
uniquely define a credible window, because one must also
select the window’s central value. A straightforward choice
of window is the quantile interval, which contains an equal
amount of probability mass above and below the posterior
median [as in Eqs. (1) and (2)]. For asymmetric posteriors,
however, highest density intervals (HDIs) may be preferable.
An HDI is computed by finding all credible intervals for a
given α and selecting the narrowest interval. For a continuous
posterior, this is equivalent to lowering a horizontal line over
the posterior until the outermost intersection points between
the line and curve contain a fraction α of posterior probability
mass [20]. For a particular ensemble of posteriors, assuming
both of these interval types are qualitatively sensible, one
can decide which to adopt by computing and comparing
coverages for each.

When measuring a continuous parameter like mβ , physi-
cists are often concerned not only with precision, but also
with “discovery potential”: the probability that the parameter
is nonzero. While neutrinos have been found to be massive
through oscillation experiments, a β-decay result distinguish-
ing mβ from zero with high confidence or credibility would
provide strong verification of physicists’ interpretation of
these oscillation data [8]. Here we claim a continuous pa-
rameter is nonzero if its highest density credible interval does
not intersect with zero. (In practice, the mβ prior affects the
outcome; see Sec. IV A 4.)

To verify that a scheme for assessing discovery poten-
tial is sound, a second calibration is required. This involves
inputting a “true” mass value of zero for an ensemble of pseu-
doexperiments, then constructing HDIs with some credibility.
Next, one confirms that the interval credibility approximately
equals the fraction (coverage) of experiments for which the
interval contains zero.

B. Calibrating mass ordering sensitivity claims

It is similarly possible to calibrate the process of claiming
that the neutrino masses obey one ordering. This process is an
example of result reporting for a discrete-domain parameter.
In that case, we follow the above procedure through step 4,
replacing mβ with a parameter that encodes mass ordering
information. For our β spectral model, that parameter is η,
the lighter mass’ contribution to the spectrum. For normal
and inverted orderings, respectively, η tends toward precisely
known values ηN and ηI (see Sec. III). We claim a hypothetical
ordering result when the posterior π (η|ỹ) clusters near the
predicted value for one ordering.
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Specifically, as a suggested decision-making scheme, we
report a normal (inverted) ordering result when a posterior
interval on η with credibility κ contains ηN (ηI ) but not ηI

(ηN ). For a credible interval T on η, the associated loss func-
tions for each ordering are

LN ≡
{

0, (ηN ∈ T ) and (ηI /∈ T )

1, otherwise
,

LI ≡
{

0, (ηI ∈ T ) and (ηN /∈ T )

1, otherwise
, (3)

T = [φ(1−κ )/2, φ(1+κ )/2],

where posterior bounds on η are computed so that∫ φ(1±κ )/2

0
dη π (η|ỹ) = 1 ± κ

2
.

These bounds may be selected using either a quantile
or a highest density approach, depending on which yields
higher coverage. If LN = LI = 0 or 1, then neither ordering
is strongly favored and nothing can be claimed.

For each “true” mass ordering, given a series of pseudo-
experiments, we then compute the rates at which we report
correct and incorrect mass ordering results (see Sec. IV B).
These true and false claim rates enable experimenters to select
a credibility κ—i.e., to decide how stringent to make their
reporting criterion. As in the continuous parameter case, this
calibration of sensitivity to the mass ordering should be per-
formed for a large number of model configurations sampled
from priors. A similar calibration procedure would apply to
accelerator, atmospheric and reactor experiments seeking to
resolve the ordering [21], given an η-like parameter express-
ing mass ordering information.

We implement the above two procedures using the Stan
software platform for Bayesian inference, which estimates
posteriors by exploring a probability density parameter
space using Markov-chain Monte Carlo methods (specifically,
Hamiltonian Monte Carlo [22,23]). Stan is a valuable predic-
tive analysis tool because it deals well with high dimensional
problems and allows users to focus on modeling systems in-
stead of developing computational architecture [24,25]. Along
with Stan, we employ morpho, a python-based tool we devel-
oped to organize information input to and output from Stan.
Morpho facilitates a Stan workflow involving convergence
checks and analysis of posteriors, and it is designed to suit
general Stan users [26].

III. MODEL FORMALISM FOR A β-DECAY EXPERIMENT

The differential spectrum predicted for β decay has a well
understood analytic distribution, especially for superallowed
transitions. The rate at which electrons are ejected as a func-
tion of their total energies is described by the equation

dN

dEe
=

[
G2

F |Vud |2
2π3

|Mnuc|2F (Z, pe)peEe

]

×
[

3∑
i=1

|Uei|2εν

√
ε2
ν − m2

i �(εν − mi )

]
. (4)

In the electron phase space term (first bracketed term), GF

is the Fermi coupling constant, Vud is the Cabbibo mixing
angle, Mnuc is the nuclear matrix element, Ee(pe) is the out-
going electron energy (momentum), and F (Z, pe) is the Fermi
function, for a daughter nucleus with charge Z . In the neutrino
phase space term (second bracketed term), Uei are the electron
neutrino mixing matrix elements, εν and

√
ε2
ν − m2

i represent
the total energy and momenta of the released neutrino, and
� is the Heaviside step function. We also define the kinetic
energy of the electron, Ke = Ee − me.

In this section, we first justify our choice to hold the
electron phase space term constant with respect to energy,
allowing us to model spectral data by focusing on the
second, neutrino-specific term. We then approximate and re-
parameterize the neutrino phase space, producing an analytic
spectral form that both incorporates expected features of a real
dataset and is suitable for Bayesian modeling.

A. Approximations to the β spectrum

For this model, we consider an eV-scale energy region near
the high-energy end of a spectrum produced by β decay. For
tritium decay, only superallowed transitions occur, so Mnuc

is simply the sum of the vector (gV ) and axial vector (gA)
coupling constants:

|Mnuc|2 = g2
V + 3g2

A.

Mnuc is therefore independent of electron energy.
The relativistic correction to the Fermi function is negligi-

ble at these energies, so the nonrelativistic form is used:

F (Z, pe) = 2παZ/β

1 − e−2παZ/β
, (5)

where α is the fine structure constant and β ≡ pe/Ee is
the electron’s velocity. Since we confine our analysis to
a region of width δKe ∼ 10 eV, and the variation in β

is of order δKe/pe � pmax
e /Emax

e , β can be approximated
as constant. Given Eq. (5), then, F (Z, pe) 	 F (Z, pmax

e ).
Similarly, we treat peEe 	 pmax

e Emax
e as constant, given

that δKe � Emax
e , me. Thus, we can define a constant A ≡

G2
F |Vud |2
2π3 |Mnuc|2F (Z, pmax

e )pmax
e Emax

e , representing the electron
phase space.

In addition, the spectrum’s neutrino-dependent term can be
expressed in terms of the kinetic energy of the electron Ke.
The neutrino phase space strongly depends on the final state
of the daughter. When multiple final state configurations are
possible—for example, in molecular tritium decay—all pos-
sible final state configurations need to be taken into account.
In this case, however, we focus solely on atomic tritium (T)
decay to singly-ionized 3He+ (the process of interest for the
Project 8 experiment [14]).

Assuming the decaying source is composed of nearly pure
T, we need only consider a transition to one final state con-
figuration of the helium-3 nucleus. Energy conservation then
allows us to define εν as

εν 	 (
Q0

T + me − Erecoil − Ee
) ≡ (QT − Ke),

Q0
T ≡ Mi − M f − me − δb,

Emax
recoil 	 Q0

T

(
Q0

T + 2me
)

2M f Q0
T

,
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where Mi( f ) is the parent (daughter) nucleus mass, δb is the
difference in binding energy between the parent and daughter
atoms, and Erecoil is the recoil energy of the decay nucleus
(with maximum Emax

recoil). The recoil energy varies by ∼0.5 eV
over the spectrum’s last 3.5 keV, so we approximate Erecoil

as constant near the end of the spectrum [27]. This allows
us to write the β spectrum in terms of an endpoint energy
parameter that is assumed not to differ from decay-to-decay:
QT ≡ Q0

T − Emax
recoil. For atomic tritium, Q0

T has an experimen-
tally determined mean value of 18566.66 eV, and Emax

recoil is
3.41 eV [27].

Putting this together with the constant electron phase space
approximation, we formulate a spectral model P:

P (Ke) ≡ A
∑

i

|Uei|2(QT − Ke)
√

(QT − Ke)2 − m2
i

· �(QT − Ke − mi ) ≡
∑

i

|Uei|2Pi(Ke). (6)

Second-order effects are small compared with the overall
spectral shape in and around our narrow analysis window.
Hence, our analytic model ignores second-order corrections,
including terms that account for finite nuclear radii and radia-
tive corrections.

B. One- and two-neutrino spectral models with finite
energy resolution

We must transform the function P (Ke) so that it includes
features seen in experimental data, including an energy res-
olution, background events, and kinetic energy bounds. In
performing these transformations, P (Ke) must meet two con-
ditions to be suitable for Bayesian inference. First, we require
that the function be normalizable, because Bayesian mod-
els are formulated as probability density functions (PDFs).
Specifically, in Stan, one specifies features of a likelihood
space by adding log PDFs to a total log probability. While
strictly, the function’s normalization need not be analytic
because Stan provides for one-dimensional (1D) integration,
inference with analytic PDFs is less computationally expen-
sive. By incorporating smearing from an experimental energy
resolution, we are able to formulate an analytically normalized
version of P . Second, to assess sensitivity to the mass order-
ing, our model must include a parameter η, as described in
Sec. II B—or more generally, a variable that strongly depends
on the ordering.

We consider two experimental factors: the uncertainty
associated with reconstructing an energy spectrum and the

FIG. 2. Approximated spectral model [Eq. (7)] superimposed on
a numerical convolution of a Gaussian with the exact T spectrum
[Eq. (4)] and one year of data generated with the exact model.
The signal activity is 1.7 × 108/yr in the analysis window, mβ =
8.5 meV, Kmin = QT −mβ −10 eV, and σ = 54 meV (see Sec. IV A).

presence of background events. As opposed to considering an
integrating spectrometer (like the one used by KATRIN), we
focus on differential spectrometers (used by Project 8, ECHO,
and HOLMES) capable of measuring individual electron ki-
netic energies [28]. This allows us to assume that true kinetic
energies are normally distributed around K . The mapping
distribution is N (Ke|K, σ ) for a standard deviation—that is,
an energy resolution—σ .

The convolution of the neutrino phase space term with
N is not analytically integrable. We address this issue by
expanding each neutrino mass term Pi within P [Eq. (6)] to
first order in m2

i :

Pi(Ke) 	 A
[
(QT − Ke)2 − m2

i /2
]
�(QT − Ke − mi ).

This expansion is justified for m2
i � (QT − Ke)2, which holds

for all data points except those very close to the endpoint.
Moreover, once the spectral shape is smeared by convolving
it with N , the exact and approximated curves appear very
similar even near the endpoint, as seen in Fig. 2. When
analyzing a full spectral shape, the expansion holds except
for large quantities of data. (The count number at which the
approximation breaks down depends on the analysis window
and binning, among other factors.)

Given the expansion in m2
i , we can define and integrate a

reconstructed energy spectrum Fi:

Fi(K|QT , Kmin, mi, σ ) ≡ Fi(K ) ∝
∫

Pi(Ke)N (Ke|K, σ )�(Ke − Kmin)dKe → dN

dK

= N(mi, QT − Kmin)[ξ (K|QT , mi, σ, mi ) − ξ (K|QT , mi, σ, QT − Kmin)]

ξ (K|QT , mi, σ, t ) = (QT − K + t )σ 2N (QT − K|t, σ ) + 1

2

[
− m2

i

2
+ (QT − K )2 + σ 2

]
Erfc

(
t − QT + K√

2σ

)
. (7)
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This model describes signal data in a kinetic energy win-
dow [Kmin, QT ]. Its normalization term is defined based on the
size δKe of this window:

N(mi, δKe) = 6

2(δKe)3 − 3m2
i δKe + m3

i

.

The practical need to filter out events below some energy
motivates our choice to include a minimum energy parameter.
Because of the uncertainty σ associated with the reconstruc-
tion of Kmin, this lower bound is soft.

The background is assumed to be uniform in kinetic
energy. If we include a smeared (i.e., convolved with N )
background B, then the normalized spectral model for a single
neutrino mass mi is given by the master equation:

Mi(K ) = fsFi(K ) + (1 − fs)B(K|Kmin, Kmax, σ )

B(K|Kmin, Kmax, σ ) =
Erf

(Kmax−K√
2σ

) − Erf( Kmin−K√
2σ

)

2(Kmax − Kmin)
. (8)

Here fs is the signal fraction of a dataset. Since Mi(K ) is
analytic and normalized, it can be formulated as a PDF and
thus used for statistical inference in Stan. Moreover, Eq. (8)
allows us to assess an experiment’s sensitivity to the mass
scale. Specifically, the calibration procedure in Sec. II A can
be applied for posteriors on masses mi inferred using this
model.

Experimentally, K is constructed from some observed
variable vo—for example, in Project 8’s case, an electron cy-
clotron frequency (see Sec. IV). The energy resolution derives
in large part from statistical uncertainties on the quantities
used to map vo → K . While these quantities and their errors
are expected to be well known, a mapping bias that shifts the
overall energy scale is possible. We model this bias by con-
structing a prior on Kmin which allows the minimum energy to
shift slightly relative to QT .

We bin data to reduce computation time, though unbinned
analyses are possible in Stan. Details in the spectral shape
on the order of a few meV only inform the neutrino mass
measurement if they occur in the last ≈1 eV. Thus, data
should be binned finely near the endpoint and coarsely (for
computing efficiency) at lower energies. For narrow bins, the
fraction of counts per bin can be fitted to the spectral rate
at each bin center. However, modeling large bins [O(1 eV)
width] in this way biases mβ posteriors upward relative to
inputs, due to the changing slope of the spectrum within
each bin. To address this, we derive the cumulative distribu-
tion function GCDF

i (K ) corresponding to the PDF model in
Eq. (7), then set the number of events in a bin [Kn, Kn+1]
equal to GCDF

i (Kn) − GCDF
i (Kn+1). The CDF is provided in

Appendix A.
To report mass ordering results based on inferred poste-

riors, we modify the spectral model in a second way. If one
considers the smaller mass splitting (�m2

21 ≡ m2
2 − m2

1) to be
negligible, then the signal [Eq. (7)] can be written in terms of
only two neutrino masses, mL and mH . Here mH > mL, with
a splitting �m2

ee ≡ m2
H − m2

L 	 |�m2
13| 	 |�m2

23|. The signal
is then simply a weighted sum of two spectra, corresponding

to the two mass scales:

F ′(K ) = ηFL(K|QT , Kmin, mL, σ )

+(1 − η)FH (K|QT , Kmin, mH , σ ). (9)

As indicated previously, η is the fractional contribution of the
lighter mass term to the spectral shape.

Since �m2
ee is always positive, η is the only parameter

in this model that depends on the ordering. Specifically, η

should tend toward one value (ηN ) if the ordering is normal
and another (ηI ) if it is inverted, where

ηN ≡ |Ue1|2 + |Ue2|2 = cos2 (θ13)

ηI = 1 − ηN = |Ue3|2 = sin2 (θ13).

The ordering question can thus be formulated solely in terms
of the large mass splitting and θ13, both of which are measured
by reactor antineutrino disappearance experiments. Hence, the
above model enables a mass ordering determination using
only a β spectrum and reactor experiment results.

To perform a mass ordering sensitivity study, we substi-
tute Fi(K ) → F ′(K ) in Eq. (8). Then, by implementing the
decision-making scheme in Sec. II B for posteriors on η, we
can calibrate the analysis by estimating the expected accuracy
of reporting different ordering results based on β spectra.
Consequently, we have here developed a probability distri-
bution that serves two key purposes: It acts as a likelihood
function for Bayesian modeling, and it can be used to assess a
direct mass experiment’s sensitivity to the mass ordering.

IV. RESULTS

Our analysis seeks to determine how experimental pa-
rameters such as energy resolution and number of β-decay
events affect sensitivity to mβ as well as the mass order-
ing. To construct concrete, realistic priors that reflect what
parameter values an experiment might see, we incorporate
information related to the Project 8 experiment. The Project 8
Collaboration developed the technique of Cyclotron Radiation
Emission Spectroscopy (CRES) for obtaining a β spectrum
at high precision, as originally proposed in Ref. [13]. CRES
involves measuring the cyclotron frequencies of electrons in
a magnetic field, then computing corresponding energies. In
its final stage, Project 8 aims to measure the neutrino mass
scale by analyzing a spectrum produced by atomic tritium β

decay. The Collaboration is working to reach a neutrino mass
sensitivity of about 40 meV [14].

A. Sensitivity to absolute neutrino mass scale

1. Pseudodata generation and analysis

This study follows the procedure for calibrating sensitivity
claims described in Sec. II A. We perform 220 pseudoexper-
iments (that is, repetitions of steps 2–5 in the procedure),
assuming a runtime �t = 1 yr. For each experiment, data
are generated with a β-spectrum model that is much more
detailed than the inferential model, to reveal any biases
arising from analysis assumptions. The generation model in-
cludes an energy-dependent relativistic Fermi function, as
well as correction terms stemming from atomic physics
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phenomena. These terms account for the emitted elec-
tron’s recoiling charge distribution, radiative effects from
real and virtual photons, three-body recoil effects from
weak-magnetism and V-A interference, 1s-orbital electron in-
teractions with the β and screening of the 3He+ Coulomb
field, and the 3He+ nucleus’ structure. The formulas for these
corrections are taken from Ref. [29]. In this subsection, we
generate data with a one-neutrino mass model and call that
mass mβ .

To compose a full data generation model, the detailed β

spectrum is broadened by numerically convolving it with a
Gaussian of width σ . A nearly flat background [Eq. (8)] is
then added to the spectrum. Before convolution, the data are
confined within a ≈20-eV window centered on the mean
energy at which the spectrum vanishes: QT − mβ , where QT

is the mean T endpoint. The window’s width varies modestly
from spectrum-to-spectrum because its lower bound is sam-
pled from a prior, as discussed below.

In Stan, we implement the one-neutrino spectral model
M from Eq. (8), for mi → mβ . Each pseudospectrum is an-
alyzed using this model. The data are histogrammed with
300 bins covering the 1 eV directly below the endpoint, nine
≈1-eV-wide bins at lower energies, and one bin containing
any background events above the endpoint. For each of the
300 narrow bins bounded by [Kn, Kn+1], we model the number
of counts as a value sampled from a Poisson distribution with

rate M( Kn+Kn+1

2 ) × (Kn+1 − Kn). For the nine wider signal
bins, since the β spectrum decreases monotonically, the signal
Poisson rate can be approximated as GCDF(Kn) − GCDF(Kn+1)
(see Appendix A). To test the effect of bin size near the end-
point, a small analysis (40 pseudoexperiments) was performed
with 500 bins in the eV below the endpoint. It yielded median
mβ sensitivities and coverages consistent with those presented
below, within statistical uncertainty.

2. Selection of priors

Each model parameter requires an associated prior, both
for sampling “true” values (generator inputs) and for infer-
ring posteriors from data. By sampling from these priors
repeatedly, creating an ensemble of model configurations, we
can approach an analysis that accounts for the full range of
possible spectra—given anticipated statistical and systematic
errors. To construct priors, we select functional forms with
boundary conditions that accord with physical limits on pa-
rameters. For positive quantities, we therefore generally chose
log-normal or gamma (γ ) distributions—the former when
likely values span multiple orders of magnitude, and the latter
otherwise. See Table II for a summary of priors.

The one-neutrino model includes parameters mβ , QT , σ ,
Kmin, and fs. A γ prior on mβ was constructed so that 1%
of its probability mass would fall below 0.008 eV, reflecting
the lower bound from mass splitting measurements [1]. (This
bound is not strict because of small uncertainties on those
measurements.) Ten percent of the prior mass on mβ falls
above 1.1 eV, the 90% confidence upper bound reported by
KATRIN in 2019 [30].

We employ a normal prior on QT but define the parameter
as positive in Stan, truncating a negligible negative portion of

TABLE II. Priors for data generation and analysis using one- and
two-neutrino models, denoted by “1” and “2,” respectively. “Design”
quantities reflect goals for Project 8, while “measured” ones derive
from past experiments. Prior functions are defined in Appendix B.

Prior Model Prior Source

QT N ([18563.25, 0.07] eV) 1, 2 Measured
σdopp γ (59.82, 2868 eV−1) 1, 2 Measured
σinst N (μinst, δinst ) 1, 2 Design
Kmin N ([QT −mβ,L−10, 0.01] eV) 1, 2 Design
Ab lognorm(−27.31, 0.5678) 1, 2 Design
Natoms lognorm(44.07, 0.5677) 1, 2 Design
mβ γ (1.135, 2.302 eV−1) 1 Measured
�m2

ee γ (314.5, 122700 eV−2) 2 Measured
mL γ (2.186, 126.1 eV−1) 2 N/A

the normal distribution. The mean of the prior is the extrapo-
lated tritium endpoint minus the electron mass, as calculated
by Bodine et al. [27]. The largest contribution to the QT

uncertainty is from the T-3He mass difference, which has been
measured in Penning traps [31]. That quantity serves as the QT

prior standard deviation.
We consider two energy resolution effects, summed in

quadrature to yield the total resolution σ : (1) Doppler broad-
ening σdopp from translational motion of tritium atoms, and
(2) Instrumental broadening σinst from the process of recon-
structing kinetic energies. To select a γ prior on σdopp, we
devised a Stan model that extracts posteriors for the mean
expected energy spread due to thermal broadening (μdopp) and
the uncertainty on that spread (δdopp), using the formulas in
Ref. [27]. We set the mean (

√
variance) of the σdopp prior equal

to the mean of a Gaussian fit to the μdopp (δdopp) posterior,
inferred for a 0.3000 ± 0.0015 Kelvin gas with negligible T2

contamination.
The primary two expected contributions to the instrumental

resolution are (a) a cyclotron frequency measurement error
and (b) an uncertainty on the field value in the frequency to
energy conversion. We construct a σinst prior assuming that
the field error �B/B ∼ 10−7 is the larger contribution [14]. In
this case, σinst ∼ 0.05 eV. As Project 8 is considering multiple
energy calibration schemes, the uncertainty on σinst could
reasonably fall anywhere in the large range of ≈0.5–10%. Ac-
cordingly, the σinst prior’s “true” mean and standard deviation
(μinst, δinst) are sampled from distributions before data gen-
eration, then fixed to their sampled values during inference.
The σinst prior is then N (μinst, δinst ). The μinst distribution
for pregeneration sampling is γ (25.0, 2 × 10−3 eV−1), with
mean 0.05 eV and

√
variance = 0.01 eV. The δinst distribution

is γ (1.583, 809.7 eV−1), selected so that 5% of its probability
mass would fall below (above) 2.5 × 10−4 eV (5 × 10−3 eV).
Combining the two sources of broadening, the mean σ is
0.054 eV.

Experimenters can select Kmin before analysis by filtering
out events above some cyclotron frequency. If the conversion
(σ ) to K were known exactly, then Kmin could be fixed during
inference at a value computed from that frequency. Instead, to
allow for a systematic shift in K on the order of 0.01 eV, we
employ a normal prior on Kmin with that standard deviation.
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We also incorporated priors associated with the spectral
signal fraction. While external information does not directly
inform a prior on fs, it pertains more directly to signal and
background activities As and Ab. Here As (Ab) is the number of
events per second generated by F (K ) (B(K )) in the window
[Kmin, QT ] ([Kmin, Kmax]). We thus model the signal fraction
as fs = S/(S + B), where S = �tAs and B = �tAb are signal
and background Poisson event rates.

To inform the prior on As, a possible expected signal
activity in the unconvolved spectrum’s last electronvolt can
be expressed in terms of both experiment-specific quantities
(atomic source density n; effective source volume Veff) and
physical parameters (T half-life τ1/2; fraction feV of counts
between QT − mβ − 1 eV and QT − mβ for σ → 0). Follow-
ing the approach in Ref. [32],

As in the last eV = nVeff
ln(2)

τ1/2
feV. (10)

Here the fraction of counts feV in the last eV takes into
account that all events observed in the last electronvolt are
produced by decays to the 3He+ electronic ground state [27],
which comprise 70.06% of the total tritium decay width [33].
The detailed spectral model we developed for data generation
enabled a new, precise calculation of feV, a quantity that has
historically been central to projecting the activities of tritium-
based neutrino mass experiments [8,32]. Assuming mβ = 0,
we find feV = 1.69 × 10−13 for T2 and 2.06 × 10−13 for T.

For a number density n = 1018 atoms/m3 and Veff =
10 m3, target values for an experimental design scenario con-
sidered by the Project 8 Collaboration [14], the experiment
would detect ≈1.2 × 105 events per year above QT − mβ −
1 eV, and a factor of 1000 more above QT − mβ − 10 eV.
We employed a log-normal prior on Natoms ≡ nVeff for this
scenario, setting its mode and standard deviation equal to
1019 atoms. For a given apparatus, this allows for some vari-
ation in source density and detection efficiency. As was then
computed from Natoms.

The Ab prior is informed by the Project 8 Collaboration’s
goal for its dominant source of background to be cosmic rays
passing through the tritium gas. Since the expected cosmic
ray activity is approximately 10−12/eV/s for the n and Veff

values assumed above, and the activity varies with those pa-
rameters [14], the Ab prior distribution is chosen to have mode
and standard deviation equal to 10−12/s for each 1-eV-wide
bin of data.

3. Neutrino mass scale sensitivity results

A close correspondence between “true” neutrino masses
and mβ posteriors indicates that each β spectrum strongly
informs a neutrino mass determination (see Fig. 3). Each
posterior standard deviation on mβ is at least 22 times smaller
than the corresponding prior spread. See Refs. [2,34] for more
information on posterior shrinkage and evaluating model per-
formance.

Table III summarizes credible interval width results for
mβ . Highest density credible intervals (C.I.s) were computed
for α = 0.6826, 0.9, and 0.95 [see Eq. (1)], and standard
deviations were computed by halving the first of these. The

FIG. 3. Neutrino mass posterior means and 90% credible inter-
vals as a function of inputted mβ , for a one-neutrino model and
the assumed experimental design. Interval widths (“sensitivities”)
decrease with mβ , asymptoting at ∼5 meV.

HDI approach produces higher coverages than do quantile
intervals. To enable reliable C.I. estimation, we required the
effective size of each posterior array (as computed by PyS-
tan [25]) to exceed 6000, so that at least 150 effective samples
fall outside each bound.

We can verify that the process of inference itself was suc-
cessful: As expected, posterior means for QT , σinst, σdopp, Kmin,
As, and Ab track with input values. During all 220 analyses,
the five Stan convergence diagnostics—R̂, effective sample
size ratio, E-BFMI, tree depth, and divergences [23,35,36]—
showed no signs of pathological behavior. Moreover, the
coverage of 90% credible intervals is between 85% and 99%
for all parameters.

For true mβ > 0.5 eV, the mean 90% C.I. width
is 0.005 eV. The reported coverage uncertainties are√

C(1 − C)/Ntrial.
The left plot of Fig. 4 shows that mass sensitivity depends

weakly on σinst, because the scenario considered here is rela-
tively statistics limited and the range in σinst is small. However,
for this scenario, smaller uncertainties on σinst noticeably im-
prove sensitivity (see Sec. IV A 4 for an instance of this). We
would also expect increasing the effective volume to improve
neutrino mass sensitivity. Indeed, for an ensemble with fixed
energy resolution and a wide range in Veff values, the widths
of mβ credible intervals depend strongly on Veff, as seen in

TABLE III. Sensitivity to mβ after 1 yr with coverages of credible
intervals.

Interval Sensitivity (eV) Coverage

Median Mean Maximum
90% C.I. 0.0071 0.0112 0.0493 (90.0 ± 2.0)%
95% C.I. 0.0084 0.0133 0.0598 (93.2 ± 1.7)%
Stdev. 0.0022 0.0034 0.0158 (70.1 ± 3.1)%
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FIG. 4. Dependence of mass sensitivity (width of 90% credible intervals) on σinst and volume×efficiency×time. The left plot assumes
the design scenario described in this section. The right plot shows a larger range in signal exposure, for an alternate scenario where n (3.7 ×
1018 m−3) and σ (115 ± 2 meV) are chosen to minimize mβ uncertainty, given a trade-off between frequency reconstruction error and exposure.
The right plot “pessimistically” assumes mβ = 0.008 meV.

the right plot in Fig. 4. These results could inform how future
direct mass experiments prioritize their efforts to improve
the expected energy resolution, resolution uncertainty, and
statistical yield of an apparatus design.

4. Claiming mβ is inconsistent with zero

We also evaluate the ability of an experiment with the
design described here to distinguish the electron-weighted
neutrino mass from zero. As introduced in Sec. II A, for a
given β spectrum, it is possible to claim that the neutrino mass
is nonzero with credibility α if the lower bound of a posterior
highest density α-credible interval exceeds zero. The mβ prior
in Table II is in conflict with this test, as that prior assumes
that it is highly improbable for the mass to be zero, consid-
ering the lower bound from oscillations measurements. When
Project 8 analyzes real data, its main mass scale analysis can
include an mβ prior with an oscillations-based lower bound.
However, to assess consistency with zero, the data will need
to be reanalyzed with an oscillations-bound-free prior.

As an example sensitivity study, we perform 75 pseudo-
experiments with 10% of the neutrino mass prior probability
falling below 0.005 eV and 10% above 0.1 eV. Resulting
posterior credible intervals on mβ are shown in Fig. 5. The
neutrino mass can be distinguished from zero with 90% cred-
ibility in 65 of these analyses. It is possible to claim the mass
is inconsistent from zero for true mβ � 0.04 eV, with two out-
liers caused by an underestimation of the true mass, combined
with poor mβ precision due to large inputted uncertainties (i.e.,
prior widths) on σinst.

How can one be confident that this method will not produce
frequent false claims? We may perform another calibration:
For β spectra produced given a true neutrino mass of zero,
we should rarely claim that mβ is distinguishable from zero.

Indeed, when we analyze 150 such spectra, the mass is judged
to be consistent with zero 93% of the time (α = 0.9).

B. Sensitivity to neutrino mass ordering

The analysis in this section follows the procedure described
in Sec. II B for calibrating sensitivity claims to discrete pa-
rameters. Pseudodata are generated with the same detailed
spectral model as in Sec. IV A, but with two neutrino masses
instead of one. Similarly, for inference in Stan, we now em-
ploy a two-neutrino model—Eq. (8), with a spectral signal
F ′(K ) [Eq. (9)]—to analyze data in the approximate window

FIG. 5. Mass posterior means and 90% credible intervals for
inputted mβ near zero. It is possible to distinguish the mass from
zero for true mβ �0.04 eV, with outliers characterized by large un-
certainties δinst (energy broadening standard deviation).
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FIG. 6. For one pseudoexperiment, example posterior probability density plots and 2D histograms (in both contour and scatter plot form)
for parameters in the two-neutrino spectral model. Posteriors were obtained by analyzing data (�t = 1 yr) that was generated assuming a
normal mass ordering.

[QT − mL − 1 eV, QT − mL + 10 eV]. This region extends
only 1 eV below the endpoint so that the likelihood will be
strongly informed by fine-grained mass ordering-dependent
features near QT . To help constrain the overall mass scale,
data in the next eV below QT − mL − 1 eV are fitted to a
one-neutrino mβ model, with the requirement m2

β = ηm2
L +

(1 − η)m2
H .

We repeat this two-neutrino analysis for �t = 1 yr and
2 yrs with at least 170 pseudoexperiments per runtime,
producing coverage uncertainties of 1–5%. Again, data are
binned after generation and then analyzed assuming Poisson-
distributed events. The Stan model includes the same priors
on parameters QT , σdopp, σinst, Natoms, and Ab as in the one-
neutrino case. The prior on Kmin is similar, with its mean
dependent on mL instead of mβ . We also constructed priors
on �m2

ee and mL (see Table II), while mH required no prior, as
it was modeled by transforming those parameters.3

A γ prior on �m2
ee was formulated by extracting a 90%

confidence interval from a global fit of three reactor neutrino
experiments: [2.38, 2.75] × 10−3 eV2 [37]. At the time when
we began the analysis, this was the most up-to-date global fit

3To avoid noninvertible transforms and the need for Jacobian
adjustments, in Stan, we define a “positive_ordered”
transformed parameter m, with m[1] = mL and m[2] =√

m2
L + �m2

ee (see Sec. 22 of Ref. [25]). The entries of m then serve
as inputs to the spectral log probability density function.

of reactor data. As these bounds differ slightly according to
mass ordering, to be conservative, we selected each bound
(either the normal or inverted ordering limit) so as to obtain
a wider prior. Ten percent of the prior mass on �m2

ee falls
outside each bound. In addition, before generation, either
ηN or ηI was sampled from a Gaussian prior, depending on
the “true” ordering. Prior parameters were determined based
on the mean of cos2 θ13 (0.979) and error on that mixing
parameter (0.001), as measured by reactor experiments [37].
Posteriors extracted from one of the two-neutrino model fits
are shown in Fig. 6, and Fig. 7 compares pseudodatasets for
the normal and inverted orderings.

For the prior on mL, we avoided computing soft bounds
using current limits on the mass scale from particle physics
experiments, as those constraints do not translate easily to
bounds on individual masses [1,38]. Instead, we envision a
scenario in which mL is restricted below ≈0.05 eV, potentially
based on future cosmological constraints on the sum of the
three neutrino masses. Specifically, the prior for pregeneration
sampling and inference is γ -shaped with 10% of its mass be-
low 5 meV and 5% above 40 meV, resulting in mL < 0.08 eV
for all pseudoexperiments. (The distribution peaks near zero,
since there is no oscillations-based lower bound on mL for the
inverted ordering and a very small lower bound for the normal
case.) For true masses above 0.08 eV, one rarely claims to
have resolved the mass ordering using our reporting scheme.
Hence, by choosing a prior localized in a low-mass region, we
proportionally inflate true and false ordering claim rates. This
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FIG. 7. Example pseudospectra overlaid on predicted curves
[Eq. (4) numerically convolved with a Gaussian] for normal and
inverted orderings, with mL = 0 eV and a 2-yr runtime. Spectra are
plotted as a function of the difference between reconstructed energy
and the T endpoint.

makes the process of selecting ideal reporting criteria κ based
on claim rates more statistically reliable than it would be for a
wider mL prior.

As in the one-neutrino case, posterior means track with in-
put values for all parameters. During analysis of most spectra,
no Stan MCMC diagnostics indicated a failure to converge.
However, a quarter of runs exhibited signs of incomplete
convergence [35]: Fifteen percent showed a small number of
diverging iterations (1–10 of 15,000), and 10% failed at least
one other check. Mass ordering sensitivity results are robust
despite this, since observing and minimizing false-positive
rates ultimately validates the analysis. Still, a more consis-
tently converging model might improve sensitivity.

Table IV summarizes results for calibration of sensitivity to
the mass ordering. Uncertainties on 0% claim rates represent
68.3% confidence limits derived from a binomial probability
law. (Given the ensemble’s finite size, the actual probability

TABLE IV. Assuming either a normal or inverted true ordering,
percentages of pseudoexperiments for which the three possible re-
porting outcomes (“normal,” “inverted,” or “no claim”) occur. To
minimize false claims, different reporting criteria κ are used for each
ensemble and observed ordering.

�t = 2 yrs, mL � 0.05 eV

Claim N Claim I

Optimal κ 0.985 0.855
Truth: N 86.8% ± 3.5% 0.0% (+1.3%)
Truth: I 0.0% (+1.5%) 21.8% ± 4.7%

�t = 1 yr, mL � 0.05 eV

Claim N Claim I

Optimal κ 0.925 0.875
Truth: N 45.6% ± 5.2% 0.0% (+1.3%)
Truth: I 0.0% (+1.2%) 23.5% ± 4.3%

FIG. 8. For 2 yrs of data assuming normal (dots) and inverted
(triangles) orderings, posterior means and intervals on η as a function
of potential sensitivity to mL , defined as C.I. width.

of a false claim is not exactly zero.) The loss functions LN

and LI in Eq. (3) dictated whether an ordering result should
be reported for each pseudoexperiment. That is, a normal
(inverted) ordering claim was made if a posterior interval
on η of credibility κ contained ηN = cos2 θ13 (ηI = 1 − ηN )
but not ηI (ηN ) (see Fig. 8). Given the small experimental
error on cos2 θ13, we assumed a known value ηN = 0.978. The
credibility κ acts as a reporting criterion, and modifying κ

affects the rates at which we correctly and incorrectly claim
to have resolved the neutrino mass ordering (see Fig. 9).

We recommend an “optimal κ” by selecting the value for
which the relevant correct claim rate is maximized, given a
minimal incorrect rate—which can be zero, in this study. Val-
ues of κ are considered in 0.5% increments. We observe that,
for both 1 yr and 2 yrs of data, false inverted claims begin to
occur for κ values above a lower number than do false normal
claims. In fact, Fig. 9 shows that false normal claims are never
made for �t = 2 yrs, for these pseudodatasets. Using that
knowledge, for real data, it is possible to boost the probability
of a correct ordering claim without increasing the risk of a
false claim by applying the following procedure:

(a) Check what result would be reported using the optimal
κ for normal ordering true/false claims (as predicted
with pseudoexperiments)—here 0.925 (0.985) for
1 (2) yr(s).

(b) If the result is “normal” or “no claim,” then report it.
(c) If the result is “inverted,” then it could be a false pos-

itive. Reduce κ to the inverted optimal value—0.875
(0.855) for 1 (2) yr(s)—to determine if to report “in-
verted” or nothing.

This procedure accounts for the fact that it is easier to claim
a normal than an inverted ordering result for our model. The
procedure enables false claim rates of 0% for the pseudoex-
periments performed here, with true rates reaching 87% (22%)
for the normal (inverted) ordering after 2 yrs. We see here
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FIG. 9. Mass ordering reporting frequencies for �t = 2 yrs as a
function of κ , the credibility of the η interval [see Eq. (3)]. To obtain
the rates in Table IV, different κ values are chosen depending on
whether the initially favored result is normal or inverted. For the
upper plot, this adjustment enables one to reduce the incorrect claim
rate.

that as statistical power improves over time, sensitivity to the
normal ordering improves.

These results indicate that a Project 8-like neutrino mass
experiment could resolve the mass ordering for various likely
combinations of physical and experimental parameter values.
If the neutrinos obey a normal ordering and the lightest mass
is constrained below ≈0.05 eV, then this analysis predicts
there is a high chance of resolving the ordering after 2 yrs of
data taking. We observe that a direct mass experiment would
resolve the normal ordering especially often in the low-mL,
small mass sensitivity region (see Fig. 10).

For this study, we chose to employ a two-neutrino spec-
tral model, as opposed to constraining the ordering based on
a single mass measurement—for which mβ � 48 meV rules
out an inverted ordering. While it would be impossible to

FIG. 10. Distribution of mass ordering results with respect to mL

and mass sensitivity (�t = 2 yrs). The normal (inverted) ordering
was reported when a 98.5% (85.5%) η credible interval excluded one
ordering and was consistent with the other.

resolve the inverted ordering using a one-neutrino model, a
two-neutrino analysis can enable an inverted ordering deter-
mination. In other words, the process of inference is sensitive
to fine structure near the endpoint of the spectrum produced
by individual neutrino mass eigenstates.

V. CONCLUSIONS

In this paper, we presented a Bayesian approach to an-
alyzing sensitivity to the neutrino mass scale and ordering.
That approach included a calibration, which quantified the
performance of two processes: inferring information and re-
porting results. Our sensitivity and calibration procedures are
applicable to any experiment that produces information re-
garding the mass scale and ordering. These procedures also
serve as templates for sensitivity studies by other physics
experiments—whether they measure continuous or discrete
parameters. As design planning for Project 8’s final phase
advances, future work will include a detailed analysis of sys-
tematic features to inform more precise priors in a Project
8-specific study.

Using the β spectrum model developed here, and given
the experimental expectations in Sec. IV A, we find that
a high-precision direct mass experiment could resolve the
electron-weighted neutrino mass mβ ≈ m1 in a 90% cred-
ible interval, with a “true claim rate” or coverage of
(90.0 ± 2.0)%. For very small mβ , the width of this interval
approaches 40 meV, and for mβ > 0.5 eV, the average width
is only 5 meV. A similar analysis may be employed to search
for and measure the mass(es) of sterile neutrino states, each of
which would produce one kink in the β spectrum.

This study also investigates the tritium β-decay technique’s
sensitivity to the neutrino mass ordering. We emphasize that,
by using a utility function to judge whether to report an or-
dering result, it is possible not only to predict the probability
of a false ordering claim, but also to determine a reporting

065501-13



A. ASHTARI ESFAHANI et al. PHYSICAL REVIEW C 103, 065501 (2021)

tolerance (here, the η interval credibility) that minimizes the
risk of false claims. For the experimental parameters assumed
here and a two-year runtime, we would recommend reporting
a normal ordering result when a 98.5% posterior credible
interval on the light-mass fraction η contains |Ue1|2 + |Ue2|2
but not |Ue3|2. To report an inverted ordering determination,
the opposite should hold for an 85.5% interval around η.
Those reporting criteria enable the normal (inverted) ordering
to be resolved ≈87% (22%) of the time, with a ≈0% false
claim rate. It is also possible to infer posteriors on individual
neutrino masses. When sensitivity to the lightest mass is better
than 0.03 eV, it is nearly always possible to resolve the mass
ordering.

These results demonstrate that we can access more in-
formation by modeling the full spectral shape than would
be possible using a one-neutrino model in terms of mβ .
As more events are detected, the spectral shape method be-
comes increasingly sensitive to count rate kinks that inform
inferences about individual neutrino masses and their order-
ing. Direct mass experiments thus offer a unique potential
probe of individual |Uei| matrix elements, complementary to
oscillations-based probes of their products.
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APPENDIX A: APPROXIMATE SPECTRAL MODEL

The approximate β spectral model for Bayesian inference in Eq. (7) has a corresponding cumulative distribution function. It
is given by

GCDF
i (K ) =

∫ ∞

K
Fi(K

′)dK ′ = [GA(K|mi, QT , σ ) − GB(K|mi, QT , σ, Kmin)]/C,

where

GA = N (QT − K|mi, σ )2σ 2
[
4σ 2 − m2

i + 2mi(QT − K ) + 2(QT − K )2
]

+ Erfc

(
mi − QT + K√

2σ

){
m3

i + (QT − K )
[
6σ 2 − 3m2

i + 2(QT − K )2
]}

GB = N (QT − K|QT − Kmin, σ )2σ 2
{
4σ 2 − 3m2

i + 2[(QT − Kmin)2 − (QT − Kmin)(QT − K ) + (QT − K )2]
}

+ Erfc

(
K − Kmin√

2σ

){
(QT − Kmin)

[
3m2

i − 2(QT − Kmin)2
] + (QT − K )

[
6σ 2 − 3m2

i + 2(QT − K )2
]}

C = [Ghigh(K ) − Glow(K )]
∣∣∞
0 .

We implemented this function in Stan and employed it to analyze fake spectra.

APPENDIX B: PRIOR DISTRIBUTION DEFINITIONS

The prior distributions used in this paper are defined as follows. Each distribution is implemented via a Stan function that
outputs the log of the probability density of a parameter y [25].

(1) Normal distribution:

N (μ, σ ) ≡ N (y|μ, σ ) = 1√
2πσ

exp

[
−1

2

(y − μ

σ

)2
]
.
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(2) Gamma distribution:

γ (α, β ) ≡ γ (y|α, β ) = βα

�(α)
yα−1exp(−βy), where �(α) =

∫ ∞

0
xα−1e−xdx.

(3) Log-normal distribution:

lognorm(μ, σ ) ≡ lognorm(y|μ, σ ) = 1√
2πσy

exp

[
−1

2

(
logy − μ

σ

)2]
.
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